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Abstract: Optical coherence tomography (OCT) is the de facto standard
imaging modality for ophthalmological assessment of retinal eye disease,
and is of increasing importance in the study of neurological disorders.
Quantification of the thicknesses of various retinal layers within the macular
cube provides unique diagnostic insights for many diseases, but the capability
for automatic segmentation and quantification remains quite limited. While
manual segmentation has been used for many scientific studies, it is
extremely time consuming and is subject to intra- and inter-rater variation.
This paper presents a new computational domain, referred to as flat space,
and a segmentation method for specific retinal layers in the macular cube
using a recently developed deformable model approach for multiple objects.
The framework maintains object relationships and topology while preventing
overlaps and gaps. The algorithm segments eight retinal layers over the
whole macular cube, where each boundary is defined with subvoxel precision.
Evaluation of the method on single-eye OCT scans from 37 subjects, each
with manual ground truth, shows improvement over a state-of-the-art method.
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1. Introduction

Optical coherence tomography (OCT) is an interferometric technique that detects reflected or
back-scattered light from tissue. An OCT system probes the retina with a beam of light and lets
the reflection interfere with a reference beam originating from the same light source. The resultant
interfered signal describes the reflectivity profile along the beam axis; this one-dimensional depth
scan is referred to as an A-scan. Multiple adjacent A-scans are used to create two-dimensional (B-
scans) and three-dimensional image volumes. OCT has allowed for in vivo microscopic imaging
of the human retina, enabling the unprecedented study of ocular diseases. OCT as a modality has
provided increased access to the inner workings of the retinal substructures, allowing for detailed
cohort analyses of multiple sclerosis (MS) with respect to the macular retinal layers [1–3]. MS
is an inflammatory demyelinating disorder of the central nervous system, with neuronal loss
in the retina being a primary vector of MS, which is independent of any axonal injury [2, 4].
Though unmyelinated, it is very common to observe inflammation and neuronal loss in the
retina of MS patients. The retinal nerve fiber (RNFL) principally consists of axons of ganglion
cell neurons, with these axons joining together at the optic disc to form the optic nerve. MS
is clinically manifested in the optic nerves as optic neuritis, it can also be observed through
the degeneration of axons in the optic nerves, resulting in the atrophy of various [5, 6]. For
approximately 95% of MS patients there is no visibly pathological corruption of the OCT images
as a result of MS, the remaining 5% have microcystic macular edema (MME) [3]. MS subjects
with MME were excluded from our cohort. OCT has also contributed to the study of more
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traditional ophthalmological conditions such as glaucoma [7–10] and myopia [11], as well as to
retinal vasculature [12, 13], and to the exploration of more obliquely related conditions such as
Alzheimer’s disease (AD) [14–16] and diabetes [17, 18]. The study of such a wide assortment of
pathologies necessitates automated processing, which in the case of macular retinal OCT starts
with segmentation of the various retinal cellular layers.

Figure 1 shows a spectral domain OCT image of the macula along with definitions of various
regions and layers. In particular, Fig. 1(a) shows a B-scan image through the fovea while
Fig. 1(b) shows a zoomed portion with definitions of the various retinal layers and boundaries. It
is apparent from these images that the boundary between the GCL and IPL is hard to discern,
which is often the case in OCT images. As a result, it is common for OCT layer segmentation
methods to treat these two layers as one, which we refer to as the GCIP. The layers our automated
algorithm segments (in order from the vitreous to the choroid) are the RNFL, GCIP, INL, OPL,
ONL, IS, OS, and RPE. These eight layers (and their associated nine boundaries) are the maximal
set that are typically segmented from OCT of the macular retina.

FoveaClivusVitreous

Choroid

BrM

RNFL

GCL

IPL

INL

ONL

IS

OS

RPE

GCC

HRC

OPL

CC

ILM

ELM

(a)

(b)

Fig. 1. (a) A B-scan from a subject in our cohort with annotations indicating the locations of
the vitreous, choroid, clivus, and fovea. (The image has been rescaled by a factor of three
along each A-scan for display purposes.) The red boxed region is shown magnified (×3) in
(b) with markings to denote various layers and boundaries. The layers are: RNFL; ganglion
cell (GCL); inner plexiform (IPL); inner nuclear (INL); outer plexiform (OPL); outer nu-
clear (ONL), inner segment (IS); outer segment (OS); retinal pigment epithelium (RPE). The
named boundaries are: inner limiting membrane (ILM); external limiting membrane (ELM);
Bruch’s Membrane (BrM). The OS and RPE are collectively referred to as the hyper-
reflectivity complex (HRC), and the ganglion cell complex (GCC) comprises the RNFL,
GCL, and IPL.

