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ABSTRACT

Magnetic resonance imaging (MRI) is widely used for ana-
lyzing human brain structure and function. MRI is extremely
versatile and can produce different tissue contrasts as required
by the study design. For reasons such as patient comfort, cost,
and improving technology, certain tissue contrasts for a co-
hort analysis may not have been acquired during the imag-
ing session. This missing pulse sequence hampers consistent
neuroanatomy research. One possible solution is to synthe-
size the missing sequence. This paper proposes a data-driven
approach to image synthesis, which provides equal, if not su-
perior synthesis compared to the state-of-the-art, in addition
to being an order of magnitude faster. The synthesis transfor-
mation is done on image patches by a trained bagged ensem-
ble of regression trees. Validation was done by synthesizing
T2-weighted contrasts from T1-weighted scans, for phantoms
and real data. We also synthesized 3 Tesla T1-weighted mag-
netization prepared rapid gradient echo (MPRAGE) images
from 1.5 Tesla MPRAGEs to demonstrate the generality of
this approach.

Index Terms— Image synthesis, regression, brain
1. INTRODUCTION

MRI is the modality of choice for the study of brain structure
and function. One of the many advantages of using MRI is the
ability to image brain tissues in a variety of tissue contrasts via
programmed pulse sequences. Certain pathologies are best
understood when studied with a particular pulse sequence.
For example, growth of multiple sclerosis (MS) lesions can
be studied by measuring the lesions using T2-weighted (T2-
w) images [1]. Infant brain surface reconstruction also relies
on T2-w images [2] as the T1-w images lack sufficient tissue
contrast. The left column of Fig. 1 shows a T1-w MPRAGE
and the corresponding T2-w image (center column), which
shows starkly different tissue contrasts.

In this paper, we address the problem of the missing pulse
sequence (MPS). Due to the constant improvement of MRI
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Fig. 1. Histogram matching result of a T1-w MPRAGE to a
T2-w target is shown.
scanners and the shifting focus from one particular tissue to
another in a large research project, sometimes a desired tissue
contrast (such as T2-w), or a desired pulse sequence, remains
unobserved thus necessitating the synthesis of the MPS. An
intuitive and simple way to synthesize an image with a de-
sired tissue contrast could be to perform histogram match-
ing (HM). Given a subject image of a certain pulse sequence
and an atlas image of the desired pulse sequence, we can map
the intensity values by matching the two histograms. How-
ever, if the task involves synthesizing a T2-w contrast from
a given T1-w contrast, HM matches the histograms, but does
not yield actual intensities that are consistent with the desired
tissue contrast. See Fig. 1 for an example of an undesirable
result produced with histogram matching. We want to synthe-
size a T2-w contrast for a given subject MPRAGE. Clearly,
HM does not work for T2-w image synthesis even though the
histograms are closer.

One of the classical approaches to synthesize a C2 con-
trast image from its C1 contrast acquisition is described in [3],
wherein an atlas contains a pair of images (A1,A2) having
tissue contrasts C1 and C2, respectively, co-registered and
sampled on the same voxel locations in space. Given a
subject image S1 with contrast C1, the atlas image A1 is
registered deformably to S1 and the same transformation is
applied to A2 to synthesize S2, which will thus have a C2
contrast. The synthesis result is heavily dependent on the
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accuracy of the registration method used. However our ap-
proach is preferred in the case of abnormal anatomy, where
registration is generally not successful. We show that our
approach compares favorably with the registration approach,
both in terms of quality of synthesis and speed. Our work
is similar in spirit to the algorithm described in [4] where
sparse priors were used to synthesize the different MR con-
trast images. We take a data-driven approach and model the
synthesis transformation as a nonlinear regression of image
patches. This regression is learned from data by a bagged
ensemble of regression trees [5] and is significantly faster
and better than the state-of-the-art. The paper is laid out as
a description of the method and motivation, followed by a
results section with experiments on real and phantom data,
and we finish with a discussion on future directions for this
work.

