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ABSTRACT 
 
Measuring the internal muscular motion and deformation of 
the tongue during natural human speech is of high interest 
to head and neck surgeons and speech language pathologists. 
A pipeline for calculating 3D tongue motion from dynamic 
cine and tagged Magnetic Resonance (MR) images during 
speech has been developed. This paper presents the result of 
a complete analysis of eleven subjects’ (seven normal 
controls and four glossectomy patients) global tongue 
motion during speech obtained through MR imaging and 
processed through the tongue motion analysis pipeline. The 
data is regularized into the same framework for comparison. 
A generalized two-step principal component analysis is 
used to show the major difference between patients’ and 
controls’ tongue motions. A test is performed to 
demonstrate the ability of this process to distinguish patient 
data from control data and to show the potential power of 
quantitative analysis that the tongue motion pipeline can 
achieve. 
 

Index Terms— Tongue, motion, glossectomy, MRI, 
tagged, HARP, IDEA algorithm, PCA 
 

1. INTRODUCTION 
 
The study of tongue muscle motion after surgical resection 
for cancer treatment or sleep apnea tongue reduction 
(glossectomy) is an important topic, because the tongue 
function may be seriously impeded for these patients. 
Studies of tongue motion differences in normal controls and 
post-glossectomy patients can be used to provide guidelines 
for surgery protocols. A pipeline of algorithms has been 
developed to extract and track the motion of internal tongue 
tissue points in 3D through a sequence of time frames 
during speech [1-2]. Principal component analysis (PCA) 
can be used to distinguish and elucidate motion patterns in 
the two subject groups. In the experiments carried out for 
this work, we analyze magnetic resonance (MR) images 
taken at 26 frames per second. The speech task is “a souk,” 
a tightly controlled task that uses a forward tongue motion 
from /a/ to /s/ and an upward motion from /s/ to /k/. 

The human tongue is a highly deformable object with 
the ability of performing fast and precise movements. The 
tongue is volume preserving and has a complex orthogonal 
muscle architecture due to its muscular hydrostat properties 
[3]. The measurement of tongue motion, although difficult, 
can be achieved by tagged MR imaging, which places 
magnetic “tags” in tissues that move and deform together 
with the tongue and record all motion information [4]. A 
sequence of cine MR images acquired at the same positions 
and same time frames during additional repetitions of the 
speaking cycle can provide high quality tongue edges for 
segmenting the tongue region. These data are processed 
using the tongue motion analysis pipeline [2], which uses 
the harmonic phase (HARP) algorithm to extract the 2D in-
plane motion [5], the random walker algorithm to segment 
cine MR images to provide appropriate 2D tongue masks 
[6], a topology-preserving geometric deformable model 
(TGDM) to shrink-wrap a 3D tongue volume mask [7] and 
finally an incompressible deformation estimation algorithm 
(IDEA) to interpolate a dense 3D motion field for each time 
frame [8]. Such a field as the output of the tongue motion 
analysis pipeline possesses a few desired properties: (1) The 
motion field is 3D and its voxel resolution is optimized to 
the in-plane pixel resolution in all three directions. (2) The 
motion field preserves incompressibility which, as 
mentioned above, is one of the most important physical 
properties of the tongue. As a result, it can be considered as 
a proper representation of the real tongue motion during 
speech (Figure 1). 

 

 
Figure 1. (a) 3D tongue mask and its division of eight VOIs. 
(b) 3D displacement field of a control at maximum /s/. The 
colormap follows conventional DTI scheme. (c) 3D 
displacement field of a patient at maximum /s/. 
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Although we are able to obtain and process each 
subject’s speech motion data, it is still challenging to 
compare them quantitatively. The first major obstacle is the 
inconsistent speaking rates across subjects, and the default 
computation of all displacements relative to the first time 
frame. Displacement fields relative to maximum /a/ need to 
be computed for each subject. And maximum /s/ and /k/ as 
two critical frames need to happen at the same time frames 
for each subject. Achieving this goal involves the inversion 
of discrete 3D vector fields and is not as obvious as one 
would think intuitively (flipping the sign). The second 
obstacle is that, although the patients have impeded speech 
function, they still manage to finish the task of speaking “a 
souk”. Thus the PCA, which extracts the general motion 
pattern and major variance, has difficulty revealing the 
patients’ unique, but subtle, pattern variations. 

