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Spinal cord segmentation is an important step in the analysis of neurological diseases such as multiple sclerosis.
Several studies have shown correlations between disease progression and metrics relating to spinal cord atrophy
and shape changes. Current practices primarily involve segmenting the spinal cord manually or semi-
automatically, which can be inconsistent and time-consuming for large datasets. An automatic method that seg-
ments the spinal cord and cerebrospinal fluid from magnetic resonance images is presented. The method uses a
deformable atlas and topology constraints to produce results that are robust to noise and artifacts. The method is
designed to be easily extended to new data with different modalities, resolutions, and fields of view. Validation
was performed on two distinct datasets. The first consists of magnetization transfer-prepared T2*-weighted
gradient-echo MRI centered only on the cervical vertebrae (C1-C5). The second consists of T1-weighted MRI
that covers both the cervical and portions of the thoracic vertebrae (C1-T4). Results were found to be highly
accurate in comparison to manual segmentations. A pilot study was carried out to demonstrate the potential util-
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ity of this new method for research and clinical studies of multiple sclerosis.

© 2013 Elsevier Inc. All rights reserved.

Introduction

The human spinal cord is a long thin cylindrical structure of the cen-
tral nervous system (CNS) extending from the medulla oblongata to the
lumbar vertebrae. It is the principal transmission pathway for neural
signals between the brain and the rest of the body. The primary function
of the spinal cord makes it of great importance in studying diseases that
lead to deterioration in CNS function, such as multiple sclerosis (MS). In
vivo magnetic resonance imaging (MRI) of the human spinal cord pre-
sents a unique diagnostic tool in studying the progression and charac-
teristics of such neurological diseases.

The usefulness of MRI based analysis of the spinal cord can be traced
as far back as Losseff et al. (1996) who demonstrated strong association
between spinal cord area and disability as measured by Kurtzke's Ex-
panded Disability Status Scale (Kurtzke, 1983) (EDSS) (r = —0.7,
p < 0.001). Since then, significant progress has been made in both the
analysis and application of MRI in spinal cord imaging. Kalkers et al.
(2002) proposed using MRI derived metrics to evaluate neuroprotective
therapies. Studies from Lin et al. (2003, 2004) demonstrated that
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changes in edge detectability of the spinal cord boundary are related
to changes in clinical disability. More recent work (Rocca et al,, 2011;
Zackowski et al., 2009) has shown the potential of using quantities
derived from various imaging modalities as biomarkers to characterize
patients with MS. Other studies (Freund et al., 2011) have shown that
cross-sectional area of the spinal cord is well correlated with cortical
activity.

A common requirement for these studies is a full or partial segmenta-
tion of the spinal cord (see Fig. 1) for each subject in the study. Such seg-
mentations are currently performed manually or semi-automatically by
human raters, which create two immediate disadvantages. First,
human raters are prone to unintended biases and inconsistency in their
work. This is particularly common when segmenting small structures
such as the spinal cord, and is evident when replicating a segmentation
of the same image or comparing between two separate raters. Second,
raters require extensive training and time to perform the task. This im-
poses a strict limitation on the scale of future studies and produces po-
tentially long delays between acquiring the data and completing the
analyses.

There have been several attempts (Archip et al., 2002; Burnett et al.,
2004; Karangelis and Zimeras, 2002; Nyl et al.,, 2005) to automate the
segmentation of the spinal cord in computed tomography (CT) imaging.
However, such methods are limited by a lack of soft tissue contrast in CT,
making it difficult to distinguish between the spinal cord itself and the
surrounding cerebrospinal fluid (CSF). Most approaches are restricted
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Fig. 1. The center image is an illustration of a spinal cord. The left hand column shows
(center) magnetization transfer-prepared T2*-weighted gradient-echo and (top and bot-
tom) T1-weighted axial cross-sections of spinal cord MRIs and corresponding manual seg-
mentations. The right-most column shows a sagittal slice of a T1-weighted MRI with a
field of view covering the cervical and portions of the thoracic vertebrae. The green line
in both the illustration and the sagittal slice on the right demarks the separation between
the cervical and thoracic vertebrae.

to segmenting only the spinal canal, which is insufficient for analysis of
spinal cord atrophy. This, in addition to concerns for patient safety,
makes MRI a superior choice for imaging the spinal cord. However,
MR imaging is not without its own difficulties. Inhomogeneities in re-
ceiver coil sensitivity can manifest as spatially distributed intensity
biases. Susceptibility may create artifacts in the spinal cord proximal
to the posterior fossa region (McGowan and Patel, 2000). Image quality
is also degraded by truncation artifacts (Czervionke et al., 1988), ghost-
ing artifacts from the heart and great vessels (Bronskill et al., 1988;
Curtin et al,, 1989; Hinks and Quencer, 1988; Levy et al., 1988) and con-
trast (Lycklama et al., 2003). Non-uniformity correction is particularly
important for acquisitions from phased-array coils used to assess spinal
cord atrophy (Lin et al., 2004).

These drawbacks have delayed the development of fully automated
MR spinal segmentation tools. As such, the majority of the methods
presented thus far to address this problem have been semi-automated
in nature (Coulon et al., 2002; Horsfield et al., 2010; McIntosh and
Hamarneh, 2006; Nieniewski and Serneels, 2002; Van Uitert et al.,
2005). These approaches vary from the watershed based (Nieniewski
and Serneels, 2002) to applications of deformable models (McIntosh
and Hamarneh, 2006). To the best of our knowledge there are only
three fully automatic methods in the literature for human MRI spinal
cord segmentation (Koh et al.,, 2010, 2011; Mukherjee et al., 2010).
Koh et al. (2010) developed a gradient vector flow (Xu and Prince,
1998) magnitude approach as part of a computer-aided diagnosis
(CAD) system. Their algorithm estimates the spinal cord using the mag-
nitude of the gradient vector flow edge map, followed by a connected
component analysis to remove any holes in the segmentation. In Koh
et al. (2011), the same group developed a different approach to
the problem using active contour models (Kass et al., 1988) based on sa-
liency maps. Mukherjee et al. (2010) also applied an active contour ap-
proach, but instead evolved an image gradient based, open-ended
contour using dynamic programming-based energy-minimization.
They initialize their method using an estimation of the vertebra bone
contour in each 2D slice of the image, which is found using an optimal
shortest path directed graph search based on gradient magnitude and
gradient orientation. These 2D contours are then evolved under an ac-
tive contour model that minimizes an energy based on the symmetry

of the contour and the smoothness between successive contours (i.e.,
contours on adjoining 2D slices).

