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ABSTRACT

We present a method that utilizes registration displacement fields to perform accurate classification of magnetic
resonance images (MRI) of the brain acquired from healthy individuals and patients diagnosed with multiple
sclerosis (MS). Contrary to standard approaches, each voxel in the displacement field is treated as an independent
feature that is classified individually. Results show that when used with a simple linear discriminant and majority
voting, the approach is superior to using the displacement field with a single classifier, even when compared
against more sophisticated classification methods such as adaptive boosting, random forests, and support vector
machines. Leave-one-out cross-validation was used to evaluate this method for classifying images by disease, MS
subtype (Acc: 77%–88%), and age (Acc: 96%–100%).
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1. INTRODUCTION

Discriminant analysis using classifiers derived from magnetic resonance images (MRI) is an important tool in
the study of neurological diseases. Several MR features have been used to classify between healthy controls
and patients with disease1–5. Our work here focuses primarily on classification using features derived from dis-
placement fields learned by deformably registering a MR image to a template. One advantage to using these
deformation based features is the ability to infer group shape differences from the classifier. For example, Golland
et al.6 demonstrated this by analyzing the gradient of the classifier function, which described a “discriminative
direction” for hippocampus shape change between populations. Similarly, Qiu et al.7 used a linear discrimi-
nant on surface deformations and analyzed the normal of the separating hyperplane to characterize population
differences.

Related to our approach is a group of methods known as deformation-based morphometry (DBM), which
finds regions with significant population differences by observing volume changes through the Jacobian of the
displacement field8 or performing a significance test on the population means of the displacements9,10. Our
method differs from DBM in that we are focused on building a classifier between two populations, while DBM
is primarily interested in localizing areas with significant differences. One advantage of our approach is that the
classifiers found by our method can potentially be used to model the direction of change between two populations,
such as in Golland et al.6

2. NEW WORK PRESENTED

While a number of works have explored using deformation based features for classification, these methods have
all traditionally used only a single classifier on these features. For example, Lao et al.11 performed classification
using support vector machines (SVM) with volume-preserving features calculated from the Jacobian of the
displacement fields. Golland et al.6 also used SVM, but used distance transforms to construct the feature vectors.
Rueckerk et al.12 performed principle component analysis on the control points of b-spline representations of the
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displacement fields. We present an approach that moves away from these single classifier frameworks. Instead,
we use displacement field vectors as independent features that are classified individually on each voxel. This
creates a set of weak classifiers that we then combine together to produce our final classification. Our approach
follows in the spirit of multiple classifier machine learning techniques such as boosting13 and classifier fusion.14

3. METHODS

3.1 Voxel-wise Displacement Vectors as Independent Features

Given a subject image, S(x), and a template image, T (x), we use deformable registration to find a mapping
v : R3 → R3, such that S(x+ v(x)) ' T (x). This mapping is generally found by maximizing a cost function that
describes the similarity between S(x + v(x)) and T (x). Popular examples of such similarity functions include
mutual information, cross correlation, and sum of squared differences.15

In practice, the mapping v is represented as a displacement field that consists of a ‘pull-back’ vector located
at each voxel in the template image. These vectors describe the direction and magnitude from a voxel in the
template image to its corresponding location in the subject image. For a group of subjects, these displacement
fields can be used to approximate the morphological difference between each subject and the template. Since the
displacement vectors are all rooted in the template space, the subjects’ displacements at the same voxel can be
analyzed as a group. Figure 1 shows the registration result and the three components of the displacement field
for two subjects registered to the same template.
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Figure 1. Shown are subject, template, registered subject, and the X, Y, and Z components of the displacement field
images for a HV and MS subject.

Due to the regularization in the registration and the structural relationship between different subjects, we
know that adjacent voxels in a displacement field are spatially dependent. However, in this method, we propose
treating the vectors at each voxel as independent features. We do this by building a separate classifier at each
voxel and then aggregating the collection using a simple fusion technique.