In this paper, we present the solutions we use to address 
these two problems and achieve a final statistical motion 
analysis and subject comparison. We evaluate this process 
on the dataset of seven controls and four patients. In the 
current stage, we focus our attention only on the average 
motion of the tongue at every time frame. It demonstrates 
the efficacy of the process and opens up the possibilities of 
future work on more local tongue motion quantity analysis. 
 

2. METHODS 
 
2.1. Computing the motion fields from a new reference 
frame 
 
For each subject, the pipeline produces a sequence of 26 3D 
volumetric vector fields {𝑫1,1(𝑿),𝑫1,2(𝑿), … ,𝑫1,26(𝑿)} . 
Each vector field 𝑫1,𝑡(𝑿), as visualized in Figure 1(b) and 
1(c), shows the displacement from time frame 1 (default 
reference frame) to the current time frame 𝑡. 𝑿 is the 3D 
grid located at time frame 1. As a result, if we consider the 
vector field 𝑫1𝑡(𝑿) as arrows, they grow from grid 𝑿 and 
end up pointing at the non-grid positions (the tissue point 
locations) in the current frame.  

The first time frame is normally a pre-speech relaxed 
position of the tongue. For speech motion, it is useful to 
observe the motion from /a/ forward into /s/ and then 
upward into /k/. More importantly, since every person’s 
tongue relaxed position is different and unpredictable, the 
mid-central vowel /a/ has to be used as the common 
reference frame to compare motion across subjects [9]. 
Therefore we are forced to switch the reference frame to the 
maximum /a/. 

Suppose maximum /a/ happens at time frame 𝑟 and the 
current frame is 𝑡 . Related motion fields are 𝑫1𝑟(𝑿)  and 
𝑫1𝑡(𝑿). Straightforwardly, if we are able to find the inverse 
field of 𝑫1𝑟(𝑿) , namely 𝑫𝑟1(𝑿𝑟) , the following field is 
what we want: 
 𝑫𝑟𝑡(𝑿𝑟) =  𝑫1𝑡�𝑿𝑟 + 𝑫𝑟1(𝑿𝑟)� (1) 
Note that we have changed the symbol  𝑿 to 𝑿𝑟  because it is 
now the grid on the new reference 𝑟, instead of 1. 

Because the field 𝑫1𝑟(𝑿) is discrete, we only know that 
at time frame 𝑟 , 𝑫𝑟1�𝑿 + 𝑫1𝑟(𝑿)� = −𝑫1𝑟(𝑿) . To find 
𝑫𝑟1’s value at 𝑿𝑟 , we apply a fixed-point method [10] by 
iteratively solving the following equation: 
 𝑫𝑟1

(𝑛)(𝑿𝑟) = −𝑫1𝑟 �𝑿𝑟 + 𝑫𝑟1
(𝑛−1)(𝑿𝑟)� (2) 

Substituting the converged result of Equation (2) into 
Equation (1) and repeating for every time frame, we get a 
new sequence of displacement fields 
{𝑫𝑟,1(𝑿),𝑫𝑟,2(𝑿), … ,𝑫𝑟,26(𝑿)} for every subject starting at 
time frame /a/. 
 