A common deficiency with current automated algorithms is their
limitation to both a single MR-sequence and a particular field of view.
The three existing methods mentioned above are designed to be used
with T2 and T2*-weighted MRIs because it offers the best soft tissue
contrast (Koh et al., 2010, 2011; Mukherjee et al., 2010). None of them
provide an intuitive and easily generalized approach for addressing
MR-sequences or fields of view outside of the particular dataset they
were designed for. This is problematic in spinal cord MR imaging be-
cause data is generally only collected across specific subsections of the
spinal cord, and the MR-sequence is rarely standardized between
datasets. Addressing these limitations is one focus of our work.

There are various reasons why existing image segmentation tech-
nologies cannot be readily applied to spinal cord MRIs. For example,
the structure of the spinal cord makes typical atlas-based registration
highly inaccurate. This happens for two reasons; first, the long thin cy-
lindrical nature of the spinal cord and its small size relative to the
neck and torso lead to the spinal cord contributing only minimally to
the overall cost function of a registration algorithm. This typically causes
the registration algorithm to prioritize the alignment of other structures
over the spinal cord during the optimization. Second, the spinal cord is a
flexible non-rigid structure, which results in a large degree of variability
in both the shape and curvature of the structure in MRIs (see Fig. 2). This
variability removes rigid and affine registrations as viable choices for the
transformation. Even for free-form deformable registration the accuracy
is dramatically limited due to the large deformations often required to
properly align the curvatures. This is particularly true for registration
with strict regularization constraints on the deformation.

Unsupervised intensity based segmentations encounter a different
set of problems. They are prone to misclassification due to the partial
voluming of nerve roots and the strong intensity inhomogeneities
from the spine coils. The inhomogeneity from the surface coil is primar-
ily a result of the MR signal dropping-off for tissues further away from
the coils. However, the problem is exacerbated by the curvature of the
spinal cord. Since the cord is not parallel to the coils, the anatomy inter-
acts with the intensity inhomogeneity unevenly. As a result, intensity
values along the spinal cord are inconsistent and depend on its curva-
ture during acquisition. This effect is particularly evident for images cov-
ering large fields of view, where both the distance from the coil and the
curvature of the spinal cord is larger. Fig. 3 shows an example of an ax-
ially acquired magnetization transfer-prepared T2*-weighted gradient-
echo image and a sagittally acquired T1-weighted MRI of the spinal
cord, each from separate subjects. Both images have been segmented
with a fuzzy c-means (Bezdek, 1980) approach (Pham, 2001) which in-
cludes gain field correction and regularization. We see that the spinal
cord could not be properly segmented in any of the cases, including
those where the image was manually truncated to include only the spi-
nal cord and CSF. The intensity drop-off seen in the examples could not
be handled by the inhomogeneity correction built into the classification
algorithm, nor by preprocessing with N3 (Sled et al.,, 1998), an intensity
non-uniformity correction tool commonly used in whole head MRL

In this work we present a fully automated spinal cord segmentation
algorithm that combines deformable registration with topology pre-
serving intensity classification. Our approach is built upon a method
by Bazin and Pham (2008), which uses a topological and statistical
atlas in the fuzzy c-means model to classify tissues in the brain. We in-
troduce a topological atlas that is appropriate for the spinal cord, and a
statistical atlas that is dynamically adjusted to match its variability. In
addition, we augment the framework with an intensity atlas that is
used with deformable registration to allow the atlases to be properly
initialized. Finally, we present a rapid approach for generating the nec-
essary topology and statistical atlases from a single manual segmenta-
tion. This provides a quick and automatic procedure for adapting our
method to better match datasets with very different fields of views
and MR-sequences (e.g., T1-weighted and T2*-weighted). An early
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Fig. 2. Sagittally acquired T1-weighted MR slices of the spinal cord from four different healthy subjects at approximately the same field of view. This demonstrates the wide variability in

the shape and curvature of the spinal cord in the images.

version of this work was presented in conference form (Chen et al.,
2011), where we demonstrated its capabilities on a limited dataset
with a fixed field of view. Our algorithm is freely available as part of
the Java Integrated Science Toolkit (JIST) (Lucas et al, 2010), which
can be downloaded at http://www.nitrc.org/projects/jist;/.

Methods

The topology-preserving, anatomy-driven segmentation (TOADS)
algorithm (Bazin and Pham, 2008) provides the main model for our seg-
mentation approach. It is a fuzzy c-means (FCM) (Bezdek, 1980) based
intensity classification algorithm that is capable of preserving the digital
topology of the anatomy being segmented. The principal idea behind
the model is to use prior knowledge about the target anatomy and its
surrounding structures to constrain the topology of the final segmenta-
tion. This guarantees that the structures in the segmentation result are
connected to each other (and themselves) in a fashion that respects
what we know about the anatomy. The primary advantage of such con-
straints is that they allow the segmentation process to be highly resil-
ient to noise and artifacts that would otherwise negatively affect the
results. For example, if we know that the spinal cord in our images con-
sists of a singular connected cylindrical structure, we can enforce this
topologically by constraining the spinal cord in the segmentation to
always be a single connected object. As a result, the segmentation be-
comes more robust to intensity drop-offs or artifacts in the middle of
the image that might break the spinal cord segmentation into multiple
objects.

In the following subsections we provide a brief summary of the
TOADS algorithm. Then, we introduce several new elements to general-
ize the TOADS model for spinal cord segmentation in MRIL Specifically,
we describe the constraints we use to construct the spinal cord topology
atlas, and how deformable registration is incorporated into this frame-
work to initialize the atlas such that it can account for the variability
of the cord position in the image. This includes an explanation of our
approach for maintaining the necessary digital topology of the atlas
when applying large registration deformations. Finally, we present an

approach for constructing the necessary topology and statistical atlases
from a single manual segmentation of the spinal cord.

TOADS overview

A brief overview of the TOADS algorithm is provided in this subsec-
tion. Complete details for the algorithm are available in Bazin and Pham
(2008). The goal of the algorithm is to perform a FCM based intensity
classification of an image, while maintaining digital topology con-
straints on the objects in the segmentation. This is achieved by starting
the segmentation from a topology atlas that describes the desired topo-
logical configuration of relevant objects in the anatomy. The atlas is then
evolved to match the target image through a series of homeomorphic
growing and thinning steps that guarantee the digital topology between
the objects is never broken. This thinning and growing is driven by the
FCM centroid(s) and membership(s), with recalculation at each itera-
tion as the segmentation is updated. Bazin and Pham (2008) describe
the theory behind digital homeomorphism and how to augment the
simple point criterion to evolve a segmentation while maintaining
digital topology.

In addition to the topology atlas, TOADS also utilized a statistical atlas
built from a collection of 18 manually generated segmentations of sig-
nificant brain structures, derived from the IBSR dataset (Worth, 1996).
The edge of each structure was smoothed, using a Gaussian kernel, to
make a smooth probability map that approximates natural anatomical
variations. This statistical atlas provides information for distinguishing
adjoining structures with similar intensities.

