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ABSTRACT 

Accurate segmentation is an important preprocessing step 
for measuring the internal deformation of the tongue during 
speech and swallowing using 3D dynamic MRI. In an MRI 
stack, manual segmentation of every 2D slice and time 
frame is time-consuming due to the large number of 
volumes captured over the entire task cycle. In this paper, 
we propose a semi-automatic segmentation workflow for 
processing 3D dynamic MRI of the tongue. The steps 
comprise seeding a few slices, seed propagation by 
deformable registration, random walker segmentation of the 
temporal stack of images and 3D super-resolution volumes. 
This method was validated on the tongue of two subjects 
carrying out the same speech task with multi-slice 2D 
dynamic cine-MR images obtained at three orthogonal 
orientations and 26 time frames. The resulting semi-
automatic segmentations of 52 volumes showed an average 
dice similarity coefficient (DSC) score of 0.9 with reduced 
segmented volume variability compared to manual 
segmentations.

Index Terms— Tongue, segmentation, random walker, 
deformable registration, super-resolution reconstruction. 
 

1. INTRODUCTION 
The mortality due to tongue cancer is lower than other 
cancers, but the incidence of oral cancer has increased in the 
last four decades. Generally, treatment with surgical 
ablation of tongue tumor (glossectomy) and chemo-
radiotherapy may lead to speech and swallowing 
complications, thus  affecting the quality of the patient's life. 
Therefore, understanding the relationship between tumor, 
tongue structure and function becomes crucial for diagnosis, 
surgical planning and outcomes, and scientific studies. 
However, the ability to measure speech or swallowing 
dysfunction in these patients has been limited and is largely 
semi-quantitative. Characterization of tongue motion is 
challenging because the tongue deforms rapidly over a wide 
range with complex interactions between multiple muscles 
to produce fast and accurate movements [1]. Currently, 
there is no tool to directly characterize tongue motion and 
function with respect to surgical approach and 
reconstruction procedures, or chemo-radiation treatment in 
these patients [2]. 

Magnetic resonance imaging (MRI) plays an important 
role in the analysis of the structure and function of the 
tongue due to its excellent soft tissue contrast. In particular, 
fast MR imaging with tagging and target tracking capability 
allows quantitative analysis of tongue motion while 
carrying out a specific speech or swallowing task. 3D 
dynamic MRI (alternatively, 4D-MRI) is desirable because 
it yields volumetric images that change over time. However, 
there still exist undesirable trade-offs between temporal 
resolution and signal-to-noise ratio (SNR), i.e., image 
quality [3]. Consequently, the majority of dynamic MR 
imaging techniques involve sequential multi-slice 2D image 
acquisition as it is readily suited to minimize intra-scan 
motion while maintaining high spatio-temporal resolution 
[3-6]. There have been numerous attempts to compute 3D 
motion using tagged-MRI, mostly for cardiac motion 
analysis [4-7]. Several well-established algorithms such as 
the harmonic phase (HARP) tracking algorithm [4, 5] and 
incompressible deformation estimation algorithm (IDEA)  
[6] enabled a computation of 2D and 3D motion fields from 
tagged-MR data. We have recently proposed a workflow 
(see Fig. 1) using HARP and IDEA to analyze 3D motion of 
the tongue from multi-slice dynamic cine- and tagged-MRI 
[8, 9]. 

 

 
Fig. 1. 3D tongue motion analysis workflow based on multi-slice 
dynamic cine- and tagged-MRI. 

 
Image segmentation of the target anatomical structures 

is a fundamental and challenging problem in the MR-based 
analysis. 3D motion analysis requires properly segmented 
tongue volume masks on which the 3D motion field is 
computed. Although there are numerous methods available 
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for a single MR image/volume segmentation [10], there is 
no systematic and efficient approach to segment time-
varying volumes for motion analysis. Therefore, the user 
has to segment individual slices or volumes at every time 
frame using a manual or semi-automatic method. This is 
time-consuming due to the large number of images or 
volumes throughout the entire task cycle; in our 
experiments, there are 26 volumes per second. 

