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Abstract
This paper presents a patch based method to normalize temporal intensities from longitudinal
brain magnetic resonance (MR) images. Longitudinal intensity normalization is relevant for
subsequent processing, such as segmentation, so that rates of change of tissue volumes, cortical
thickness, or shapes of brain structures becomes stable and smooth over time. Instead of using
intensities at each voxel, we use patches as image features as a patch encodes neighborhood
information of the center voxel. Once all the time-points of a longitudinal dataset are registered,
the longitudinal intensity change at each patch is assumed to follow an auto-regressive (AR(1))
process. An estimate of the normalized intensities of a patch at every time-point are generated
from a hidden Markov model, where the hidden states are the unobserved normalized patches and
the outputs are the observed patches. A validation study on a phantom dataset shows good
segmentation overlap with the truth, and an experiment with real data shows more stable rates of
change for tissue volumes with the temporal normalization than without.
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1. INTRODUCTION
MR is a widely used noninvasive modality to image the structure of human brains.
Associated image processing techniques, such as segmentation, are needed to understand
normal aging1,2 as well as the progression of diseases. Analysis of 4D temporal data—
multiple 3D images at different time-points–is relevant in this scenario to estimate the rates
of change of image statistics (i.e., tissue shapes, volumes, and cortical thickness). Unlike
computed tomography, MR image intensities do not possess any tissue specific meaning,
which introduces inconsistencies in MR segmentations.3 Thus image intensities need to be
on a standardized scale to achieve temporally consistent results. However, 3D segmentation
algorithms, performed independently on a longitudinal dataset, seldom achieve the desired
longitudinal stability, giving rise to the need for a 4D normalization technique.

Several 3D intensity normalization techniques have been proposed in the literature to bring
the varying MR intensity ranges to a common scale. Most of these methods are based on
deforming the intensity histogram to match a template histogram from an atlas4 or using
spatial landmarks5,6, or some information-theoretic criteria7,8 to match histograms. They
work well in normalizing one 3D volume to another, however they do not produce the
desired stability on a 4D dataset. A state-of-the-art 4D image segmentation technique,
CLASSIC9, was proposed to account for the desired longitudinal smoothness of the 4D
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segmentations. A 4D segmentation algorithm was also proposed to obtain consistent
segmentations and cortical thicknesses of infant brains10, where the segmentations of the
later years are used as a prior to the first year and a novel 4D penalty is introduced on the
cortical thickness measurements11. Several probabilistic atlas based methods12,13 have also
been proposed where subject specific atlases are created from either manual segmentation or
an average template to segment both cortical and sub-cortical structures. Unfortunately these
algorithms are closely tied to a particular segmentation algorithm and can not easily be
extended to other segmentation methods. In this paper, we propose a 4D image intensity
normalization method that can be used as a pre-processing step to any segmentation
algorithm. Instead of using intensities at each voxel, our method uses patches as features,
because a 3D patch around a voxel encodes the neighborhood information at that voxel. We
assume that the longitudinal change of intensity of a patch follows an AR(1) process and
then estimate the normalized intensity of that patch using a hidden Markov model (HMM)14.
The hidden states of the HMM are the unobserved normalized patches, while the
corresponding outputs are the observed image patches. The motivation for such a model is
shown in Figs. 1(a)–(c) where three time-points are shown for a longitudinal dataset2. The
images are scaled so that their white matter (WM) peaks are unity and Figs. 1(b) and (c) are
rigidly registered to Fig. 1(a). The scaled intensities of a selected voxel, indicated as the
center of the blue square in Fig. 1(a), are plotted as a blue line in Fig. 1(d). An AR(1) fit of
the intensities is also shown in Fig. 1(d) as a red line, with R2 = 0.91. Thus for normal aging
or gradual progression of diseases (e.g., Alzheimer’s Disease), we assume that the intensities
of the registered voxels smoothly change. In the following section, we describe the
algorithm in detail.