Given an MR image, 7, each iteration of TOADS consists of
performing a fuzzy segmentation and then updating a topologically
consistent segmentation using fast marching. The fuzzy segmentation
is obtained by minimizing the energy function,
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Fig. 3. Examples of two, three, and five class segmentations using a standard tissue classification tool (Pham, 2001) on (top) axially acquired magnetization transfer-prepared T2*-weighted
gradient-echo MRI and (bottom) sagittally acquired T1-weighted MRI of the spinal cord, each from separate healthy subjects. Results are shown when the classification was performed on
the full MRI (first two columns) and when the image was manually truncated to just the spinal cord and CSF (last four columns).
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with respect to a membership function, uf} for each voxeljinZ, and each
structure k being segmented. The parameter g controls the “hardness”
or “fuzziness” of the membership functions and is usually set to be
two (Pham, 2001).

The three terms on the right side of Eq. (1) can be explained as follows.
1) The first term is a data term that compares the intensity Z; at each
voxel against the intensity centroids c; for each structure, where the dif-
ferences are weighted by the membership functions for that voxel.
2) The second term enforces the smoothness of the membership func-
tions. 3) The third term controls the influence of the statistical atlas,
which provides the prior probability pj, that a voxel j begins inside struc-
ture k. These atlas probabilities are weighted by w,,, which are distance
measures between the centroids, ¢, and c,,,, of two classes; it is designed
to be one when ¢, = ¢, and decays to zero as ||cy — C|| — . The vari-
ables 3 and 7y in Eq. (1) are weights on the relative importance of each
term, while rj takes into account the global and local relationships be-
tween structures.

The digitally homeomorphic thinning and growing of the topology
atlas are performed using a fast marching approach (Sethian, 1999).
The thinning aims to remove errors from misalignment of the atlas to
the image by only keeping high membership voxels. Then the growing
step expands the skeletally thinned structures until all boundary voxels
are in contact. In this manner, the segmentation captures more details of
the structure boundaries at each iteration while retaining the topology
of the atlas. The algorithm is assumed to converge when either the
change in the energy function drops below a suitable threshold or a
maximum number of iteration is reached.

Extending TOADS for the spinal cord

The flexibility of the TOADS algorithm allows the model to be
adapted for the spinal cord; however, we must overcome several limita-
tions in the existing framework. First, we must construct a set of topol-
ogy and statistical atlases that are anatomically meaningful in the
context of the spinal cord and have the flexibility to handle all possible
fields of view. Unlike brain imaging where the whole brain is usually
imaged, spinal cord MRIs tend to have limited fields of view that gener-
ally do not cover the entire cord. This results in possible artificial breaks
in the topology when the image ends part way through the cord. This
needs to be accounted for during both the construction and the initiali-
zation of the topology atlas. Second, TOADS assumes that the brain im-
ages have been skull-stripped, e.g., via Carass et al. (2011), prior to
running the algorithm. The absence of non-brain tissue allows TOADS
to rigidly register the topology atlas directly to the MRI for initialization.
This is clearly not possible in our case, since our primary goal is to sep-
arate the spinal cord and CSF from the rest of the image. Hence, we must
work with the surrounding tissue in the MRI, which makes registering
the topology atlas (a segmentation image) to the MRI highly unreliable.
In addition, the varied curvature of the spinal cord prevents a rigid, or
even affine, transformation from providing an adequate initialization.
The following sections will describe our solutions to these two
problems.

Spinal cord topology and statistical atlases

The topology atlas serves as the topological rule set for the objects
being segmented in our algorithm. In our model for the spinal cord,
this atlas only contains three objects: 1) the spinal cord with spherical
topology; 2) the CSF with a spherical shell topology; and 3) a “wrapper”
object also with a spherical shell topology. The wrapper object serves as
a catch-all object for any structures that immediately surround the spinal
canal, including the vertebrae and surrounding muscles. Since it encom-
passes several tissue types, it covers a wide range of image intensities. Its
primary purpose is to provide a boundary that prevents the CSF object
from extending past the spinal canal. Everything outside the wrapper

object is treated as background. We represent the topological relation-
ships between these objects with just two basic assumptions:

1. The spinal cord is completely surrounded by the CSF.
2. The union of the CSF and spinal cord is completely surrounded by the
wrapper object.

Fig. 4 shows examples of this atlas for a sagittally acquired T1-
weighted MRI dataset. We note that in our atlas, the CSF forms a “cap”
on the top and bottom of the spinal cord, which is not anatomically cor-
rect. This is done because the field of view of the MRI forces a cutoff at
the superior and inferior edges of the images. Hence, we must
completely cap the ends of the spinal cord object with the CSF object
in order to prevent the background and wrapper objects from being
connected to the spinal cord. Otherwise, those objects would be allowed
to evolve in between the CSF and spinal cord, effectively separating the
two objects, which we know should not happen. Similarly, the wrapper
object completely surrounds the CSF object to enforce a similar topolo-
gy. Both of these artificial caps are added outside the field of view and
removed at the end of the algorithm. Thus, they do not interfere with
the accuracy of the segmentation at the boundaries.

In addition to the topology atlas, a statistical atlas is used to define
probabilistic priors on the locations of objects in the topology atlas.
This is created by taking multiple spinal cord MR images and
deformably registering them to a common template. Manual segmenta-
tions of the structures in each MR image are then transformed using the
same deformation. This provides an empirical calculation for the proba-
bility of each object occurring at each voxel in the template space. The
resulting probabilities are Gaussian-smoothed to reduce discrete drop-
offs in the atlas (Bazin and Pham, 2008). Fig. 4 shows a statistical atlas
for the spinal cord, CSF and wrapper objects, constructed from five man-
ual segmentations. In the Automated atlas construction section we pro-
vide an automatic and more efficient approach for constructing both the
topology and statistical atlases from only a single manual segmentation.

Incorporating deformable registration into TOADS

Creating these two spinal cord specific atlases is still not sufficient to
directly apply TOADS for spinal cord segmentation. We also need a new
way to initialize the atlases, since the original TOADS relies on a rigid ini-
tialization, which cannot fully capture the variability of the spinal cord.
To address this limitation, we replace the rigid alignment step with a de-
formable registration. Unfortunately, this replacement results in two
new difficulties. First, deformable registration between a segmentation
image (the topology atlas) and the MRI is highly unreliable. This is
due to the segmentation image containing only a few structures, each
with homogeneous intensity, while the MRI includes all the tissue sur-
rounding the spinal cord, and contains noise and artifacts. This makes
it extremely difficult to find the correct correspondences between
these two types of images during registration. The small size of the spi-
nal cord relative to the entire image also contributes to the difficulty.

