
Automated Cerebellar Lobule Segmentation
using Graph Cuts

Zhen Yang1, John A. Bogovic2, Chuyang Ye1, Aaron Carass1,
Sarah Ying3, and Jerry L. Prince1

1Johns Hopkins University, Baltimore, USA
2Howard Hughes Medical Institute, Virginia, USA

3Johns Hopkins School of Medicine, Baltimore, USA

Abstract. The cerebellum is important in coordinating many vital func-
tions including speech, motion, and eye movement. Accurate delineation
of sub-regions of the cerebellum, into cerebellar lobules, is needed for
studying the region specific decline in function from cerebellar pathol-
ogy. In this work, we present an automated cerebellar lobule segmenta-
tion method using graph cuts, with a region-based term enforcing con-
sistency with multi-atlas labeling results, and a boundary term defined
by membership output from a random forest classifier. The region-based
term ensures that the location of the lobules conforms to the anatomical
convention encoded in the training subjects. The boundary term ensures
that the segmentation follows the fine details of lobule boundaries in the
subject image. We compared our method to both manual segmentations
and a state-of-the-art multi-atlas label fusion technique.

1 Introduction

The cerebellum is a piece of the central nervous system that plays an important
role in motor control, as well as being involved in flight or fight responses, and
for its involvement in cognitive functions [1]. Similar to the cerebrum, the cere-
bellum function is highly specialized by location. It has also been reported that
cerebellar disease and degeneration often target specific regions of the cerebellum
and are associated with specific patterns of symptoms [2]. To study these region
specific patterns, accurate estimates of the size and shape of the sub-regions of
the cerebellum are required, which depends on an efficient delineation of these
sub-regions. Like the cerebrum, the cerebellum is divided into two hemispheres
with a narrow midline area known as the vermis. The cerebellar cortex consists
of a thin sheet of convoluted gray matter (GM) wrapped around white mat-
ter (WM) branches emanating from a central mass of white matter called the
corpus medullare (CM). Groups of the white matter branches are called lob-
ules which are numbered using roman numerals from I to X, some of which are
themselves subdivided such as in the case of Lobule VII. Groups of lobules are
refereed to as lobes, for example Lobules I through V are the Anterior Lobe, and
the boundary between lobes is known as a fissure. Fig. 1 provides an illustration
of the cerebellar lobules, as well as magnetic resonance (MR) images of a control



2

subject and a patient overlaid with cerebellar lobule labels. Note the significant
gray matter atrophy in the patient.

Fig. 1. Figures showing (a) an illustration of the cerebellar vermis and lobules (one
hemisphere), (b) and (c) MR images of a control subject and a patient overlaid with
cerebellar lobule labels.

There has been work on whole cerebellum estimation [3, 4] and identifying
cerebellar GM and WM [5]. Although there is great clinical and research utility
in labeling the cerebellar lobules, there has been little progress in the automatic
segmentation of these regions. Bogovic et al. [6] presented a preliminary demon-
stration of automatic cerebellum parcellation using a multi-object geometric
deformable model but the result was a coarse parcellation of just the lobes and
contained no quantitative validation. The state-of-the-art cerebellar lobules seg-
mentation is based on the SUIT atlas of Diedrichsen et al. [7] registered to the
subject brain, which may be further improved by using multiple atlases and label
fusion techniques [8, 9]. The accuracy of multi-atlas registration based algorithms
is limited by the morphological difference between the atlas and subject and the
imperfectness of registration. Undesired errors are often made at the boundaries
during label fusion because of the lack of constraints on the boundary such as in
deformable models [10, 11] and graph cuts [12, 13]. Pierson et al. [14] presented
a semi-automated method to segment the cerebellar lobules, though effective it
is time consuming which is an undesirable trait.