There has been a large body of work on macular retinal OCT layer segmentation [19–35].
A diverse array of approaches have been investigated including methods based on active con-
tours [19, 20], machine learning [23–25], graphs [24–30, 36, 37], dynamic programming [28],
texture analysis [21], simple image gradients [31], registration [34], and level sets [35]. None of
these methods, with the exception of the the active contours [19, 20] method of Ghorbel et al.
and the “loosely coupled level sets” (LCLC) method of Novosel et al. [35], define boundaries
between retinal layers in a subvoxel manner. This voxel level limit in precision manifests itself
in layers that are forced to be at least one voxel thick even if they are very thin or absent (which
is the case for some layers at the fovea). The thickness constraints can be controlled in the
graph-based methods [24–30, 36, 37], allowing for layers of zero thickness which would enable
the segmented surfaces to overlap. However, those methods that do allow a hard constraint of a
zero thickness layer are still not reflecting the true thickness of the layer, which is somewhere
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between zero and one pixel thick. Upsampling could be seen as a way to increase the resolu-
tion of the data enabling sufficient samples between layers. Upsampling, however, has several
drawbacks the first of which is its failure to address the underlying problem. As layers are still
required to be a certain voxel thickness at the operating resolution used by any of the algorithms.
Secondly, upsampling can introduce various spurious artifacts such as ringing due to Gibbs
phenomenon [38] which would hamper the ability to correctly identify layer boundaries.

The active contour work of Ghorbel et al. [19, 20] generates segmentations on all the layers
in a tight window around the fovea (between the clivi) of a B-scan that itself must also pass
through the fovea. Hence, this work is limited in its scope and impact. The LCLS method
partially addresses the lack of subvoxel precision. Level set methods are inherently capable
of subvoxel precision, but since LCLS incorporates a “proper ordering” constraint on pairs of
adjacent level sets, it becomes necessary for the zero crossings of these pairs to be separated by
at least one voxel position. Therefore, although the thickness of a specific layer can be arbitrarily
small at a given voxel position, the thickness of layers adjacent to this one must be at least
one voxel thick. As in LCLS, our method also uses a level set approach, but we employ three
significant extensions. First, we segment all retinal layers simultaneously using a multiple-object
geometric deformable model (MGDM) approach [39]. Second, Our method distinguishes itself
by operating on the complete 3D volume in concert, unlike many other methods which use the
adjoining B-scans to simply smooth out the estimated boundaries [36]. Third, our method uses a
geometric transformation of the raw data prior to running MGDM in order to surmount the voxel
precision restrictions that are present in LCLS and in the graph based methods. As MGDM does
not allow gaps or overlap of objects, we can create a complete segmentation of the retinal image.
In addition, the output MGDM level sets can be considered to represent a partial volume model
of the tissues, which is a capability that is not available with current graph based methods.

2. Methods

Our method builds upon our random forest (RF) [40] based segmentation of the macula [24]
and also provides for a new computational domain which we refer to as flat space. First, as
is common in the literature, we estimate the boundaries of the vitreous and choroid with the
retina. From these estimated boundaries, we apply a mapping that was learned by regression
on a collection of manual segmentations, which maps the retinal space between the vitreous
and choroid to a domain in which each of the layers is approximately flat, referred to as flat
space. In the original space, we use the random forest layer boundary estimation [24] to compute
probabilities for the boundaries of each layer and then map them to flat space. These probabilities
are then used to drive MGDM [39], providing a segmentation in flat space which is then mapped
back to the original space. Detailed descriptions of these steps are provided below.

2.1. Preprocessing

We use several of the preprocessing steps outlined in Lang et al. [24], which we briefly describe
here. The first step is intensity normalization, which is necessary because of automatic intensity
rescaling and automatic real-time averaging performed by the scanner, both of which lead to
differences in the dynamic ranges of B-scans. Intensity normalization is achieved by computing
a robust maximum Im and linearly rescaling intensities from the range [0, Im] to the range [0,1],
with values greater than Im being clamped at 1. The robust maximum, Im, is found by first median
filtering each individual A-scan within the same B-scan using a kernel size of 15 pixels. The
robust maximum is set to a value that is 5% larger than the maximum intensity of the entire
median-filtered image. Next, the macular retina is detected by estimating the ILM and the BrM
(providing initial estimates that are updated later). Vertical derivatives of a Gaussian smoothed
image (σ = 3 pixels) are computed and the largest positive derivative is associated with the ILM
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while the largest negative derivative below the ILM is associated with the BrM. We thus have
two collections of gradient extrema, positive and negative, each associated with a boundary, the
ILM and BrM respectively. These two collections are crude estimators of these boundaries and
contain errors, the correction of which is accomplished by comparing the estimated boundaries
to the boundary given by independently median filtering the two collections. Points that are
more than 15 voxels from the median filtered curve are removed as outliers and an interpolated
point replaces it in the collection.