Our solution to this is to introduce an intensity atlas into the TOADS
framework. This atlas is directly associated with the objects in the topol-
ogy atlas, and in most cases will be the underlying MRI that the topology
atlas was constructed from. The goal is to use deformable registration to
learn a mapping between the intensity atlas and the MRI being seg-
mented. This learned deformation is then applied to the topology and
statistical atlases to serve as their initialization in the algorithm. In this
work, we evaluated two openly available, deformable registration algo-
rithms to perform this task. The first is the adaptive bases algorithm
(ABA) (Rohde et al., 2003) which models the deformation field using a
summation of radial basis functions (RBFs). The algorithm attempts to
maximize the normalized mutual information (NMI) (Studholme
et al., 1999) between two images, a similarity metric commonly used
for registration of MR images (Wells et al, 1996). An adaptation of
this algorithm is provided as part of the JIST package (Chen et al.,
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Intensity Topology

Statistical Statistical Statistical
Atlas Atlas Atlas Atlas Atlas
(Spinal Cord) (CSF) (Wrapper)

Fig. 4. An example of the intensity, topology (spinal cord in light gray, CSF in dark gray, and wrapper in white) and statistical atlases constructed from a T1-weighted MRI.

2010). The second is SyN, a fluid based registration method that maxi-
mizes cross-correlation in order to find symmetric diffeomorphic
maps between images. It was ranked very highly among state of the
art registration algorithms in recent evaluations (Klein et al., 2010),
and is offered as part of the Advanced Normalization Tools (ANTS) pack-
age (Avants et al., 2011).

Fig. 5 shows examples of spinal cord MRI registrations between an
intensity atlas and a subject image using these two registration algo-
rithms. As expected, we see significant registration errors in parts of
the spinal cord. However, they provide sufficient initialization for the
TOADS algorithm, which is fairly robust to such errors in the initializa-
tion. In the Segmentation comparison against manual raters section
we evaluate the effectiveness of both of these registrations algorithms
in addition to their impact on our final segmentation.

Topology preserving atlas deformation

The second issue with including a deformable registration into the
framework is that, in general, such registrations do not take into account
the digital topology of the objects being deformed. The complexity of
maintaining digital topology during registration is the primary reason
why only a rigid alignment was used in the original TOADS algorithm,
and even then, the transformation had to be applied carefully. Bazin
and Pham (2008) showed that even simple rotations and/or scaling,
which are purely homeomorphic in the continuous sense, are not neces-
sarily homeomorphic in the digital domain. This demonstrates that sim-
ply having a homeomorphic (or diffeomorphic) transformation model
is not sufficient to preserve digital topology. The only way to guarantee
that a registration will produce a digitally homeomorphic transforma-
tion is to check the digital homeomorphism criterion at every step of
the optimization. This is computationally expensive and becomes highly
impractical for higher order registration that can generate complex
deformations.

In Chen et al. (2011), this was addressed by using a technique, first
presented in Bazin et al. (2007), that can generate a digitally homeo-
morphic approximation of a deformation field. The technique is applied
after a deformation field is found between the intensity atlas and the
target image. It starts by resetting the deformation field to zero and

ABA

Atlas

then slowly regrowing each deformation vector in the field back to its
original value. This creates a series of incremental deformations that
are applied to the topology atlas. At every step, the digital homeomor-
phism criterion is checked to make sure that an increment does not
break the topology of the atlas. If incrementing a particular deformation
vector will cause a topology break, then that deformation is stopped
from entirely growing back. This produces an approximation of the de-
formation field that can deform the topology atlas while maintaining its
initial topology. Since this method is applied after the registration is
completed, it also has the added advantage of being applicable to any
registration algorithm.

In general, this digital homeomorphic approximation of the defor-
mation field is very robust when the deformations are small or the
atlas is simple. However, it can potentially introduce considerable
segmentation errors when deforming complex topologies over large
distances. This is a result of topology deadlocks that can occur, where
a set of voxels are stuck in a configuration that prevents them from
moving without breaking the object topology. The problem becomes
more prominent when working with spinal cord MRI with large and
varied fields of view, where the deformations produced by the registra-
tion are very large. An example of this is in the thoracic region of the spi-
nal cord where the shape and distance can vary greatly between the
atlas and target images. Fig. 6(b) shows an example of a topology dead-
lock that can be introduced when approximating such a deformation.

To prevent these errors, we introduce a dynamic approach for initial-
izing the topology atlas. Instead of applying the learned deformation to
all three objects in the atlas, we only apply it to the spinal cord object.
After the spinal cord object has been deformed, the other two objects
are then automatically added back to the atlas by following the topology
rules listed in the Spinal cord topology and statistical atlases section.
That is, the CSF object is added to the atlas as a dilation of the spinal
cord label, and likewise the wrapper object is added as a dilation of
the union of the spinal cord and CSF labels. Transforming and building
the atlas on-the-fly in this manner greatly simplifies the homeomorphic
deformation approximation, thereby allowing us to avoid topology
deadlocks that can be introduced during the initial registration step.
Fig. 6(c) shows how initializing the topology atlas in this manner can
prevent the deadlock seen before.

SyN Target

Fig. 5. Example of registrations between an intensity atlas and a target image using ABA and SyN.
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(a) (b) (c)

Fig. 6. (a) Shows a topology atlas (spinal cord in light gray, CSF in dark gray, and wrapper
in white) before initializing with a deformation learned from registration. (b) Shows an
example of a topology deadlock that can occur when initializing the entire topology
atlas by a digital homeomorphic approximation of the deformation. (c) Shows the result
when only the spinal cord is initialized by the homeomorphic deformation, and the
remaining topology atlas is rebuilt dynamically.

We see from the example that initializing the topology atlas in this
manner does alter the initial structure of the CSF and wrapper object
in the atlas. However, it is important to remember that the role of the
topology atlas is mainly to enforce our topology rule set. The initial
structure of each object has little effect on the final segmentation,
since all the objects are immediately thinned and then grown back to
maximize their membership functions during the first iteration. It is
more important that the atlas does not start with deadlocks that
would prevent it from evolving in this manner.

Automated atlas construction

A major deficiency with existing methods for spinal cord segmenta-
tion is their inflexibility when facing very different datasets, particularly
ones not used in the design of the algorithm. For example, in current
methods that rely on deformable models (Koh et al.,, 2011; Mukherjee
etal., 2010), the forces used in the algorithm are not immediately appli-
cable for other datasets with different fields of view or MR-sequences.
Redesigning such forces is time consuming and requires a certain level
of expertise and familiarity with the algorithm.

Our introduction of deformable registration into the TOADS algo-
rithm helps address this problem by allowing our atlas to be initialized
on a wider variety of data. However, it is still possible for the target
image to be so different from the atlas that a proper registration cannot
be reasonably achieved. To overcome such situations, we describe an
automatic process for generating the necessary topology and statistical
atlases from a single manual segmentation of an image from the desired
dataset. This is achieved by taking advantage of TOADS's robustness to
initialization errors, and the simple topology of the spinal cord.