3.2 Classification Using Linear Discriminants and Majority Voting

We are given a set of N subject images, each with a classification, y ∈ {−1, 1}, and a displacement field, v,
relative to the same template image. We designate the pairs, {v1, y1}, {v2, y2}, . . . , {vN , yN}, as the training set
for our classification algorithm. We are interested in using this training set to build a classifier, H(v), that is
able to use a displacement field to correctly estimate the classification of an unseen subject image. We propose
first building a weak classifier at each voxel x:

hx(·) = arg min
h(·)

N∑
i=1

I(yi 6= h(vi(x))), (1)
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where I is the indicator function, and h can be any standard classifier such that h : R3 → {−1, 1}. For the
purposes of demonstration (with the added benefits of speed and simplicity) we use Fisher’s linear discriminate16

as our voxel-wise classifier. Clearly, we do not expect the classifier at any particular voxel to be very accurate
for classifying the whole image. However, several works17 have shown that a large number of weak classifiers can
be combined together to perform a much more accurate classification. To perform this classifier fusion, we first
compute the signed training error, α(x), at each voxel,

α(x) =
1

N

N∑
i=1

I(yi = hx(vi(x)))− 0.5. (2)

These errors are then used to weight the classification from each of the weak classifiers, which are summed
together to form H(v). Given a displacement field, ṽ, from an unseen subject, we estimate its classification with,

H(ṽ) = sign

(∑
x

α(x)hx(ṽ(x))

)
. (3)

This formulation is simply a weighted majority voting of the weak classifiers, hx, over all the voxels in the
image. Again, we choose this approach purely for brevity. More sophisticated forms of classifier fusion18 could
potentially be used to improve on this method.

3.3 Preprocessing and Displacement Field Creation

All the brain images were extracted from MR head scans using SPECTRE19 to remove all non-brain voxels. For
the purpose of this paper we are only interested in using local morphological differences for the classification.
Hence, rotational, translational and size differences were removed by affinely registering20 each image to a
common space.

The displacement fields used in our classification were constructed by deformably registering each subject
image to a common template. To minimize potential bias, the template was chosen to be an average brain
created from all the subjects through the average template building tool provided in ANTS20. The deformable
registrations were performed using SyN21, a symmetric diffeomorphic fluid based registration, which was highly
ranked in both accuracy and robustness in a comparison among publicly available registration algorithms22.

4. RESULTS AND DISCUSSION

To evaluate our approach, the template was built using 78 brain images–36 age-matched healthy volunteers (HV)
as controls and 42 MS subjects (with subgroups: 29 Relapsing Remitting (RRMS); 8 Secondary Progressive
(SPMS), 4 Clinically Isolated Syndrome (CIS), and 1 Primary Progressive (PPMS)). The images are MPRAGE
(TR = 10 ms; TE = 6 ms; α = 8◦; resolution = 0.828×0.828×1.1 mm) acquired on a Philips 3T scanner.

The displacement fields and subject classifications were used as inputs for five leave-one-out, cross-validation
experiments. In each case the classification performance was compared between the proposed method and three
standard machine learning tools from the Weka23 software package – Random Forest17(“RandomForest” in
Weka), Support Vector Machines24 (“SMO” in Weka), and Adaptive Boosting13(“AdaBoostM1” in Weka). For
the three standard tools, the displacement fields were reshaped into one-dimensional vectors so that they could
be used directly in the classifiers. The following sections will describe the details for these experiments.

4.1 Downsampling and Parameter Tuning

While not a problem for our proposed method, the large size of the displacement fields was a major concern
when used with the three standard classification tools. Each displacement field had a three dimensional vector at
each of roughly eight million voxels (256× 256× 120). For the larger experiments, this meant the three standard
tools took several hours to a full day just to train on the data. In comparison, our approach took on average
2-3 minutes to train and never exceeded more than 10 minutes. We believe this computational efficiency comes
from the linear complexity of our method (with respect to the number of voxels), and overall less memory access
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and usage, since the majority of the computation is separable at each voxel. Although not implemented for this
paper, this separability also makes our approach easily parallelizable if faster computation is necessary.

In order to run the comparison in a reasonable time, each displacement field was downsampled in each
dimension before being classified by the four algorithms. This is a technique that is often performed to make
the size of such displacement fields more manageable25,26. In each experiment, the displacement field was
downsampled by both a factor of two in each direction and also eight in each direction.

Several parameters for the three standard tools were manually selected to give the best average performance
over all the experiments. These parameters were: for random forest – ”Number of Trees”, for support vector
machine – ”Complexity Constant”, and for adaptive boosting - ”Number of Iterations”. All other parameters
were left as the default settings from Weka. We recognize that the accuracy for these methods could potentially
be improved by tuning additional parameters and using more complex parameter selection approaches. However,
we also note that no tuning was performed at all for our proposed approach.