This paper proposes a semi-automatic segmentation 
method, which bridges the gap between fast 4D-MR image 
acquisition and established 2D/3D motion analyses to 
complete the dynamic MR-based tongue motion analysis 
workflow. The proposed method computes a tongue mask at 
every time frame with minimal user input, thus significantly 
alleviating the segmentation burden for the user.  

 
2. METHODS 

2.1. Image acquisition 
Multi-slice 2D dynamic cine-MRI and tagged-MRI datasets 
are acquired from the subject using exactly the same 
orientation, spatial and temporal parameters in the axial, 
coronal, and sagittal orientations while the subject repeats a 
speech task. The slice image repetitions are sorted based on 
the speech phase, and averaged to produce an averaged 
multi-slice 2D dynamic MR image sequence at three 
orthogonal orientations and multiple time frames. A typical 
number of slices in each orientation of the cine- and tagged-
MR datasets in our experiments is 10-12 axial, 9-14 coronal 
and 7 sagittal. The tagged images contain horizontal and 
vertical tags over 26 time frames. Each image is 128×128 
pixels with a pixel size of 1.875×1.875 mm2, and both slice-
thickness and tag spacing are 6 mm. 
 
2.2. Super-resolution volume reconstruction 
These multi-slice 2D dynamic MR scans provide high in-
plane resolution (1.875 mm), but relatively poor through-
plane (slice-selection direction) resolution (6.0 mm). 
Consequently, each dataset by itself is not sufficient for 
volumetric image processing and analysis such as 
segmentation, registration, and 3D motion analysis. To 
overcome this limitation, we derive a high-resolution, 
isotropic 3D volume from the three orthogonal 2D multi-
slice image stacks using a super-resolution reconstruction 
technique developed by our group [11]. We first generate 
isotropic volumes by upsampling each stack in the through-
plane direction using a fifth-order B-spline interpolation. 
We choose a target volume (in this study, sagittal) and 
register the other two volumes (axial and coronal) to the 
target. We register by translating in the 3 degrees-of-
freedom using mutual information as a similarity measure 
because the currently implemented HARP tracking and 
IDEA algorithms can only accommodate translational 
motion of the tagged image plane. Slight intensity 
differences between the three registered volumes are 
corrected by using a spline-based intensity regression 

method that uses local intensity matching [11]. A single 
super-resolution volume of 128×128×128 voxels with an 
isotropic voxel size of 1.875 mm is reconstructed by 
averaging these intensity-corrected registered volumes. The 
super-resolution reconstruction is computed at every time 
frame to form a high-quality 3D dynamic MRI. The super-
resolution volume not only provides a 3D volume with 
higher spatial resolution, but also reduces the blurring 
artifact caused by the slight misalignment between multi-
slice images at three orientations through registration 
process. Therefore, direct segmentation of the 3D super-
resolution volume yields an improved segmentation 
outcome compared to each 2D slice image segmentation 
followed by merging them into a 3D mask. 
 
2.3. Random walker segmentation 
We use the random walker (RW) segmentation algorithm 
[12] for segmenting both 2D cine images and 3D super-
resolution volumes due to its attractive features such as fast 
computation, flexibility, ease of user interaction, and ability 
to produce an arbitrary segmentation with enough 
interaction. RW is a robust, graph-based, semi-automatic 
algorithm to find a globally optimal probabilistic solution 
for multi-label, interactive image segmentation. A user 
specifies a small number of pixels with user-defined labels 
as seeds (in our case, on the tongue and the background). 
Each unlabeled pixel is assigned to the label with the 
greatest probability that a random walker starting at this 
pixel will reach one of the seeds with this label. An 
interactive segmentation method is desirable for our 
application because the user often has to segment the region 
where there is no obvious image contrast and sometimes 
needs to edit the segmentation results. 