Topology atlas construction

In Bazin and Pham (2008), the topology atlas was constructed by
starting from an initial segmentation produced using the statistical
atlas, and then manually editing the areas in the atlas that did not follow
their assumptions about the topology. Constructing the topology atlasin
this manner is not a trivial task. Small errors in the topology can easily
be missed or obscured by the orientation the image is being viewed.
In addition, the topology of every combination of objects in the image
must be checked.

We follow a similar approach for our topology atlas construction by
starting from a manual segmentation of our intensity atlas and fixing
any topology errors that break our model. However, our task is greatly
simplified due to the dynamic initialization approach introduced in
the Topology preserving atlas deformation section. Since all the objects
in our atlas are dynamically built from just the spinal cord object, we
only need to correct the topology for that single object. In addition,

since the spinal cord in our model has spherical topology, this correction
can be performed automatically using a simple algorithm:

. Find the largest connected component in the foreground.

. Set all smaller connected components in the foreground to
background.

3. Find the largest connected component in the background.

4. Set all smaller connected components in the background to

foreground.

N =

This allows the topology atlas for our method to be constructed
quickly and automatically from a single segmentation.

Statistical atlas construction

Creating a true statistical atlas from a single manual segmentation is
clearly not possible. By definition, such atlases require multiple subjects
to empirically estimate the spatial variance of the anatomy. However,
we make two observations. First, TOADS does not need a true statistical
atlas to produce an accurate segmentation. The statistical prior only
serves to provide a rough guideline for where a structure may lie in
the image. Its primary purpose is to provide a prior for different tissues
with similar intensities, which is not present in our problem. In our case,
the underlying intensity provides the main driving force for the algo-
rithm. Second, as we have shown in Fig. 5, deformable registration of
the spinal cord is often inaccurate. As a result, statistical atlases
constructed using such registrations are already fairly unreliable. Rather
than representing the spatial variance of the spinal cord, they often just
represent the variance of the registration error. This effect can be seen in
Fig. 4, where the inferior ends of the spinal cords are not correctly
aligned. Such registration variances are inconsistent across different im-
ages, and offer little value for the TOADS optimization. In certain cases, it
may even degrade the segmentation result.

Given these considerations, we propose to approximate the statisti-
cal atlas by assuming a simple Gaussian distribution spatially around
the single manual segmentation. This is equivalent to Gaussian smooth-
ing each structure in the manual segmentation, and normalizing at each
voxel. Fig. 7 shows a visual comparison between statistical priors
constructed using the standard registration approach (with five seg-
mentations) and our approximation of the atlas using Gaussian smooth-
ing. In the Statistical atlas construction parameters section, we show
that approximating the statistical atlas in this manner produces roughly
the same accuracy as the standard atlas construction approach, and in
certain cases can actually improve the overall accuracy of the final
segmentation.

(a) (b)

Fig. 7. Comparison of statistical priors of the spinal cord and CSF constructed using (a) the
standard registration approach (with five segmentations) and (b) a single manual seg-
mentation Gaussian smoothed. A kernel size of 0 = 1 was used in both cases. Further ex-
planation and details are in the Statistical atlas construction parameters section.
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Materials

Our algorithm was applied to two datasets having different popula-
tion characteristics, MR protocols and scanners, and fields of view.

T1 cohort

The first dataset used in our experiments consisted of MR images of
the brain stem and spinal cord from the C1-T4 vertebrae acquired from
seven patients diagnosed with multiple sclerosis (MS). Each image was
acquired using a T1-weighted inversion recovery fast spoiled gradient re-
call (FSPGR) on a 3 Tesla GE Signa scanner (GE, Milwaukee WI) with the
following parameters: TR = 7.8 ms, TE = 2.98 ms, TI = 750 ms, and
flip angle = 16°. The resolution of the acquired images was 1 mm
isotropic.

MT cohort

The second dataset used in our experiments consisted of 238 MRIs of
the cervical spinal cord, acquired from the C2-C6 vertebrae. The data
were acquired from 18 healthy controls (HC) and 220 patients with mul-
tiple sclerosis (MS). The scans were performed with a 3 Tesla Philips
Intera scanner (Philips Medical Systems, Best, The Netherlands) using
body coil excitation and two-element phased array surface coil recep-
tion. The images were magnetization transfer (MT) prepared T2*-
weighted gradient echoes, using an MT prepulse applied at 1.5 kHz off
resonance (24 ms, five-lobed Sinc-Gauss pulse with maximum ampli-
tude 9.5 mT), as described in Smith et al. (2009). Other parameters:
TR = 110 ms, TE = 13 ms, flip angle = 9°, echo planar imaging factor
3, and SENSE acceleration factor 2. Each image had a through plane res-
olution of 2.25 mm and an in-plane resolution of 0.6 x 0.6 mm.

Manual segmentations

All seven images in the T1 cohort were each manually segmented
(labeling the spinal cord and the CSF) by two different raters. Twenty
images (18 HC, 2 MS) in the MT cohort were similarly segmented by
two different raters. Each rater labeled 10 and 14 subjects, respectively,
with 4 images in common between the raters.

The image slice numbers corresponding to the C2 and C5 vertebrae
were manually identified by a single rater in 146 images in the MT co-
hort. This subset was used in our statistical analysis in the Clinical
relevance and Exploratory study of CSF volumes sections. Table 1
shows the detailed demographic information for this subset.

Metrics

We report the accuracy of our method in comparison to human
raters by using the Dice coefficient (Dice, 1945),

. 2|HNA
DlCE(H,A) = m,

for a particular structure (e.g., cord or CSF), where H and A are the seg-
mentations generated by the human rater and the algorithm, respec-
tively. The Dice coefficient is a measure of set agreement and is

Table 1

Detailed demographic description for the 146 subjects in the MT cohort with manual slice
numbers for the C2 and C5 vertebrae (used in the Clinical relevance and Exploratory study
of CSF volumes sections). Key: healthy controls (HC), clinically isolated syndrome (CIS),
relapsing-remitting (RR), primary progressive (PP), and secondary progressive (SP).

HC cis RR PP Sp
N (male/female) ~ 15(5/10)  5(2/3) 76(23/53) 16(8/8) 34(12/22)
Age (SD) 394(9.1) 348(96) 389(105) 534(67) 51.9(7.3)

commonly used as a volumetric measure for comparing the quality of
automatic vs. manual segmentations. It has a range of [0.0,1.0], where
a value of 1.0 indicates perfect agreement between the algorithm and
the manual result, while a score of 0.0 represents no overlap between
the two.

Experimental results

We perform several experiments to demonstrate the performance
and applications of our spinal cord segmentation tool. Our first experi-
ment evaluates the accuracy of our algorithm relative to human raters.
It also considers the effect of our registration choice for initializing our
atlases. We then evaluate the impact of our statistical atlas construction
approach, and the size of the Gaussian smoothing kernel used in its con-
struction. Lastly, we perform a large scale evaluation using the MT co-
hort to establish the robustness and potential clinical relevance of our
algorithm.

