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ABSTRACT
Magnetic resonance (MR) imaging (MRI) is widely used

to study the structure of human brains. Unlike computed
tomography (CT), MR image intensities do not have a tis-
sue specific interpretation. Thus images of the same subject
obtained with either the same imaging sequence on different
scanners or with differing parameters have widely varying
intensity scales. This inconsistency introduces errors in
segmentation, and other image processing tasks, thus ne-
cessitating image intensity standardization. Compared to
previous intensity normalization methods using histogram
transformations–which try to find a global one-to-one inten-
sity mapping based on histograms–we propose a patch based
generative model for intensity normalization between images
acquired under different scanners or different pulse sequence
parameters. Our method outperforms histogram based meth-
ods when normalizing phantoms simulated with various pa-
rameters. Additionally, experiments on real data, acquired
under a variety of scanners and acquisition parameters, have
more consistent segmentations after our normalization.

Index Terms— MRI, intensity normalization, intensity
standardization, brain, segmentation.

1. INTRODUCTION
MRI is a non-invasive modality that has been widely used to
gain understanding of the human brain. MR image process-
ing techniques, such as segmentation, are needed to under-
stand normal aging as well as the progression of diseases. For
almost all MR image processing algorithms, image intensi-
ties are used as a primary feature. Unlike CT, MR intensities
do not possess any tissue specific meaning. Thus a subject
scanned in different scanners or with different pulse sequence
parameters, will have variable image contrast between tissues
(see Fig. 1 for example). It has been shown that the variabil-
ity in tissue contrast gives rise to inconsistencies in segmen-
tation [1].
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Fig. 1. Top row shows a subject’s SPGR (spoiled gradient
recalled) from three different scanners [2], while the bottom
row shows their histograms–scale is arbitrary.

Several intensity standardization algorithms have been
proposed to bring MR intensities to a common scale. To nor-
malize a subject T1-weighted scan to another reference T1-w
scan, histogram matching algorithms try to match the subject
histogram to the reference histogram by matching the intensi-
ties of manually or automatically chosen landmarks [3] or by
minimizing some information-theoretic criteria [4] between
the histograms. Another method uses intrinsic MR properties,
such as longitudinal and transverse relaxation times (T1 and
T2) or proton density (PD), to normalize the subject inten-
sities to a reference volume, acquired with a different pulse
sequence [5]. A segmentation based technique has also been
proposed to account for the scanner variations, by matching
intensity distributions of similar tissues between two im-
ages [6]. Landmark based methods usually suffer from the
fact that reliable landmarks are sometimes difficult to find as
they are either manually chosen or based on a segmentation
itself. While, using tissue properties can be difficult as one
needs precise knowledge of the imaging equations and pulse
sequence parameters, which are often not known or difficult
to estimate accurately.

We have previously reported a patch-based intensity nor-
malization method called MIMECS [7] to overcome these
problems. In this paper, a generative model based intensity
normalization technique is developed independent of but hav-
ing strong parallels with the idea of coherent point drift [8].
We still use patches instead of intensities of a single voxel as
features, because a patch around a voxel contains neighbor-
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hood information of that center voxel. We propose a patch
matching technique that takes patches from the subject im-
age and finds its best matching patches in a target image. We
benefit from not having to choose landmarks and no pulse se-
quence parameters are required.

2. METHOD

We want to normalize the intensities of a normal subject S

to a normal atlas A. We assume that S and A are acquired
with similar imaging sequences, e.g. either T1-w SPGR or
MPRAGE (magnetization prepared rapid gradient echo), but
differ in either or both the scanner or the imaging parame-
ters (e.g., repetition time, echo time, or flip angle). At each
voxel of an image, 3D patches are considered and stacked
into 1D vectors of size d × 1. There are N subject patches
xi and M atlas patches yk, where N and M are the number
of non-zero image voxels in S and A, respectively. Define
X = {xi} and Y = {yj} to be the collection of subject and
atlas patches. To match the subject intensities to the atlas,
we match X to Y. First, we make sure that the peak white
matter (WM) intensities of both S and A are the same (which
provides a rough normalization of the two data sets). We as-
sume that each subject patch xi is a realization of a Gaussian
random vector whose mean is one of the atlas patches—i.e.,
xi ∼ N(yj ,Σj) for some j. Then both the best matching
atlas patch for each subject patch and the covariances of all
atlas patches are defined by maximum likelihood and found
using the expectation maximization algorithm (EM) [9], as
described in detail below. The normalized image is produced
by replacing the center pixel of each observed patch by the
corresponding value of the matching atlas patch.