We define a graph that consists of a pair � = (�, �) 
with vertices (or nodes) � ∈ � and edges � ∈ �. We use a 
typical Gaussian weighting to each edge ��	  given by 

�	 = exp�−�(
� − 
	)��  where 
�  indicates the image 
intensity at pixel � and � is a free parameter for which we 
used the same value as in [12]. The RW probabilities are 
found by minimizing the combinatorial Dirichlet problem 
�(�) = �

�
��L�, where � is a real-valued vector defined over 

the set of nodes and L  represents the combinatorial 
Laplacian matrix [12]. 
 
2.4. Temporal stack segmentation 
In a single cine-MRI dataset, there are many temporal 
stacks that must be segmented, one for each slice, each 
orientation, and each time frame. All together, there are 
about 800 images (~10 slices × 3 orientations × 26 time 
frames), which can be parsed into ~30 temporal stacks (~30 
slices/time frame, each with 26 time frames) or 26 super-
resolution volumes (1 volume/time frame × 26 time frames). 
It is challenging to segment all of the obtained 2D cine 
images (or the super-resolution volumes) due to the amount 
of data. Therefore, we propose here a systematic approach 
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to segment the original 2D temporal stacks at once based on 
a minimal set of user-placed seeds to get 2D tongue masks. 

A single temporal stack is smoother between adjacent 
time frames than between adjacent slices due to the 
relatively large slice spacing. For each slice, we use time as 
the third dimension instead of through-plane direction to 
form a 3D stack volume (2D target view + time). We 
segment this 3D stack volume using RW segmentation. For 
each slice, seeds need to be input at only one time frame 
and then propagated to 3-4 other distributed time frames by 
B-spline deformable registration (see Fig. 2(a)). The user-
given and propagated seeds are then used to segment the 3D 
temporal stack volume using RW (Fig. 2(b)). The process is 
repeated for different slices at any orientations. Note that we 
only need to process several user-chosen slices (in this 
study, we only use 7 sagittal slices) that are well-spread 
over the target volume because these 3D temporal stack 
segmentations are used to segment 3D super-resolution 
volumes of all 26 time frames. 
 

 
Fig. 2. Temporal stack segmentation of a set of sagittal images in a 
single slice. (a) Seeds provided by the user at time frame 13 (red: 
tongue, green: background), are propagated to different time 
frames (3, 10, 24). (b) 3D temporal stack segmentation by RW 
using the seeds in (a). 
 
2.5. Super-resolution volume segmentation 
3D temporal stack segmentations (7 sagittal slices in our 
case) are used to generate seeds for the segmentation of 26 
super-resolution volumes. Since the 2D cine images are 
sub-planes of the super-resolution volume, seeds on the 2D 
cine images can be directly imported to the corresponding 
slice images of the 3D super-resolution volume. For the 
time frames where no seeds are provided, seeds are 
extracted from the segmented 2D masks. To remove 
possible segmentation errors near the boundary and reliably 
extract seeds from the segmented 2D mask, the segmented 
mask M is first eroded using a disk structuring element D. 
Eroded mask Me for each label is computed by 

�� = {� ∈ �|�� ⊆ �}, 

where E is a Euclidean space, Ds is a translation of D by the 
vector s, i.e., �� = {� + �|� ∈ �}, ∀� ∈ � . Boundary ���

�  
and the skeleton ��

� of the eroded mask for each label l are 
then extracted. Image skeleton is computed by the medial 
axis transform. Seeds for each label are created by the union 

of the points on the boundary and the skeleton of the eroded 
mask: 

��
� = {�|� ∈ ���

� ∪ ��
�},       for ! = 1,2, … "�, 

where i is the slice index and Nl is the number of labels. 
Once all the seeds are imported and extracted from the 

2D cine images, the super-resolution volume at each time 
frame is segmented by RW using these seeds. Figure 3 
shows an example of seeds extracted to a sagittal slice of a 
super-resolution volume from a 2D segmented mask. Figure 
4 shows two example super-resolution volume 
segmentations performed on time frame 13 (seeds are 
provided) and 20 (seeds are extracted from 2D cine 
segmented masks). 
 