Segmentation comparison against manual raters

We evaluated our automated segmentation results against the seven
images from the T1 cohort and the twenty from the MT cohort that have
corresponding manual segmentations. The Dice coefficient was calcu-
lated for the spinal cord, CSF, and the union of the two structures (i.e.,
the spinal canal). For each dataset, we evaluated using either ABA or
SyN for initialization. Table 2 shows the mean and standard deviation
of the Dice coefficient of our results against manual segmentations
when initializing with each registration algorithm, and for each cohort.

In general, the algorithm performed better on the MT cohort than
the T1 cohort, particularly for the CSF. This can be largely attributed to
the better tissue contrast and smaller intensity inhomogeneities in the
MT cohort images. These differences can be seen in Figs. 8 and 9,
which show cropped examples of the original MRI, its manual segmen-
tation, and our automatic segmentation results for each cohort. From
the figures we see that the automatic results were very similar to the
manual segmentations for both cases. However, the automatic results
tended to be overall smoother due to the TOADS regularization. Com-
paring between the two figures, we see that the T1 cohort result had
more areas where the CSF was mis-segmented as the spinal cord than
in the MT cohort result. This is particularly noticeable in the inferior
areas of the T1 image where the intensity inhomogeneity was very
strong, and the contrast between the CSF and spinal cord was lower.

The individual accuracy of each registration algorithm was also con-
sidered by looking at its ability to transfer the atlas segmentation to the
target image through applying the learned deformation from the inten-
sity atlas registration. Table 2 shows the Dice coefficient between the
transferred segmentation from each registration algorithm and the
manual segmentation for the target image. We see from these results
that ABA generally performed much better than SyN for both datasets.
Hence, it was the only registration algorithm considered in the
remaining experiments.

Statistical atlas construction parameters

The impact of the two statistical atlas construction approaches de-
scribed in the Spinal cord topology and statistical atlases and
Automated atlas construction sections was evaluated by repeating our
algorithm on five images from each cohort, while using atlases from
both approaches with increasing kernel sizes (o) for the Gaussian
smoothing. In general, o can be seen as a parameter for controlling the
capture range of the statistical atlas. A small value should be used if
the initialization from the registration is believed to be very accurate
and trustworthy. A large value can compensate for bad registrations,
but may also cause the method to latch onto the wrong structure or ar-
tificially expand the segmentation size. Fig. 10 shows plots of the mean
Dice coefficient between the manual segmentations and the automatic
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Table 2

Evaluation of the CSF, spinal cord (“Cord”), and combined (“CSF + Cord”) segmentation results against manual segmentations from two raters (R1 and R2) for the two cohorts (T1 and
MT). Shown are the mean (standard deviation) of the Dice coefficient when using just the registration (ABA and SyN) for segmentation transfer, and the final segmentation result from the

proposed method when using the registration for initialization.

Registration only

Final segmentation

CSF Cord CSF + Cord CSF Cord CSF + Cord
T1
ABA vs R1 0.67 (0.10) 0.77 (0.14) 0.70 (0.12) 0.63 (0.17) 0.82 (0.18) 0.70 (0.18)
ABA vs R2 0.65 (0.09) 0.75 (0.13) 0.68 (0.10) 0.63 (0.17) 0.77 (0.15) 0.68 (0.17)
SyN vs R1 0.13(0.11) 0.14 (0.13) 0.13 (0.11) 0.22 (0.12) 0.28 (0.18) 0.23 (0.14)
SyN vs R2 0.12 (0.09) 0.13 (0.13) 0.12 (0.10) 0.21 (0.09) 0.26 (0.17) 0.22 (0.12)
R1vsR2 0.81(0.03) 0.89 (0.02) 0.84 (0.02)
MT
ABA vs R1 0.73 (0.07) 0.83 (0.07) 0.76 (0.06) 0.85 (0.03) 0.91 (0.03) 0.88 (0.02)
ABA vs R2 0.74 (0.04) 0.87 (0.01) 0.79 (0.03) 0.84 (0.02) 0.92 (0.01) 0.87 (0.01)
SyNvs R1 0.63 (0.20) 0.73 (0.25) 0.67 (0.22) 0.72 (0.28) 0.75(0.37) 0.74 (0.31)
SyN vs R2 0.63 (0.15) 0.70 (0.21) 0.66 (0.17) 0.82 (0.05) 0.89 (0.03) 0.85 (0.04)
R1vsR2 0.88 (0.01) 0.93 (0.01) 0.90 (0.01)

results, for each cohort, when using either the registration approach
presented in Bazin and Pham (2008) or our single segmentation
approach. For both cases, we ranged o from one to five in increments
of 0.5.

From the figure we see that, for the registration approach, the best
performance was achieved without any smoothing (0 = 0). However,
for our single segmentation approach, smoothing with 0 = 1 was nec-
essary to achieve the best performance. In addition, we see that the two
approaches had roughly the same performance at their respective opti-
mal configurations, with our single segmentation approach performing
slightly better in the CSF for the T1 data. For these reasons, we chose to
use our single segmentation approach (with o = 1) for the experi-
ments in the remaining sections.

MT-Weighted MR Manual Automatic

Fig. 8. Cropped example of a MT-prepared T2*-weighted MRI segmentation by a human
rater in comparison to the result from our algorithm. Shown are one sagittal and three
axial views. The colored border around the axial slices denotes the respective cross-section
within the sagittal image. The Dice coefficients between the shown manual and automatic
segmentations are 0.91 for the spinal cord (white) and 0.86 for the CSF (gray).

Robustness in large scale processing

To evaluate the robustness of our method, the entire MT cohort was
processed using the proposed algorithm. The results were manually
inspected for clear failures, which we designated as segmentations
with roughly less than 75% spinal cord overlap (by visual inspection).
Of the 238 images in the dataset, only eight failures were identified.
Fig. 11 shows axial slices and their segmentation results for all eight
failed cases. For reference, the figure also shows four successful cases
from the processing.

All eight failures were primarily due to strong artifacts present in
each image. Seven of the cases were a result of motion artifacts that
blurred the structures in the images. This caused the intensity for the
spinal cord, CSF, and surrounding tissues to have similar means and
high variances. This created segmentations where either the entire spi-
nal canal was segmented as a single object, or the various tissues were
classified interchangeably.