2. METHOD
We assume that there are T time-points in our 4D dataset. The 3D volume of each time-point
is denoted as St, t = 1, …, T, and are all registered to S1. The St’s have also been linearly
scaled such that their WM peaks are at unity. Each 3D volume St is made up of small p × q ×

r 3D patches, which we stack as 1D vectors , where i denotes the spatial location
of the center voxel of the patch and d is the dimension, d = pqr. In our HMM model, shown

in Fig. 2, each of the ’s has a hidden state, denoted as , which is the corresponding
unobserved normalized patch. Since the images are registered, we assume the hidden states

 follow a Markov process and the transition of the normalized

patches from (t − 1)th time-point  to the tth time-point  is an AR(1) process

(1)

where M is a spatially varying matrix denoting the parameter of the AR(1) process. 
denotes the time-varying noise, and is assumed to be a zero mean uncorrelated Gaussian
with diagonal covariance, I being the identity matrix.

The parameter of the AR(1) process, Mi, controls how much the previous state 

contributes to the next state . For computational simplicity, we assume that Mi is a

diagonal matrix, , If  is close to zero, then the process looks

like white noise. As  approaches 1, the tth state gets more contribution from the (t − 1)th

state, and the result is a smoothing effect of the intensities. One example is shown in Fig.

1(d), where the 1D intensities are best fitted with parameter m = 0.89. If , the
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intensities only vary according to the noise limit σε,i, which is expected for a voxel having
the same tissue class for all the time-points, e.g., a deep WM patch. However, without any
prior spatial knowledge on the values of , we assume a Gaussian distribution,

. This is based on the assumption that most often intensities remain
similar within a noise range, e.g. inside deep WM, but occasionally, as shown in a voxel
near ventricles (Fig. 1(a)) or near edges, they decrease in intensity over time, indicating a
change of tissue type at that location.

The observed patches are the outputs of the HMM and they are assumed to be obtained from
the hidden states as

(2)

Here, we have also assumed the errors in obtaining  from  to be uncorrelated zero

mean Gaussian with variance . Using the conditional independence of x(1⋯T) and y(1⋯T),
as often assumed in HMM, we can write

(3)

The collection of all unknown parameters are denoted as . Now the

parameter set Θ and the hidden states  are estimated by a maximum-a-posteriori

(MAP) estimation criteria by maximizing the posterior probability of  as

(4)

We simplify the conditional probability of the observed data  using
Eqn. 3 as

(5)

The conditional independence of ’s, as given in Eqn. 3, are used to simplify

(6)
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Eqn. 4 can now be expanded using Eqns. 5 and 6 and also using the prior distribution (P(Θ))

of , as assumed earlier. Assuming i.i.d. nature of patches and discarding some
normalization constants, the posterior probability becomes

(7)

Maximizing the posterior with respect to Θ yields the following update equations

(8)

We use a coordinate-descent type optimization to solve Eqn. 8 until the difference in the
posterior (Eqn. 7) between successive iterations is sufficiently small. After Eqn. 8 reaches

convergence, the center voxel of  replaced with the center voxel of .

3. RESULTS
We use a tissue atrophy simulation method15 on a real T1-w image to simulate temporal
data. Ventricles of the subject image are deformed using six different atrophy radii to
simulate the normal aging at six different time-points. Then the images are normalized using
this method and the hard segmentations16 are compared with the ground truth, obtained from
the simulation. We calculated Dice coefficients between the hard segmentations of un-
normalized and normalized images with the truth. A paired t-test shows that the Dice
coefficients are not statistically different (p-value = 0.014), indicating that normalization
does not deteriorate the stability of the segmentation when the segmentation is very close to
the truth.

We used seven subjects from the BLSA dataset2 to show the segmentation stability. Each
subject has 8–11 time-points. Each subject is scanned in the same GE 1.5T scanner using an
SPGR imaging sequence, giving 256 × 256 × 199 images with 0.9375 × 0.9375 × 1.5mm3

resolution. For one subject, four time points and the corresponding normalized images are
shown in Fig. 3. We compare our method with histogram matching and a landmark based
histogram transformation method5. For these two algorithms, we used each subject’s first
time-point as the reference histogram and matched the consecutive time-points to the first
one using automatically chosen landmarks.