(a) (b)

(c) (d)

Fig. 2. Shown is (a) the original image in native space. In flat space are (b) the original
image, (c) a heat map of the probabilities for one of the boundaries (ILM), and (d) the
y-component of the GVF field for that same boundary. The color scale in (c) represents zero
as blue and one as red.

2.2. Flat space

We now introduce the concept of our new computational domain, which we refer to as flat
space. We geometrically transform each subject image to a space in which all retina layers of the
subject are approximately flat. To learn this transformation, we took OCT scans from 37 subjects
comprising a mix of controls and MS patients and manually delineated all retinal layers. We
then converted the positions of the boundaries between the manually delineated retinal layers
into proportional distances between the BrM (which is given a distance of zero) and the ILM
(which is given a distance of one). We then estimated the foveal centers of all scans based on the
minimum distance between the ILM and BrM within a small search window about the center of
the macula, and then aligned all subjects by placing their foveas at the origin. For each aligned
A-scan, we then computed the interquartile mean of the proportional positions of each of the
seven retinal layer boundaries between the ILM and BrM.

To place OCT data from a new subject into flat space, we first estimate the ILM and BrM
boundaries and the foveal center from the subject’s OCT data as outlined above, in Section 2.1.
We then estimate the positions of seven internal boundaries for each A-scan based on the mean
proportional positions learned above. Each A-scan is then resampled by linearly interpolating
new values at the estimated boundary positions and at ten equally spaced vertices between
these boundary positions. The pixel intensities between the BrM and ILM are interpolated to
have 89 pixel values between these two boundaries. The 89 pixels are computed on the A-scan
distributed such that there is a pixel on the estimated boundaries position based on the flat space
mapping, with ten additional pixels placed between each of the boundary estimates. In this way,
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each A-scan is represented by 89 values from the BrM to the ILM, which we put together into a
three-dimensional volume that represents an approximately flat subject macula. An additional
ten pixels are added above the ILM and another ten below the BrM. These additional pixels
allow for errors in our initial estimates of these two boundaries. Resulting in a flat space in which
each vertical column has exactly 109 pixels. Figure 2(a) shows a B-scan and Fig. 2(b) shows its
flat space mapping.

2.3. RF boundary estimate

We estimate probabilities for the locations of nine boundaries within each OCT image using a
RF method previously reported [24]. This method trains a RF using a set of image features and
corresponding manual delineations derived from a training set of OCT images. The trained RF
can be applied to the image features derived from a new OCT image and used to estimate the
probabilities of the locations of nine retinal boundaries within the new OCT image. There are 27
features used in RF training and classifying. The first three are the relative location and signed
distance of the voxel from the fovea. The next nine are the voxel values in a 3×3 neighborhood in
the B-scan around the voxel. The last fifteen are various directional derivatives (first and second
order) taken after oriented anisotropic Gaussian smoothing at different orientations and scales.
The first twelve of which are generated by using the signed value of the first and magnitude of
the second derivatives on six images corresponding to two scales and three orientations. The two
scales for Gaussian smoothing are σx,y = {5,1} pixels and σx,y = {10,2} pixels while the three
orientations are at −10, 0, and 10 degrees from the horizontal. The final three features are the
average vertical gradients in an 11×11 neighborhood located at 15, 25, and 35 pixels below the
current pixel, calculated using a Sobel kernel on the unsmoothed data. Rather than labeling the
layers, the RF is trained to label each boundary.

Given a new image, the RF classifier is applied to all of the voxels, producing for each voxel
the probability that the voxel belongs to each boundary. Since the RF classification is carried out
on the original OCT image, the boundary probabilities are assigned to the voxels of the original
OCT image. The RF training data and validation have all been previously completed in each
subjects native space, for this reason we have kept the probability estimation from the RF in the
subjects own native space. Examples showing these nine probability maps are shown in [24].
Here, we add an additional step to this process: transforming the estimated boundary probability
maps to flat space. This allows us to carry out segmentation in flat space while utilizing features
(and probabilities) developed on the original images. A probability map for the ILM boundary is
shown in flat space in Fig. 2(c).