In the remaining failure, a strong intensity inhomogeneity was pres-
ent that removed roughly a quarter of the image. This resulted in a very
poor registration that translated the initial segmentation far from the

Automatic

T1-Weighted MR

Fig. 9. Cropped example of a T1-weighted MRI segmentation by a human rater in compar-
ison to the result from our algorithm. Shown are one sagittal and three axial views. The
colored border around the axial slices denotes the respective cross-section within the sag-
ittal image. The Dice coefficients between the shown manual and automatic segmenta-
tions are 0.87 for the spinal cord (white) and 0.73 for the CSF (gray).
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Fig. 10. Average Dice coefficient between automatic and manual segmentations when using statistical atlases built from the standard registration based approach (using five segmenta-
tions) and our single segmentation approach, at different levels of Gaussian smoothing (o). The left plot shows the average results for five T1-weighted images, and the right shows the

average results for five MT-weighted images.

Successes

Failures

Fig. 11. Shown are axial slices for four successful segmentations and the only eight failures found when processing the 238 images in the MT cohort with the proposed algorithm. For each pair
of images, the left shows a crop of the original MRI, while the right shows the respective spinal cord (light gray), CSF (dark gray), and wrapper (white) segmentation results from the algorithm.

spinal cord, which the algorithm could not recover from. We note that
while the failures in Fig. 11 appear to be breaking the topology of the
segmentation, it is actually a result of the 2D visualization of the images.
In those cases where it appears that an object is in multiple pieces, the
object is actually extending from above (or below) the slice.

Clinical relevance

Statistical analysis was performed on the spinal cord volumes pro-
duced by our algorithm on the 146 images from the MT cohort that
had manually selected slice numbers for the C2 and C5 vertebrae. For
normalization, spinal cord volumes were divided by the length of dis-
tance between the C2 and C5 vertebrae, which produces normalized
cross section areas (Healy et al., 2012).

Multivariate linear regression was used to perform age and sex ad-
justed Student's t-tests between the healthy controls (HC) and patients
with multiple sclerosis (MS). Pairwise group comparisons were also
made between individual subgroups (healthy controls (HC), clinically
isolated syndrome (CIS), relapsing-remitting (RR), primary progressive
(PP), and secondary progressive (SP)). Table 3 shows the mean normal-
ized cord area for each subgroup, and the significance of their difference
after adjusting for age and sex. Significant differences were found
when comparing healthy controls against the entire MS group

(p-value =0.042), however significant differences between healthy
controls and individual MS subtypes could not be established. Within
subtypes, significant differences were found when comparing secondary
progressive patients against relapsing-remitting (p-value = 0.005) and
primary progressive (p-value = 0.011) patients.

Table 3

Pairwise group comparisons of normalized cord area (mm?) between healthy controls
(HC) and patients with MS (ALL-MS) and the MS subtypes of clinically isolated
syndrome (CIS), relapsing-remitting (RR), primary progressive (PP), and secondary
progressive (SP). Shown are the mean and standard deviation of the normalized cord
area for each group and the significance (p-values) of the cord area differences between
each group pairing, after adjusting for age and sex.

Group comparisons of normalized spinal cord area

Area (mm?) Pairwise p-values

Mean (SD) [N RR PP SP ALL-MS
HC 88.8 (14.5) 0411 0.075 0.708 0.101 0.042
SP 68.7 (20.1) 0.826 0.005 0.011
PP 83.0(19.2) 0.642 0.976
RR 81.2 (14.6) 0.779
Cis 83.1(11.0)
ALL-MS 782 (17.4)
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For the MS patients, semi-partial correlation was used to evaluate
Pearson's correlation coefficients between normalized cord area for
both the Expanded Disability Status Scale (EDSS) and disease duration,
while adjusting for age and sex. Further correlations were evaluated for
the RR, PP, and SP subtypes. The CIS subtype was omitted due to the
small number of subjects. Fig. 12 shows the relationship of normalized
spinal cord area with EDSS (top plot) and disease duration (bottom
plot), after adjusting the values for age and sex. In each case, the black
line shows the relationship for the whole MS group, while colored
lines indicate relationships for a particular MS subtype. Moderately
weak, but significant relationships were found for normalized spinal
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Fig. 12. Correlation plots showing the relationship between normalized spinal cord area
(age and sex adjusted) with EDSS (top) and disease duration (bottom) for MS patients.
The black line shows the relationship for all MS patients grouped together. The colored
lines indicate the relationship for the specific subtypes — relapsing remitting (RR) in
green, secondary progressive (SP) in blue, and primary progressive (PP) in red. The corre-
lation (r) and significance (p) are given for each line.

Table 4

Pairwise group comparisons of normalized CSF area (mm?) between healthy controls (HC)
and patients with MS (ALL-MS) and the MS subtypes of clinically isolated syndrome (CIS),
relapsing-remitting (RR), primary progressive (PP), and secondary progressive (SP).
Shown are the mean and standard deviation of the normalized CSF area for each group
and the significance (p-values) of the CSF area differences between each group pairing,
after adjusting for age and sex.

Group comparisons of normalized CSF area

Area (mm?) Pairwise p-values

Mean (SD) CIs RR PP SP ALL-MS
HC 1283 (24.8) 0.850 0.304 0.472 0.040 0.141
SP 168.4 (45.5) 0.128 <0.001 0.999
PP 173.7 (65.1) 0.990 0.003
RR 136.3 (28.3) 0.207
CIs 119.9 (33.5)
ALL-MS 148.6 (42.5)

cord area with both EDSS (r = —0.19, p-value = 0.03) and disease
duration (r = —0.23, p-value = 0.01) when observing the whole MS
group together. No relationship could be established when looking at
each MS subtype group individually.

Exploratory study of CSF volumes

One advantage of our approach over existing methods is the ability
to generate segmentations of cerebrospinal fluid (CSF) from the spinal
cord image. To our knowledge, no study has been performed that ob-
serves the volume of spinal CSF with respect to multiple sclerosis. To
demonstrate the potential of such analysis, we provide a basic explor-
atory study of such a measure. The data and methods used in this anal-
ysis are analogous to that used in the Clinical relevance section for the
spinal cord volume. Since there are no clear guidelines for normalizing
the CSF volume, we again normalize by the distance between the C2
to C5 vertebrae, producing a normalized CSF area.

Table 4 shows the mean normalized CSF area for each MS subgroup,
and the significance of their difference after adjusting for age and
sex. No significant differences were found when comparing healthy
controls against the entire MS group. However, several significant dif-
ferences could be found when comparing against the progressive
cases (SP and PP). The pairs where significant differences were found
are SP vs. HC (p-value = 0.040), SP vs. RR (p-value < 0.001), and PP
vs. RR (p-value = 0.003).

Discussion

In this work we have presented a fully automatic approach for
segmenting the spinal cord and cerebrospinal fluid from MRIs. Unlike
existing methods, our approach is designed to be highly generalizable
to spinal cord images of any field of view or MR contrast. The only crite-
rion necessary for our algorithm is a reasonable registration between an
atlas and the image being segmented. For data where such a registration
is unreliable (i.e., if the images differs too greatly from the provided
atlas), we have presented a fast and automatic approach for generating
a suitable atlas using a single manual segmentation of an image from the
desired dataset.