In this work, we present an automated cerebellar lobule segmentation method
using graph cuts, with a region-based term enforcing consistency with multi-
atlas labeling results, and a boundary term defined by membership output from
a random forest classifier. The region-based term ensures that the location of the
lobules conforms to the anatomical convention encoded in the training subjects.
The boundary term encourages the segmentation to follow the fine details of the
fissures in the subject image. The automated segmentation method produces
a 28 label cerebellar parcellation. We validated the algorithm using both con-
trol subjects and patients with a cerebellar disease, known as cerebellar ataxia.
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Comparison with a multi-atlas label fusion method demonstrates the superior
performance of the proposed method.

2 Graph Cuts Segmentation

Graph cut methods [12, 13] are widely used in various image segmentation tasks
for its robustness and accuracy. It casts the energy-based image segmentation
problem in a graph structure and finds the optimal segmentation by efficient min-
cut algorithms. In many cases, the energy function includes a region-based term,
a boundary term and a label cost term, evaluated for a pixel label assignment
A. A is a function that maps a pixel x to a label A(x) ∈ {1, 2, . . .K}, where K is
the number of labels. The region-based term, R(x, A(x)), evaluates the penalty
for assigning label A(x) to a pixel x. The boundary term, B(x,y), evaluates the
penalty for assigning a pair of neighboring pixels (x,y) with different labels. The
energy function can be written as:

E(A) =

Region−based term︷ ︸︸ ︷∑
x

R(x, A(x)) +

Boundary term︷ ︸︸ ︷
λ

∑
(x,y) ∈ Γ
A(x) 6= A(y)

B(x,y), (1)

where Γ is all unordered, neighborhood pixel pairs. λ ≥ 0 is the weight for
relative influence of the two terms.

Fig. 2 shows an example of undirected graph construction from a 2D image.
Each pixel in the image is viewed as a node in a graph, edges are formed between
neighboring nodes. In addition to the node representing pixels, which we call
pixel nodes, K terminal nodes are constructed to represent the K labels that to
be assigned to the pixels. Edges are also formed between the terminal nodes and
all other non-terminal nodes. The energy function for the segmentation problem
is encoded in the edge weights of the graph. The region-based term is encoded
in the edge weights between terminal nodes and pixel nodes, representing the
cost of assigning a label to a pixel. The boundary term is encoded in the edge
weights between neighboring pixels, indicating how likely the cut will go between
the two pixels. Often the weights between neighboring pixels express how alike
two pixels are, given some measure of similarity, as well as the distance between
them.

Different cerebellar lobules have very similar intensities, and each consists
of inhomogeneous intensities. This makes the lobule segmentation task rather
different and more challenging than many graph cuts based segmentation sce-
narios. Lobules can only be identified by their relative position around the CM
and their boundary separated by fissures. To incorporate these observations, in
our graph cut formulation, the region-based term R(x, A(x)) is derived from a
multi-atlas fusion result, which serves as a coarse parcellation of the lobules. The
boundary term B(x,y) is derived from the boundary membership output by a
trained boundary classifier. The final segmentation, which is the min-cut solu-
tion to the graph, will then conform to the anatomical convention encoded in the
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Fig. 2. Graph cuts formulation for the segmentation of a 3 × 3 image into two labels.
Edge thickness corresponds to the associated edge weight. Images from Boykov et
al. [12].

training subjects, and also follow the fine details of lobule boundaries in the sub-
ject image. In the next two sections, we will describe in detail the region-based
term and the boundary term designed in our graph cut energy function.

3 Region-based Term from Multi-atlas Labeling

Multi-atlas based methods have been widely used in segmenting multiple struc-
tures in medical images. The idea is to register the images of a set of training
subjects to the image of the test subject, and transfer the label of each training
subject to the coordinate system of the test subject. Given the transferred labels
from the training subjects, segmentation is formulated as a label fusion problem.
Voting label fusion strategies, e.g. majority vote, have gained great popularity
for its simplicity and robust results. Recently, weighted voting using global, local,
semi-local and non-local intensity similarities between the atlases and the target
have demonstrated significant improvements in segmentation accuracy [15–17].
Furthermore, statistical fusion strategies have also shown great potential by in-
tegrating a model of rater behavior, e.g. the STAPLE algorithm [8] and its many
variants [18, 19]. Asman [20] proposed non-local STAPLE (NL-STAPLE), which
merges the STAPLE framework with a non-local means perspective and demon-
strates significant improvements on segmentation results.