2.4. MGDM segmentation in flat space

We use MGDM to improve our estimates of the nine boundaries based on the probability maps
generated by the RF classifiers. The recently developed MGDM [39] framework allows control
over the movement of the boundaries of our ten retinal objects (eight retinal layers plus the
choroid and sclea complex, and the vitreous) in order to achieve the final segmentation in flat
space. MGDM is a multi-object extension to the conventional geometric level set formulation
of active contours [41]. It uses a decomposition of the signed distance functions (SDFs) of all
objects that enables efficient contour evolution while preventing object overlaps and gaps from
forming. We consider N objects O1, O2, . . ., ON that cover a domain Ω with no overlaps or gaps.
Let φi, be the signed distance function for Oi defined as

φi(x) =
{
−dx(Oi), x ∈ Oi ,

dx(Oi), x /∈ Oi ,
(1)
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where
dx(Oi) = min

y∈Oi
||x− y|| (2)

is the shortest distance from point x ∈ Ω to Oi. In a conventional multi-object segmentation
formulation, each object is moved according to a speed function fi(x) defined for each object
using the standard PDE for level set evolution,

∂φi(x)
∂ t

= fi(x)|∇φi(x)| . (3)

MGDM uses a special representation of the objects and their level set functions to remove
the requirement to store all these level set functions. The new representation also enables a
convenient capability for boundary-specific speed functions.

We define a set of label functions that give the object at x and all successively nearest
neighboring objects

L0(x) = i ⇐⇒ x ∈ Oi

L1(x) = argmin
j 6=L0(x)

dx(O j)

L2(x) = argmin
j 6={L0(x),L1(x)}

dx(O j) (4)

...
LN−1(x) = argmin

j 6={Lk(x)}k=0,...,N−2

dx(O j) .

We then define functions that give the distance to each successively distant object

ϕ0(x) = dx(L1(x))

ϕ1(x) = dx(L2(x))−dx(L1(x))

ϕ2(x) = dx(L3(x))−dx(L2(x)) (5)
...

ϕN−2(x) = dx(LN−1(x))−dx(LN−2(x))

Together, these functions describe a local “object environment” at each point x. It can be shown
that the SDFs at x for all objects can be reconstructed from these functions [39].

The first computational savings of MGDM comes about by realizing that approximations
to the SDFs of the closest objects can be computed from just three label functions and three
distance functions:

φ̂i(x) =


−ϕ0(x), i = L0(x)
ϕ0(x), i = L1(x)
ϕ0(x)+ϕ1(x), i = L2(x)
ϕ0(x)+ϕ1(x)+ϕ2(x), i 6= L0,1,2(x) ,

(6)

where the notation i 6= L0,1(x) means i 6= L0(x) and i 6= L1(x) while i 6= L0,1,2(x) means i 6= L0(x)
and i 6= L1(x) and i 6= L2(x). These are level set functions sharing the same zero level sets as the
true signed distance functions; they give a valid representation of the boundary structure of all
the objects–details and conditions of the stability of this approximation are in Bogovic et al. [39].
Therefore, storing just these six functions (three label functions and three distance functions) is
sufficient to describe the local object environment of every point in the domain.
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The second computational savings of MGDM comes about by realizing that the evolution
equations Eq. (3) can be carried over by updating the distance functions instead of the signed
distance functions, as follows

∂ψk(x)
∂ t

=
1
2
( fLk(x)− fLk+1(x)) , k = 2,1,0 , (7)

for all k in the narrow band (voxels near the boundaries). Evolving these distance functions
must be carried out by starting with ψ2, then ψ1, and finally ψ0; any changes to the ordering of
object neighbors during this process is reflected by changes in the associated label functions.
Reconstruction of the actual objects themselves need not be carried out until after the very last
iteration of the evolution. To accomplish this, an isosurface algorithm is run on on each level set
function φ̂i(x), and the object boundaries will have subvoxel resolution by virtue of the level
sets.

Since MGDM keeps track of both the object label and its nearest neighbor at each x, the
update Eq. (7) is very fast to carry out. Furthermore, it can use both object-specific and boundary-
specific speed functions. Given the index of the object and its neighbor stored at each x, a
simple index into a lookup table gives the appropriate speed functions to use for that object and
particular boundary. This aspect of MGDM is used in the OCT implementation described in this
paper.