Accuracy and robustness

Our evaluations show that the proposed method achieved high accura-
cy and robustness when compared against manual segmentations from
two independent raters for two datasets with very different image charac-
teristics. From Table 2, we see that on average our algorithm achieved a
0.91 Dice coefficient for the spinal cord and 0.85 Dice for the CSF when
working with the MT-prepared T2*-weighted data. Such values are re-
markably high, especially considering that the Dice coefficient is very sen-
sitive to errors when the structures being compared are long and thin. In
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general, the overlap achieved by our algorithm on this data is on par with
inter-rater accuracy for the spinal cord, and slightly lower for the CSF.

The T1-weighted data, which had a much larger field of view, proved
to be more challenging. On average our algorithm achieved a 0.80 Dice
coefficient for the spinal cord and 0.63 Dice for CSF when ran on this
data. Overall, these values are still considered fairly high for Dice coeffi-
cients, particularly for the spinal cord. The lower CSF performance can
be largely attributed to the strong field inhomogeneities in the image,
making it difficult to distinguish it from surrounding tissues.

Our large scale evaluation on 238 images shows that the method is
highly robust. Only eight failures were produced over the entire dataset,
and all of them were a result of intense artifacts that rendered the
images unusable. In the context of a clinical trial using the same
MR-sequence, these example failures can provide a preliminary basis
in the acquisition protocol for determining when an image contains
too much artifact or distortion to be used with our algorithm. The over-
all quality and robustness of our results can be largely attributed to the
topology constraint, which allows the algorithm to better handle the
noise and artifacts that are prevalent in spinal cord MRIs.

Results comparison against existing literature

To our knowledge, none of the currently existing automatic MRI spi-
nal cord segmentation algorithms (Koh et al., 2010, 2011; Mukherjee
et al., 2010) nor the data used in their evaluation are openly available
for download. This prevents a direct comparison against their methods.
However, compared against the Dice overlap reported in their work, on
average our algorithm performed very favorably. Namely, Koh et al.
(2010) achieved an average Dice of 0.70 when compared against two
human raters on 52 images. In the alternative approach presented in
Koh et al. (2011), they gained marginal improvements with an average
Dice overlap of 0.71. In Mukherjee et al. (2010) a direct overlap valida-
tion was not performed, and instead only values for area correlation be-
tween manual raters were presented.

Our statistical results can be compared against several works study-
ing the relationship between normalized spinal cord area and MS. The
most relevant of these is the work presented by Horsfield et al. (2010)
where a semi-automated approach was used to perform similar analysis
as those we have presented in the Clinical relevance section.

Our analysis when comparing normalized spinal cord volume be-
tween healthy control and MS patients produced several conclusions
that are consistent with that reported by Horsfield et al. (2010). Namely,
we showed significant differences between healthy controls and the
entire MS group (p-value = 0.042), significant differences between
relapsing-remitting and secondary progressive subtypes (p-value =
0.005), and a lack of significant difference between relapsing-remitting
MS and healthy controls (p-value = 0.075). In addition, our correlation
analysis with EDSS showed a moderate, but significant relationship be-
tween normalized spinal cord area for the whole MS group, but a lack of
significant correlation when comparing against individual MS subtypes.
Both of these results match those presented in Horsfield et al. (2010).

There are, however, two results that are distinct. Horsfield et al.
(2010) found no significant relationship between normalized spinal
cord volume and disease duration, while we found a small but significant
correlation for the relationship. Horsfield et al. (2010) also found signif-
icant differences between HC and SP, while we did not (p-value =
0.101). This may be due, in part, to our control group being smaller
and considerably younger than our SP group. Hence, first adjusting for
age and sex might have removed any noticeable effect.

Finally, our analysis of CSF volume shows a capability that, to our
knowledge, has not been expressed before. Our exploratory analysis
on normalized CSF area showed a considerable trend of higher CSF in
the progressive MS subtypes (SP and PP), with significant differences
being found after adjusting for age and sex when compared against
the RR subtype (p-value < 0.001 and p-value = 0.003, respectively),
and between healthy controls and SP (p-value = 0.040).

Adapting to new data

One major advantage of our algorithm is its ability to be quickly and
automatically adapted for use with different spinal cord MRI data. We
have designed a topology rule set that allows the topology atlas to be
automatically constructed by correcting the topology of the spinal
cord object and dynamically generating the remaining structures. We
have also provided an alternative approach for approximating the sta-
tistical atlas, which does not require multiple manual segmentations
to be registered to a common template. In Fig. 10 we show that if we
Gaussian smooth a single manual segmentation, we can create a statis-
tical atlas that provides roughly the same level of performance as an
atlas generated through the standard registration approach. In addition,
for the T1-weighted data, we see that this approach can actually be su-
perior to the standard approach, particularly in the CSF. The main ad-
vantage, however, is that now only a single manual segmentation is
necessary to construct all the atlases required for our algorithm to be
entirely tailored to a specific dataset.

One important note regarding our algorithm's adaptability is that the
performance of the method is still heavily reliant on the data being used.
As we see from the T1 and MT results, the performance is not guaranteed
to be preserved when changing between MR-sequences. Our algorithm
provides a rapid way to adapt to new datasets, which can be particularly
useful if no existing method is available for such data. However, further
evaluations are still necessary when applied to new MR-sequences and
fields of view to ensure that the performance is preserved after the
adaptation.

Conclusion

MRI of the spinal cord presents many challenges, such as noise and ar-
tifacts, which make automatic segmentation of the spinal cord and CSF a
difficult task. We have presented a topology preserving approach for ad-
dressing this problem, and have shown its effectiveness for both accuracy
and robustness. In addition, as spinal cord imaging rarely has a standard
field of view or MR contrast, we assume that the atlases provided with
our algorithm are not optimal for every type of spinal cord MRI data.
Hence, we have gone to great length to allow our algorithm to be easily
adaptable. This includes providing an automatic and reliable way to con-
struct the necessary atlases from a single manual segmentation, and de-
signing our framework so that it is not tied to a particular registration
algorithm for initialization. This provides users with an option to use the
registration algorithm that performs best on their particular given dataset.

Finally, our incorporation of deformable registration into TOADS has
implications that extend beyond our application in the spinal cord.
Allowing the atlas to be initialized deformably opens the model for seg-
mentation in essentially any anatomy and image contrast where a suc-
cessful registration can be achieved. Naturally, a topology and statistical
atlas will have to be built for the specific anatomy, but our contribution
has greatly generalized the framework for other applications. An imple-
mentation of the presented segmentation method and atlas construction
approach can be freely downloaded as part of the Java Image Science
Toolkit (JIST) software package at http://www.nitrc.org/projects/jist;/.
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