2. METHOD
An intuitive approach to image synthesis is through varia-
tions of histogram matching. Although this process is widely
used and well-studied, it has certain deficiencies. Quantiza-
tion artifacts are hard to avoid when matching histograms.
Histogram matching assumes a one-to-one or a many-to-one
relationship between the subject intensities and the target in-
tensities. These relationships are often violated due to the
spatial variation of the noise as well as the underlying MR
tissue properties. A more general, one-to-many relationship,
between the intensities is more appropriate considering the
spatial information of intensities; which histogram matching
does not offer. To improve upon the idea of histogram match-
ing, we build a nonlinear regression learned from atlas image
patches that generates transformations that are not one-to-one
in the intensity space and also incorporates spatial smoothing
by the use of image patches. Synthesis is done by applying
the learned regression to the patches of a given subject image.

2.1. Training data
As stated earlier, an atlas is a pair of images (A1,A2) hav-
ing tissue contrasts C1 and C2, respectively, which are co-
registered and sampled on the same voxel locations in space.
As an example, we will consider C1 as the T1-w MPRAGE
and C2 as the T2-w contrast (see Fig. 1). The contrast C2 is
to be synthesized, thus addressing the missing T2-w sequence
problem. Our goal is to learn multiple local relationships be-
tween A1 and A2 and use these to synthesize the C2 contrast
of a subject image S1, having C1 contrast. We do this by con-
sidering the patches of A1 and the intensities of A2 together.
We extract the p× q × r sized patches of A1 centered about
the ith voxel, having intensity xi. The patches are stacked
into d×1 sized vectors and are denoted by xi ∈ Rd, d = pqr.
In our experiments we have chosen p = q = r = 3 em-
pirically, thus using d = 27 dimensional patch vectors. The
corresponding ith voxel in A2 is denoted by yi. Here we note
that HM constructs a one-to-one or many-to-one mapping be-
tween all xi’s and yi’s with the aim of matching their distribu-

tions, the xi’s being the independent variables, or attributes,
and the yi’s are the dependent variables. We propose a non-
linear regression keeping the yi’s as the dependent variables,
but with the attributes being xi’s, the image patch at the ith

voxel. Thus the training data consists of pairs of 〈xi, yi〉.

2.2. Regression Trees
A regression tree ensemble is learned from this data by the
algorithm described in [5]. A single regression tree learns a
nonlinear regression by partitioning the d-dimensional space
of xi into regions based on a split at each node. At each split
during training, one third of the attributes are randomly con-
sidered and the one that minimizes the least squares criterion
is chosen as the attribute to split upon. We use a leaf size
of five to prevent the tree from being too deep, thus avoid-
ing overfitting of the training data. The value of the depen-
dent variable assigned at a leaf is simply the average of the
yi’s of the training data which end up accumulating at that
leaf during training. The learned nonlinear regression is thus
piecewise constant. A single regression tree is regarded as a
weak learner and in general has higher error [6]. We use a
bagged ensemble of regression trees, which reduces errors by
bootstrap aggregation [6]. The ensemble consists of n trees,
with n = 100 in our experiments, each learned from a boot-
strapped dataset. To generate a bootstrapped dataset we ran-
domly select a training sample, with replacement N times,
where N is the size of the training dataset, which is ∼ 106

in our case. Given a subject image, S1, with C1 contrast we
generate patches for all voxel positions i and feed those to
the trained ensemble. The outputs of each of the trees in the
ensemble are aggregated by averaging to produce a final out-
put intensity for the ith voxel of the synthesized image S2.
Training is computationally intensive but can be done before-
hand. Image synthesis itself, i.e., applying the ensemble, is
very fast. Training an ensemble takes about three hours with
about 10 gigabytes of memory for atlas images of the size
256 × 256 × 173. A trained ensemble can synthesize a new
256× 256× 173 sized image in about 5–10 minutes, as com-
pared to the sparse reconstruction method [4] (∼ 2–3 hours)
and the deformable registration-based method [3] (∼ 1 hour)
with the same computing resources.