To motivate the key assumption of the Gaussian pertur-
bation, we first observe that the image intensities are related
to the intrinsic MR tissue properties, T1, T2, T ?2 , and PD,
by nonlinear imaging equations. However, we can use a lin-
ear approximation to write the intensities of a patch as xi =
HSΘS(i) and yj = HAΘA(j), where HS and HA are lin-
ear approximations of the imaging equations and ΘS(i) and
ΘA(j) are the underlying MR tissue properties of the patches.
If patches xi and yj are from the same tissue, we can assume
that their MR tissue properties follow a Gaussian distribution,
ΘA(j),ΘS(i) ∼ N(µ,Ω). Then, xi ∼ N(HSµ, HSΩHT

S )
and yj ∼ N(HAµ, HAΩHT

A). Similarly, xi−yj ∼ N((HS−
HA)µ, (HS + HA)Ω(HS + HA)T ). We note that it is not
feasible to estimate HA or HS because neither the imaging
equations nor the pulse sequence parameters are always ex-
actly known. But we assume S and A are acquired with “sim-
ilar” pulse sequences, so we can thus make the assumption
that HA ≈ HS, implying xi − yj ∼ N(0,Ω′). Here, Ω′ is
a tissue-specific constant dependent on the nature of ΘA(j)
and ΘS(i), or in essence, the classification of xi and yj . How-
ever, it is very difficult to estimate intrinsic tissue MR prop-
erties (µ and Ω′) since the exact nature of the imaging equa-
tions (HA or HS) is usually not known. We avoid the clas-

sification and estimation problem of tissue MR properties by
assuming that Ω′ is a characteristic of yj , thereby creating an
M -class Gaussian mixture model with means as the M atlas
patches. We note that the same analysis can be extended even
if a patch contains more than one tissue class. This idea of an
M -class problem was explored previously for a registration
algorithm [8].

To find the correspondence between patches, let zij be
an indicator function having the value one when the ith sub-
ject patch xi originates from a Gaussian distribution having
its mean as the jth atlas patch yj with co-variance matrix Σj ,
and is zero otherwise. The probability of observing xi is writ-
ten as

P (xi|zij = 1,Σj , yj) =

1√
2π|Σj |1/2

exp
{
−1

2
(xi − yj)

TΣj(xi − yj)
}
. (1)

For computational simplicity, we make the assumption that
Σj is a diagonal matrix–i.e. Σj = σ2

j I , where I is a d × d
identity matrix. Assuming the i.i.d. nature of the patches and
a uniform prior probability P (zij = 1|Σj , yj) = 1

M and , the
joint probability distribution of all the subject patches is given
by

P (X,Z|Y,Θ) = C

M∏
j=1

N∏
i=1

(
1
σj

exp

{
−
||xi − yj ||2

2σ2
j

})zij

(2)

where Z = {zij}, Θ = {σj : j = 1, . . . ,M}, and C is a
normalizing constant. An estimate of σj’s and posterior prob-
abilities P (zij = 1|X,Y,Θ) can be obtained by maximizing
the joint probability using EM.

EM is a two-step iterative process, that estimates the true
zij’s based on the current estimates of the parameters Θ, and
then updates Θ based on the estimates of zij . This is de-
scribed as:

1. E-step: to find new update Θ(m+1) at themth iteration,
compute the expectation Q(Θ(m+1)|Θ(m)) =
E[logP (Z|X,Y,Θ(m+1))|X,Y,Θ(m)].

2. M-step: find new estimates Θ(m+1) based on the pre-
vious estimates by solving,
Θ(m+1) = arg maxΘ(m+1) Q(Θ(m+1)|Θ(m)).

Assuming wij = E(zij |xi, yj , σj), the E-step gives
wij = P (zij = 1|xi, yj , σj),

=
P (xi|zij = 1, yj , σj)P (zij = 1|yj , σj)∑
k P (xi|zik = 1, yk, σk)P (zij |yj , σj)

,

=
1
σj
φ
(xi−y

j

σj

)
∑M
k=1

1
σk
φ
(xi−y

k

σk

) , φ(t) =
1√
2π
e−

1
2 ||t||2 .(3)

The M-step gives the update equations for σjs as

σ2
j =

∑N
i=1 wij ||xi − yj ||2∑N

i=1 wij
. (4)

The algorithm is deemed to have converged when the max-
imum difference between the posteriors in successive itera-
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Fig. 2. Mean squared errors (MSE) between atlas (αA = 90◦)
and subject images (αS = 30◦, 45◦, 60◦, 75◦) are shown for
various noise levels.

tions is below a threshold. Then the central voxel of the sub-
ject patch xi is replaced with the central voxel of yt, where
t = arg maxj(wij).