To show the improvement in segmentation stability, we segment each image with a fuzzy c-
means based algorithm16. The relative volumes of cerebro-spinal fluid (CSF), gray matter
(GM), and WM are obtained from the hard segmentations of the original, histogram
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matched, landmark based normalized and our 4D normalized volumes, plotted for one
subject in Fig. 3. Clearly, 4D normalized volumes are more stable over time. Since these are
normal subjects, the gradual increase in WM volume and the decrease in GM volume are
expected and reported previously1. Although the original unnormalized volumes as well as
histogram matching produces a similar trend, our normalization introduces stability in the
segmentation. This is also reflected quantitatively in Table 1, where the average coefficient
of determination R2 from linear fitting from the volumes are shown. Larger R2 for
normalized volumes indicate smoother rates of change. R2 values of the fits for longitudinal
normalization are significantly larger (p-value < 0.05) than the original and two other
normalization algorithms, except for the CSF on the landmark based method. This can be
attributed to the high variability of CSF segmentation in the SPGR images. Average
coefficient of variations (CV) are also shown in Table 2, where smaller CV indicates more
stability in segmentation. Our method outperforms the others with significantly smaller CV
for all the tissues.

4. CONCLUSION
We have described a generative model to normalize intensities of a 4D longitudinal normal
dataset that can be used as a pre-processing step to any segmentation algorithm. Instead of
using intensities, we use patches as features to model an HMM to obtain an estimate of the
normalized intensities via a MAP estimation framework. Although this method currently
assumes that the time-points are equally spaced, future work would overcome this
limitation.
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Figure 1.
(a)-(c) shows the first, fourth, and sixth year of a longitudinal dataset2. Original intensities
of a voxel, the blue box in (a), are plotted in (d) as a blue line, while an AR(1) fit of the
intensities is shown as a red line.
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Figure 2.

A hidden Markov model with normalized patches  as hidden states, while the observed

patches ’s are the output. The transition from the (t − 1)th time-point to the tth time-point
is an AR(1) process.
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Figure 3.
Four time-points (1st, 3rd, 5th and 9th) of a subject and the corresponding normalized images
are shown.
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Figure 4.
(a) Three time-points (1st, 4th and 9th) of a subject and the corresponding normalized images
are shown. (b) After segmentation,16 CSF, GM and WM relative volumes are plotted w.r.t.
age.
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Table 1

The table shows the (mean ± std) R2 of linear fits of the tissue volumes obtained from hard segmentations of
the original image and also the hard segmentations based on three normalization approaches: histogram
matched; landmark based5; and our approach (4D Longitudinal). The R2 values are based on an average of
seven subjects.

Original Hist. Matched Landmark Based Longitudinal

CSF 0.362 ± 0.361 0.045 ± 0.027 0.710 ± 0.280 0.724 ± 0.380†

GM 0.819 ± 0.067 0.068 ± 0.079 0.630 ± 0.183 0.930 ± 0.037*

WM 0.578 ± 0.180 0.075 ± 0.117 0.379 ± 0.248 0.903 ± 0.019*

*
Indicates statistically significantly larger than the other three (p-value < 0.05).

†
Indicates statistically significantly larger than histogram matching and original (p-value < 0.05).
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Table 2

The table shows the (mean ± std) coefficient of variations of the tissue volumes obtained from hard
segmentations of the original image and also the hard segmentations based on three normalization approaches:
histogram matched; landmark based5; and our approach (4D Longitudinal). The values are based on an
average of seven subjects.

Original Hist. Matched Landmark Based Longitudinal

CSF 0.028 ± 0.012 0.068 ± 0.019 0.060 ± 0.020 0.023 ± 0.011*

GM 0.034 ± 0.013 0.030 ± 0.016 0.026 ± 0.014 0.024 ± 0.010†

WM 0.034 ± 0.011 0.047 ± 0.019 0.024 ± 0.017 0.014 ± 0.013*

*
Indicates statistically significantly larger than the other three (p-value < 0.05).

†
Indicates statistically significantly larger than histogram matching and original (p-value < 0.05).

Proc SPIE. Author manuscript; available in PMC 2013 December 30.