 
Fig. 3. Seed extraction from 2D cine to 3D super-resolution 
volume. (a) Segmented 2D cine image. (b) Corresponding sagittal 
slice of the super-resolution volume overlaid with extracted seeds. 
 

 
Fig. 4. Example segmentations of super-resolution volumes of 
tongue. (a) User-given seeds imported to the super-resolution 
volume at time frame 13 (left) and the seeds extracted from 2D 
sagittal temporal stack segmentations at time frame 20 (right). (b) 
Surface rendering of a super-resolution reconstruction. The tongue 
is located in the middle of the volume where axial, coronal, 
sagittal images are intersecting (c) Surface rendering of the 
segmented tongue at time frame 13 and (d) at time frame 20 
among 26 super-resolution volume segmentations. 
 

3. RESULTS 
We evaluated the proposed methods on two normal 
volunteers who performed the same speech task. Each 
subject repeated the sound "asouk" and multi-slice cine- and 
tagged-MR images (128×128 pixels, a pixel size of 
1.875×1.875 mm2) were acquired. A user-chosen ROI of 
70×70 pixels on each slice was used for segmentation. 
Subject 1 data had 12 axial, 14 coronal and 7 sagittal slice 
images, and the subject 2 data had 10 axial, 9 coronal and 7 
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sagittal slice images. There were 26 time frames for both 
data sets. An isotropic super-resolution volume 
(128×128×128 voxels, voxel size of 1.875×1.875×1.875 
mm3) was reconstructed at every time frame. The user 
provided seeds on 7 sagittal slices only at time frame 13 
(middle of 26 time frames), and the seeds were propagated 
to time frames 3, 10, 17, 24. For each slice, 26 time frames 
were stacked to form a 70×70×26 3D temporal stack 
volume, and it was segmented by RW using the seeds 
available at 5 time frames (3, 10, 13, 17, 24). For every time 
frame, corresponding 3D super-resolution volume was then 
segmented using the seeds generated from the temporal 
stack segmentations. Figure 4 shows two example 
segmented surfaces of subject 2 computed by RW at two 
time frames with user-provided (frame 13) and extracted 
(frame 20) seeds. 

In order to evaluate the semi-automatic segmentation 
quality, a trained scientist manually segmented all 52 super-
resolution volumes (1 volume/time frame × 26 time frames 
× 2 subjects). DSCs between the semi-automatic and the 
manual segmentations were 0.89 and 0.9 for the subject 1 
and 2, respectively (Table 1). Since the tongue is known to 
be incompressible, i.e., the volume of the segmented tongue 
mask at every time frame should not vary [6, 9], we 
measured the volume variation of the segmented masks in 
the manual and semi-automatic methods. The volume 
changes are plotted in Fig. 5, and the mean and standard 
deviation of segmented volume sizes are summarized in 
Table 1, showing that the segmented volume size is more 
constant with the semi-automatic than manual segmentation. 

 
Fig. 5. Segmented volume variability over time for two subjects 
(S1 and S2) with the manual and semi-automatic segmentations. 

 
Table 1. Evaluation of the segmented volumes and the volume 
variability. The manual and semi-automatic segmentations are 
compared. DSC scores, and the mean and standard deviation of the 
sizes of the 26 segmented volumes for each subject are shown.  

Subject DSC 
Segmented volume variability 

mean±std (cm3) 
Semi-automatic Manual 

S1 0.89 116.5 ± 4.7 120.1 ± 6.4 
S2 0.90 102.9 ± 4.4 102.2 ± 5.2 

4. CONCLUSIONS 
In this paper, we described a semi-automatic segmentation 
method for dynamic MR-based 3D motion analysis of the 

human tongue. The proposed semi-automatic segmentation 
method requires user-given seeds only on a few slice 
images and time frames and automatically propagates the 
seeds to the other frames by deformable registration. 
Furthermore, successive 2D temporal stack volume 
segmentation followed by the super-resolution volume 
segmentation by RW over all time frames enable 
segmentation of the time-varying volumes with minimal 
user interaction, thus significantly reducing the 
segmentation burden while keeping more consistent 
segmentation quality. 
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