3. RESULTS
3.1. Validation on Brainweb Phantom
In this experiment, the atlas (A1,A2) consisted of a Brain-
web T1-w image (TR = 18ms, α = 30◦, TE = 10ms) and
a corresponding T2-w image (TR = 3000 ms, TE1 = 17 ms,
TE2 = 80 ms) [7]. The subject S1 was another T1-w phan-
tom with a different noise level or a different flip angle. The
regression ensemble was trained on the atlas and then applied
to the subject to produce a synthetic T2-w image, S2. As the
subject and the atlas have the same inherent biology, a perfect
synthesis would result in an image that is exactly equal to the
atlas A2. We used the mean squared error (MSE) between
the synthesized image S2 and the atlas A2 as the compari-
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Fig. 2. For Brainweb subject S1, we synthesize using regres-
sion ensemble (RS) and sparse reconstruction (M1) based on
the atlas pair (A1,A2). A2 is the ground truth image against
which RS and M1 results are compared.

son metric and compared the performance of our regression
based synthesis (RS) with the sparse reconstruction method,
denoted by M1 [4]. We carried out two experiments: 1) we
changed the noise level from 0 − 5% keeping the flip angle
constant at 30◦; 2) we varied the flip angle from 15 − 60◦

keeping the noise constant at 0%. In both cases the parame-
ter is varied on the subject image S1 and we synthesized the
corresponding S2 image, with results shown in Table 1. RS
results in significantly lower MSE (p-value = 0.002) in both
cases, indicating that RS is more robust than M1 w.r.t. noise
as well as imaging parameter change. Fig. 2 shows the atlas
A2 in conjunction with our synthesis result and that produced
by M1, when S1 is the 3% noise version of A1.

3.2. Synthesis of T2-w contrasts
In this experiment, we synthesized T2-w contrasts from T1-w
MPRAGE scans of real subjects. We compared the perfor-
mance of RS with M1, as well as the deformable registration-
based method [3], denoted by D1. The deformable registra-
tion algorithm used in D1 is from [8]. We did not use D1 in
the phantom experiments as the atlas and the subject belonged
to the same brain phantom sampled at the same locations in
space, i.e., they were already registered. As the registration
transformation is identity, D1 would have resulted in a trivial,
perfect synthesis. We used universal quality index (UQI) [9]
as a metric in addition to MSE. UQI is an image quality metric
that models the similarity that a human visual system would
perceive between two images. If the images are identical,
their UQI is 1, otherwise it lies between 0 and 1. We experi-
mented on four subjects from the KIRBY dataset [10] where
each subject has two MPRAGE acquisitions and two corre-
sponding double spin echo T2-w acquisitions. The resolution

Table 1. MSE (×103) values for synthesis of Brainweb phan-
toms with varying noise levels (%) and flip angles (◦) are
shown for M1 and our regression ensemble (RS).

Noise (%) 0 1 3 5

MSE M1 1.62 1.46 2.88 4.29
RS 0.04 0.24 1.38 3.31

Flip Angle (◦) 15 30 45 60

MSE M1 2.24 1.62 1.57 1.96
RS 2.57 0.03 1.19 2.04

Table 2. Average MSE (×104) and UQI values for synthesis
of T2-w images of two repeat scans of four subjects.

Subject # 1 2 3 4 Mean

MSE
M1 0.85 2.86 1.14 1.41 1.56
D1 3.57 4.37 4.41 3.90 4.06
RS 1.33 1.22 1.25 1.24 1.26

UQI M1 0.77 0.62 0.69 0.67 0.69
D1 0.78 0.76 0.77 0.75 0.76
RS 0.86 0.83 0.84 0.84 0.84

TRUE D1 M1 RS

Fig. 3. Synthesis results of different algorithms vs true image
on real data. Lesion circled in the true image is synthesized
correctly by M1 and RS, but not by D1.