2.2. Two-step principal component analysis for tongue 
motion evaluation 
 
Multi-subject PCA of the tongue motion requires a certain 
quantity of the motion to be in the same frame of reference. 
We have made the displacement field with respect to the 
same reference frame. Still, for different subjects, their 
tongue shapes (reflected by 3D tongue masks) vary 
extensively. In order to compare them, we need a common 
mask region (or a common tongue atlas space). For current 
development of this work, we consider the simplest 
approach – we divide the tongue into eight volumes of 
interests (VOIs) (see Figure 1(a)). Inside each VOI, we 
average the motion field to get one vector which represents 
its general motion, denoted by {𝒅𝑟,1,𝒅𝑟,2, … ,𝒅𝑟,26}𝑣, where 
𝑣 is the VOI number from 1 to 8. 

Furthermore, since we are only interested in the motion 
from /a/ to /s/ to /k/, we create a common time interval by 
taking the average motion between these two periods, and 
using cubic spline (denoted as “interp” in Equation (3)) to 
interpolate them into 17 time frames for all subjects, where 
/a/ is time-frame 1, /s/ is 7, and /k/ is 17. Denoting the time 
frame number of maximum /a/, /s/ and /k/ as 𝑎, 𝑠 and 𝑘, we 
have 
 {𝒅�1,1, … ,𝒅�1,7, … ,𝒅�1,17}𝑣 = interp{𝒅𝑎,𝑎, … ,𝒅𝑎,𝑠 , … ,𝒅𝑎,𝑘}𝑣  (3) 
For any VOI, 𝒅�1,𝑡 is the interpolated mean motion we are 
interested in, which puts all subjects’ motions in the same 
framework and ready for PCA (Figure 2). Labeling the 
subject number by 𝑚, we stack the mean motion of all 17 
frames as one vector 
 𝒅�𝑚 = [𝒅�1,1

𝑚 ; … ;𝒅�1,7
𝑚 ; … ;𝒅�1,17

𝑚 ] (4) 
which lies in a 3 × 17 = 51 dimensional space. 𝒅�𝑚  is the 
representation of the general motion in this VOI of subject 
𝑚 when performing the entire speech task of “a souk”. Note 
that by doing so we have avoided treating each time frame 
independently. Instead, we consider the entire task as an 
evaluation of the subject’s speech function. 
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Figure 2. Average motion across all time frames from /a/ to 
/k/ for all subjects in VOI-1. Vertical line is at /s/. 
Horizontal line separates patients (top) from controls. 
 

Suppose the number of controls is 𝐶 and the number of 
patients is 𝑃. PCA of controls requires (1) subtract the mean 
of control motions 𝒔�𝑖 = 𝒅�𝑖 − mean�𝒅�1, … ,𝒅�𝑖 , … ,𝒅�𝐶�, 𝑖 =
1 …𝐶 , (2) compute the covariance matrix 𝐶𝑂𝑉 =
[𝒔�1, … , 𝒔�𝑖 , … , 𝒔�𝐶][𝒔�1, … , 𝒔�𝑖, … , 𝒔�𝐶]𝑇  and (3) find the eigen-
decomposition of 𝐶𝑂𝑉  to get 𝐶 − 1  principal directions 
{𝒆1, … , 𝒆𝐶−1}  and principal values (PCs) {𝜆1, … , 𝜆𝐶−1} . 
After projecting the subjects’ motion onto these directions, 
we have observed the patients are hardly distinguished from 
test controls in their PC scores. 

Therefore, we introduce another PCA step after 
performing the first PCA on controls. Observing the fact 
that the PC space has a rank of 𝐶 − 1 , the remaining 
51 − (𝐶 − 1)  “principal directions” are only vectors 
generated by any feasible orthogonalization method (e.g., 
the Gram-Schmidt process). And this remaining 51 − (𝐶 −
1) dimensional space contains only the motion information 
of the patients, because the controls project a zero PC score 
in this space. As a result, we take the patient motion labeled 
by 𝑗, 𝑗 = 1 …𝑃, subtract the control mean and compute the 
patients’ “normal” motion component, namely 
 𝒔�𝑗 = 𝒅�𝑗 − mean{𝒅�1, … ,𝒅�𝑖 , … ,𝒅�𝐶} (5) 
 𝒔�𝑛𝑜𝑟𝑚𝑎𝑙