4.2 Classification of Age

Two age classification experiments were performed using just the healthy volunteer data: the oldest five HV (avg.
age: 55.5) vs. the youngest five HV (avg. age: 22.4), and the oldest 11 HV (avg. age: 49.9) vs. the youngest 11
HV (avg. age: 23.6). We see from Table 1 that our classifier is highly accurate for both classifications. Compared
to the three standard approaches, our method was on average 10-20% more accurate. As we would expect, the
accuracy dropped as the mean age between the populations became closer.

4.3 Classification of Multiple Sclerosis

Three disease based classifications were performed using the data: the 29 RRMS patients vs. 29 age-matched
HV, the eight SPMS patients vs. eight age-matched HV, and all 42 MS patients vs. all 36 HV. Table 1 shows
that the proposed approach, again, had the highest accuracy in each of these classification experiments. We also
observe that, for each of the experiments, the level of accuracy matched our expectation for the MS subtype
being compared.

Relapsing-remitting MS (RRMS) is considered an early stage subtype of MS that is characterized by sporadic
attacks. Hence, we would expect the brain morphology for the mild cases to be very similar to the healthy
volunteers, and therefore more difficult to classify. In contrast, secondary-progressive MS (SPMS) is a late stage
subtype that follows RRMS, and is characterized by a consistent progression of disability. For several of these
patients, we could visually see significant morphological change in their brain MRI. This contributes to why
the overall accuracy is fairly high for that experiment. Lastly, for the “all MS vs. all HV” experiment, we
are actually grouping together four different subtypes of MS that could have entirely separate morphological
characterizations. This makes such a classification task extremely difficult, and hence the low accuracy result.

Table 1. Experiment results on deformation fields downsampled either by a factor of two or eight in each dimension. Shown
are the classification accuracy of AdaBoost (AB), Random Forest (RF), and support vector machine (SVM) compared to
the proposed voxel-wise displacement classifier (VDC). For each case, the downsampling factor is indicated as a suffix to
the method name.

Experiment A
B
-2

A
B
-8

R
F
-2

R
F
-8

SV
M

-2

SV
M

-8

V
D
C
-2

V
D
C
-8

5 Youngest vs. 5 Oldest 0.40 0.50 0.90 0.70 0.70 0.70 1.00 1.00
11 Youngest vs. 11 Oldest 0.5 0.64 0.64 0.41 0.50 0.50 0.96 0.96
All MS vs. All Controls 0.60 0.56 0.62 0.64 0.50 0.51 0.73 0.76
SPMS vs. Controls 0.56 0.88 0.63 0.63 0.44 0.38 0.88 0.88
RRMS vs. Controls 0.48 0.54 0.52 0.48 0.41 0.41 0.77 0.79
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4.4 Comparison Against Existing Literature

Deformation-based age classification have been reported in several work11,27. Although different data was used,
we see that the accuracy for our method is comparable, if not superior, to the 70-98% accuracy reported by these
methods. We note, however, that these approaches are not direct comparison to our method. Their primarily
focus was on using sophisticated feature selection to restrict the feature space for the classifier. In contrast, our
method is focused on improving the classifier itself. The two are complements of each other, and it would be
rather straightforward to substitute the standard classifier (i.e. SVM) in these approaches with our method in
order to gain the benefits from both methods.

Several work have reported on discriminant analysis of MS and its subtypes, but (to our knowledge) only when
using unconventional MR acquisitions such as magnetization transfer ratio (MTR) images1. Since the data used
were significantly different, we can only make marginal comparisons with our results. For example, we see that
our accuracy is overall lower than the MTR histogram approach presented by Dehmeshki et al.1, which achieved
a classification accuracy of 86-92% for various MS subtypes. Nevertheless, our method performed surprisingly
close given that we used a standard MR acquisition that lacked the features provided by these specialize scans.

5. CONCLUSION

We have presented a deformation based classifier that breaks away from the standard single classifier approach
by assembling individual weak classifiers at each voxel to generate a final classification. Our approach produced
high accuracy when classifying morphological differences in age and various subtypes of MS. We showed that our
classifier is superior to using standard classifiers directly on the displacement fields, and that our classification
accuracy is comparable to those reported when using sophisticated feature selection methods and unconventional
MR modalities. In future work, we intend to utilize the classifiers learned from our method to perform shape
based statistical modeling, and potentially infer the direction of change between the various MS populations.
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