For all of the experiments, we use 3× 3× 3 patches, thus
d = 27. For a 256 × 256 × 199 MR brain image of reso-
lution 1mm3, M and N are typically ≈ 107. It is therefore
memory and time intensive to compute wij’s for every xi’s.
We observed experimentally that wij is very close to zero
if ||xi − yj || is large. Following the assumption that ΘS(i)
and ΘA(j) should be the same tissue, we assume wij = 0 if
||xi − yj || > δ, which is similar to a non-local criteria [10].
However, in our computation, for each i, we choose its closest
D atlas patches to have non-zerowij , their indices denoted by
Ψi, a set of cardinality D. Thus if any atlas index j is not in
Ψi, we fix wij = 0. Eqn. 4 is modified as follows

σ2
j =

∑
i;j∈Ψi

wij ||xi − yj ||2∑
i;j∈Ψi

wij
. (5)

3. RESULTS
3.1. Phantom validation
We first validate the algorithm on the Brainweb phantom
data [11]. We use flip angle α as the varying imaging pa-
rameter of SPGR scans of a normal phantom. Phantoms with
αS = 30◦, 45◦, 60◦, 75◦ with noise levels n = 0, 1, 3, 5%
are used to normalize to a phantom with αA = 90◦ and 0%
noise. Our method is compared with histogram matching and
a landmark based method [3] where the landmarks are found
using a Gaussian mixture model algorithm. Fig. 2 shows the
mean squared errors (MSE) between the atlas and the sub-
jects before and after normalization with these three methods.
Clearly the patch based method outperforms the other two
for all values of αS, and n = 1, 3, 5. For 0% noise, all three
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Fig. 3. Top row shows the atlas (αA = 90◦) and the subject
(αS = 30◦). Middle row shows the histogram matched, land-
mark based normalized and patch based normalized images.
Bottom row shows their differences with the atlas.

methods perform similarly, because the lack of any partial
volume or noise makes the choice of landmarks accurate and
histogram matching perfect. At higher noise levels, histogram
matching becomes dependent on the number of bins and the
estimation of landmarks becomes less robust. The atlas and
a subject with αS = 30◦ at 5% noise are shown in Fig. 3 the
top row, the normalized images and their differences from the
atlas are shown in the middle and bottom row, respectively.
Clearly, both histogram matching and landmark based nor-
malization leaves a bias in intensities in large regions, e.g.,
gray matter (GM), while our patch-based method fails only
in recovering sharp edges such as at GM to WM transitions.

3.2. Experiments on real data
We next used five healthy subjects from the morphometry
BIRN [2] calibration study to show the effects of normaliza-
tion. Each subject has 14 SPGR scans, 7 each with α = 20◦

and 30◦ from 4 different scanners. Each scan of a subject was
first rigidly registered to its GE 1.5T α = 30◦ scan and then
skull-stripped [12] using the same mask generated from the
GE 1.5T α = 30◦ scan. Then each image is corrected for any
intensity inhomogeneity using N3 [13]. For every subject, we
normalize every α = 20◦ scan to the corresponding α = 30◦

scan. Fig. 4 shows one set of α = 20◦ and α = 30◦ scans of
a subject along with the normalized image in the top row.

Our method does not seek to match histograms, however
it is useful to compare them after normalization. Fig. 4 bottom
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Fig. 4. Top row shows the subject (α = 20◦), atlas (α = 30◦)
and the corresponding normalized image. Bottom row shows
a plot of the histograms of the above three images.

row, shows that the histogram of the normalized image more
strongly resembles the atlas than the original subject image.

As described earlier, segmentations can become incon-
sistent with the variation of scanners and imaging parame-
ters [1, 5, 6]. We demonstrate that the patch based normal-
ization achieves more consistent segmentation between im-
ages acquired with different scanners and pulse sequence pa-
rameters. We compare our method with histogram matching
and a landmark based intensity transformation [3] where three
landmarks on the subject and the atlas are automatically cho-
sen based on a 3-class Gaussian mixture model segmentation.
After normalization, we use fuzzy C-means [14] to gener-
ate segmentations. We report Dice similarity coefficients in
Table 1 between segmentations of the three primary tissues,
cerebro-spinal fluid (CSF), GM, and WM, and their weighted
average. The values are averaged over five subjects, each
with seven scans. Patch based normalization produces signif-
icantly higher Dice coefficients for GM and WM compared to
the other two, while the CSF Dice segmentations are compa-
rable. Histogram matching often decreases the similarity with
the original, as it is heavily dependent on the number of bins.
Landmark based matching can also deteriorate the segmenta-
tion consistency, when a suitable landmark is not found. This
is often the case if the image histogram is not multi-modal
(e.g., the blue line in Fig. 4). Both Figs. 3 and 4 reveal a
smoothing effect on the reconstructed images. Though not
unexpected in patch-based methods, this effect needs further
investigation.

4. DISCUSSION AND CONCLUSION
We have described a patch based MR intensity normalization
framework that can normalize scans having similar acquisi-
tion protocol but acquired on different scanners or with dif-
ferent acquisition parameters. We validated our algorithm on
phantoms and real scans and shown it gives rise to more con-

Table 1. Average Dice coefficients of hard segmentations are
obtained from 35 scans, before and after normalization, com-
paring our method with histogram matching and a landmark
based matching [3].

CSF GM WM Mean

Original 0.882 0.788 0.927 0.884
Hist. Match 0.881 0.828 0.917 0.891
Landmark based 0.876 0.776 0.926 0.882
Patch based 0.874 0.845? 0.943? 0.902
? Statistically significantly larger than the other three (p-value < 0.05).

sistent segmentations after normalization.
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