𝑗 = (𝒔�𝑗)𝑇𝒆1𝜆1 + ⋯+ (𝒔�𝑗)𝑇𝒆𝐶−1𝜆𝐶−1 (6) 
The remaining motion is considered abnormal and is given 
by 
 𝒔�𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙

𝑗 = 𝒔�𝑗 − 𝒔�𝑛𝑜𝑟𝑚𝑎𝑙
𝑗  (7) 

We compute the covariance matrix of 𝒔�𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙
𝑗  and find its 

eigen-decomposition to get 𝑃 − 1 more vectors as the PC 
directions for abnormal motion {𝒖1, … ,𝒖𝑃−1} . Taken 
together, {𝒆1, … , 𝒆𝐶−1,𝒖1, … ,𝒖𝑃−1} form a two-step PCA to 
represent the general normal vs. abnormal motions. 

 
3. RESULTS 

 
We evaluated the process on seven controls and four 
patients. Due to the limited amount of data, we doubled the 
number of subjects by only using the left half of the tongue 
and mirroring the right half to the left. This is reasonable 
because normal tongue motion is generally symmetric on 
the left and right side. Since the patients have only one side 
of the tongue that has received glossectomy, we distinguish 
this situation by “patient glossectomy side (PGS)” and 
“patient normal side (PNS)”, which yields 14 controls, 4 
PGSs and 4 PNSs on VOIs 1-4 (Figure 1(a)). 

We took 10 of the controls to build the normal PC 
space and the 4 PGSs (re-labeled from 9 to 12) to build the 
abnormal PC space. Then we tested the remaining 4 
controls (re-labeled from 1 to 4) and 4 PNSs (re-labeled 
from 5 to 8) for evaluation.  

The principal directions for VOI-1 are shown in Figure 
3. The first few normal PCs (top three) show mostly 
front/back and up/down motion. The first abnormal PC 
(topmost) is mostly left/right. The PC weights are also listed. 

 

 
Figure 3. All PC directions (9 normal and 3 abnormal) of 
VOI-1. Vertical line identifies the position of /s/.  
 
Then we projected each subject’s motion onto these 12 
directions to get its PC energy (projection score) in which 
we were interested in the abnormal ones (10th, 11th and 12th 
score). We plot these three scores for all subjects and all 
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VOIs in a 3D space in Figure 4. While the controls are all at 
origin having zero energy on the abnormal PCs, PGSs and 
PNSs have a wider spread than control tests. Lastly, we 
repeated the entire experiment with all possible 
combinations of training and testing data ( �1410� = 1001 
cases for each VOI), obtained the three abnormal PC scores 
and averaged them in each case. The results of all subjects 
and all VOIs in all cases are shown in Figure 5. Control test 
data has lower and more consistent abnormal energy when 
comparing to PNSs, and they both are lower than PGSs in 
general. Especially, in all VOIs, the mean of the control test 
abnormal energy is lower than both PGS and PNS in 3829 
out of 4004 cases. We conclude that despite the small 
amount of training data, this analysis is capable of 
distinguishing normal motion from patient motion ( p <
0.05). 
 

 
Figure 4. Abnormal PC energy space plot for all subjects in 
all four VOIs with origin as control, dot as control test, 
circle as PGS and cross as PNS. 
 

 
Figure 5. Boxplot of average abnormal PC scores of all 
subjects and all four VOIs in 1001 experiments. The center 
bar in a box indicates median and the circle indicates mean. 

 
4. CONCLUSION 

 
In this work, we described the process of acquiring and 
estimating 3D motion of the human tongue during speech. 

We provided the details for achieving consensus statistical 
analysis by using PCA, and showed that the analysis is 
capable of distinguishing control motion from patient 
motion. Although a number of limitations such as 
insufficient subject number and simple volume averaging 
may provide obstacles to the accuracy of the method, it 
shows much potential the tongue motion estimation pipeline 
can achieve for motion quantity analysis. 
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