In our work, we use NL-STAPLE to derive the region-based term in graph-
cuts. NL-STAPLE models the registered atlases as collections of volumetric
patches containing both intensity and label information. It uses the non-local
criteria [17, 21] to resolve imperfect correspondence from registration. In the
registration process, the intensity image is masked by a smoothed version of the
cerebellum mask generated by FreeSurfer. The masked intensity image of each
training subject is registered to the test subject, and the label of the training
subject is transferred to the coordinate system of the test image. NL-STAPLE
is then used to generate a segmentation, represented by Am(x). We design the
region-based term in Eq. 1 as follows to penalize label assignment different from
Am:

R(x, A(x)) = min
y
‖x− y‖ , s.t. Am(y) = A(x). (2)
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It penalizes a pixel x labeled as A(x) according to its distance to the region
labeled A(x) in in the NL-STAPLE segmentation result.

4 Boundary Classification

In order to encourage the cuts to be placed along the boundaries of different
lobules, it is necessary to distinguish the boundaries of lobules from the rest
part of the image, e.g., the inside part of the cerebellum and the background.
Ideally an indicator function that equals 1 on the boundaries and 0 otherwise
would be desirable. However, it is hard to explicitly model the boundary feature
statistics, due to the different boundary appearance between different lobules,
and of boundaries between CM and lobules. For example, most of the neigh-
boring lobules are separated by fissures, which can be identified by a low image
intensity and high image gradient. However the boundaries between CM and the
lobules do not have distinguishable intensity features. In our work, we trained a
classifier to detect the boundaries between any pair of structures. The features
we used include: 1) image intensity after histogram matching; 2) magnitude of
gradient; 3) the trace and determinant of the Hessian matrix; 4) the relative
spatial coordinate of the voxel to the centroid of the cerebellar white matter
mask estimated by FreeSurfer; 5) signed distance to CM. The CM region in the
multi-atlas labeling result is used to compute the signed distance function.

A multi-class random forest [22] classifier is used to classify the image voxels
into three classes—boundary, inside cerebellum and outside cerebellum—and es-
timate the membership of each class. Random forests consist of a set of bootstrap
aggregated decision trees and has been shown to achieve robust and accurate
classification while avoiding over-fitting. We trained an ensemble of 500 decision
trees, with each decision node considering a random subset of 2 of the 8 total
input features. The probability that the observation belongs to a particular class
can be computed as:

q(c|u(x)) =
1

T

T∑
i=1

ti(u(x); c), c ∈ {b=boundary, i=inside, o=outside}, (3)

where u(x) is the feature vector at voxel x. The quantity ti(u(x); c) ∈ [0, 1] gives
the probability for class c predicted by the ith decision tree.

In the training stage, we create a set of training data T from the train-
ing subjects. Each observation in the training data consists of an ordered pair
(u(x), c(x)). For each training subject, S voxels are sampled for each class, i.e.
on the boundary, inside and outside the cerebellum. We chose S = 1000. Fig. 3
shows the classification result on a test image and the probability of boundary
class.

The boundary term in Eq.(1) is designed as

B(x,y) = 1− q(b|u(x)) + q(b|u(y))

2
, (4)

so that the optimal cuts will tend to sever the edge connecting pixels both having
high boundary class memberships.
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Fig. 3. The output of the trained classifier on a test image. (a) Classification result.
Green: boundary; red: inside cerebellum; blue: outside cerebellum. (b) Probability of
boundary class.

5 Graph Cut Optimization

The α-expansion algorithm [23] has been widely used for multi-label graph cut
optimization due to its generality, effectiveness, and speed. The main idea of
the α-expansion is to successively segment all α and non-α-pixels with graph
cuts and the algorithm will change the value of α at each iteration. The algo-
rithm will iterate through each possible label for α until the label assignments
converges. We use the multi-label energy optimization library available online
http://vision.csd.uwo.ca/code/. We chose the weight λ = 2 in Eq. (1) em-
pirically according the observations in the experiment.