of the MPRAGE acquisition is 1.2×1.2×1.2mm3, while that
of the T2-w acquisitions is 0.82×0.82×1.5mm3. All four im-
ages of a particular subject are co-registered. Although these
images were acquired on the same scanner within a short du-
ration, they differ slightly due to scanner parameter incon-
sistency and noise. As an atlas pair (A1,A2), we selected
one MPRAGE and T2-w image from another subject in the
dataset, and trained RS to transform MPRAGE intensities to
the corresponding T2-w intensities. We then used the trained
RS to synthesize eight T2-w images from the eight MPRAGE
images. The quality of the synthesis of T2-w images was mea-
sured by comparing with the corresponding true T2-w images
present in the data. MSE and UQI values after synthesis are
reported in Table 2. Fig. 3 shows the results for all the al-
gorithms in conjunction with the ground truth image. MSE-
wise, M1 and RS have a comparable performance (p-value
= 0.56). UQI-wise, it is clear that RS outperforms both M1
and D1 where the images produced by RS are the closest to
the ground truth, also seen visually. If the anatomy of the sub-
ject and the atlas differs, registration cannot truly reproduce
it. This is evident in Fig. 3 (yellow circle) where a lesion is
not synthesized by D1 as it is not present in the atlas.

3.3. Synthesis of T1-w images
In this experiment, we synthesized a 3T MPRAGE image
from a 1.5T MPRAGE image. Generally, 3T MPRAGE im-
ages have a higher signal-to-noise ratio and better tissue con-
trast than 1.5T MPRAGE. We chose a normal subject from
the BIRN dataset [11] as the atlas, with the A1 and A2 at-
las images acquired on a 1.5T Siemens and a 3T GE scan-
ner, respectively. We trained RS as before and applied it to a
1.5T MPRAGE scan acquired in the OASIS [12] dataset. If
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Table 3. Dice (overlap with subject MPRAGE) and relative
volumes after synthesis of one subject.

Tissues CSF GM WM

Dice HM 0.79 0.80 0.95
RS 0.87 0.93 0.97

Rel. Vols
HM 0.22 0.42 0.36
RS 0.35 0.33 0.32

True 0.34 0.34 0.32

ATLAS 3T S1 HM RS

Fig. 4. Original and synthesized MPRAGE images along with
their segmentations. The arrows show where CSF voxels are
classified as GM.

the pulse sequences are similar, histogram matching has been
shown to work reasonably well for synthesis. However when
the anatomy and the intensity distributions of the subject and
the atlas are quite different, histogram matching results in cer-
tain subject tissue voxels being forced to change their tissue
class as a result of the matching of the intensity distributions.
This phenomenon is evident in Fig. 4, where the subject has
abnormally large ventricles (unlike that of the atlas) and thus
has more cerebrospinal fluid (CSF) compared to the atlas.
Hence, histogram matching results in CSF voxels receiving
higher intensities and thereby being classified as gray matter
(GM), as shown in Fig. 4, bottom row. In Table 3, we present
results of performing segmentation [13] on the subject 1.5T
MPRAGE (S1), and the two synthetic MPRAGEs and calcu-
lating Dice overlap coefficient for the three tissue classes. We
also calculate the relative volumes (volume of tissue / total
intra-cranial volume) of the tissues for all the three images.
RS synthesis has the most overlap with the original subject
image in terms of Dice and the tissue relative volumes are
similar as well. It is noted from the relative volume numbers
that a large amount of CSF voxels were classified as GM after
histogram matching.

4. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a simple, fast, and effective
method to synthesize alternate tissue contrasts and normal-

ize intensities for MR images through nonlinear regression
on patches. A nonlinear regression is learned from data by a
bagged ensemble of regression trees. The method is used to
generate T2-w contrasts from T1-w images, where traditional
histogram based methods fail. The quality of synthesis equals
and in most cases, betters the current state-of-the-art and re-
quires a fraction of the processing time. The method is also
generic and can be used to synthesize other pulse sequences,
for primarily image processing tasks. In future work, we in-
tend to make this method faster and lighter by reducing the
training time and memory required by appropriate atlas selec-
tion and tree pruning. We would also like to validate on larger
datasets and include more pulse sequences for synthesis.
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