6 Results

A cohort of 15 subjects (9 females) is used for training and validation of the pro-
posed algorithm, with ages ranging from 30 to 71 years. Nine of the subjects have
been diagnosed with a spinocerebellar ataxia type 6, which is a genetic cerebellar
disease. The input images for segmentation are magnetization-prepared rapid
gradient echo (MPRAGE) acquired using a 3T MR scanner (Intera, Phillips
Medical Systems, Netherlands). The cerebellar lobules of these subjects are man-
ually labeled by a human expert rater, and used as ground-truth for training and
validation of the proposed method. Leave-one-out experiments are carried out
on the data set, using each subject as test subject and the remaining 14 subjects
as training subjects in multi-atlas labeling procedure and to train the classifier
for lobule boundaries.

Fig. 4 shows example results of lobule parcellation generated by the algo-
rithm. The segmentations generated by both the NL-STAPLE and the proposed
method resemble the manual delineation well. The proposed method shows im-
provements at lobule boundaries, see the regions in the white box. We also
quantitatively evaluate the segmentation results. First we compute the portion
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of voxels that are correctly labeled for the whole cerebellum:

p =
1

|M |
∑
x∈M

δ(A(x)−A0(x)).

where M is the set of voxels that labeld non-background in either the automated
method or the manual delineation. Table 1 list the portion thus computed for
each subject in the leave-one-out experiment for both NL-STAPLE and graph
cuts method. The paired Wilcoxon test on the portion numbers produced by
NL-STAPLE and Graph cuts shows that Graph cuts improved the segmena-
tion results over the NS-STAPLE results with a p-value of 0.03. The two CB
patients, subject 2 and 3, have the lowest portion for correctly labeled voxels.
The significant atrophy in cerebellar gray matter affects both the multi-atlas
registration and boundary training in an undesirable way. Second, we examine
the overlap between the true and automatically obtained labels using the Dice
similarity coefficient (DSC). Fig. 5 shows the statistics of the DSC between the
manual and automatic labels. We observe that the proposed method improves
the NL-STAPLE results in almost all the lobules, especially for the vermis part,
e.g. VII vermis, VIII vermis and IX vermis.

Table 1. The portion of voxels that are correctly labeled for the whole cerebellum.
For the diagnosis, CTRL stands for normal controls, SCA6 for spinocerebellar ataxia
type 6, and CB for people who have symptoms of cerebellar dysfunction but no genetic
diagnosis or other diagnosis.

Subject No. 1 2 3 4 5 6 7 8

Diagnosis SCA6 CB CB SCA6 CTRL CB CTRL CTRL
NL-STAPLE 0.768 0.607 0.564 0.793 0.733 0.796 0.801 0.785
Graph cuts 0.777 0.614 0.580 0.795 0.739 0.788 0.802 0.786

Subject No. 9 10 11 12 13 14 15

Diagnosis SCA6 SCA6 CTRL Unknown SCA6 SCA6 CTRL
NL-STAPLE 0.789 0.689 0.741 0.799 0.695 0.707 0.790
Graph cuts 0.794 0.745 0.746 0.796 0.693 0.710 0.803

7 Conclusion

We propose an automated cerebellar lobule segmentation method using graph
cuts, with a region-based term enforcing consistency with multi-atlas labeling
results, and a boundary term defined by membership output from a random
forest classifier. The region-based term ensures that the location of the lobules
conforms to the anatomical convention encoded in the training subjects. The
boundary term ensures that the segmentation follow the fine details of lobule
boundaries in the subject image. Comparison with the state-of-the-art multi-
atlas labeling method demonstrate the superior performance of the proposed



8

Fig. 4. Two coronal slices from two subjects, with lobule segmentation overlaid with
intensity image.

Fig. 5. Box plots Dice similarity coefficients.

method. Future work would involve adding atlas selection strategy in the multi-
atlas labeling process, so that the subject with significant atrophy can be better
registered and segmented.
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