We use two speed functions to drive MGDM. The first speed function is the inner product
of a gradient vector flow (GVF) [42] field computed from a specific boundary probability map
with the gradient of the associated signed distance function. Nine GVF fields are computed, one
for each retinal boundary, which ensures a large capture range—i.e., the entire computational
domain—for each boundary that MGDM must identify. The second speed function that is used in
MGDM is a conventional curvature speed term [41]. Since the curvature speed term encourages
flat surfaces, this is a perfect regularizer to use in flat space.

(a) (b)

(c) (d)

Fig. 3. Shown in flat space are (a) the MGDM initialization, and (b) the MGDM result.
The MGDM result mapped back to the native space of the subject is shown in (d) and for
comparison the manual segmentation of the same subject is shown in (c). The same color
map is used in this figure and in Fig. 4.

MGDM segments all retinal layers (plus the vitreous and choroid) at once. Like the topology
preserving geometry deformable model (TGDM) [43], which maintains single-object topology
using the simple point concept, MGDM is capable of preserving multiple object relationships
using the digital homeomorphism concept, which is an extension of the simple point concept
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to multiple objects [44]. We therefore use the digital homeomorphism constraint in MGDM to
maintain proper layer ordering. For the simple object arrangement in the retina (i.e., ordered
layers), this constraint amounts to the same constraint used in LCLS [35]. As MGDM is operating
in flat space, it does not come with the same one voxel layer thickness limitation on the final
boundary segmentation.

MGDM uses the two forces together with topology control to move the retinal layers in flat
space until convergence, see Fig. 3(b). The flat space segmentation is then mapped back into
the subject’s native space, see Fig. 3(d). Using MGDM in flat space has several computational
advantages. First, the curvature force is a natural choice since all the layers are nominally flat.
Second, flat space allows for greater precision of surface definition since mapping the MGDM
result back to the native space can put surfaces much closer together than one voxel. Third,
flat space is a smaller digital image domain than native space since there are only 109 vertices
per A-scan by construction. This leads to a reduced computational burden. An example of an
MGDM initialization in flat space is shown in Fig. 3(a) and the result for the same subject is
shown in flat space in Fig. 3(b). The MGDM result mapped back to native space is shown in
Fig. 3(d).

3. Experiments and results

3.1. Data

Data from the right eyes of 37 subjects (a mixture of 16 healthy controls and 21 MS patients)
were obtained using a Spectralis OCT system (Heidelberg Engineering, Heidelberg, Germany).
Seven subjects from the cohort were picked at random and used to train the RF boundary
classifier. The RF classifier has been previous [24] shown to be robust and independent of
the training data and thus should not have introduced any bias in the results. The research
protocol was approved by the local Institutional Review Board, and written informed consent
was obtained from all participants. All scans were screened and found to be free of microcystic
macular edema, which is sometimes found in a small percentage of MS subjects [3].

All scans were acquired using the Spectralis scanner’s automatic real-time function in order
to improve image quality by averaging 12 images of the same location (ART setting was fixed
at 12). The resulting scans had signal-to-noise ratios (SNR) of between 20 dB and 38 dB, with
a mean SNR of 30.6 dB. Macular raster scans (20◦× 20◦) were acquired with 49 B-scans,
each B-scan having 1024 A-scans with 496 voxels per A-scan. The B-scan resolution varied
slightly between subjects and averaged 5.8 µm laterally and 3.9 µm axially. The through-plane
distance (slice separation) averaged 123.6 µm between images, resulting in an imaging area
of approximately 6× 6 mm. We note that our data is of a higher resolution and better SNR
than many other recent publications. The nine layer boundaries were manually delineated on all
B-scans for all subjects by a single rater using an internally developed protocol and software
tool. The manual delineations were performed by clicking on approximately 20–50 points along
each layer border followed by interpolation between the points using a cubic B-spline. Visual
feedback was used to move points to ensure a correct boundary.

3.2. Results

We compared our multi-object geometric deformable models based approach to our previous
work (RF+Graph) [24] on all 37 subjects. In terms of computational performance, we are
currently not competitive with RF+Graph, which takes only four minutes on a 3D volume of
49 B-scans. However, our MGDM implementation is written in a generic framework and an
optimized method based on a GPU framework could offer 10 to 20 fold speed up [45]. To
compare the two methods, we computed the Dice coefficient [46] of the automatically segmented
layers against manual delineations. The Dice coefficient is a measure of how much the two
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(a) (b)

(c) (d)

(e)

Fig. 4. Shown is a magnified (×18) region around the fovea for each of (a) the original image,
(b) the manual delineation, and automated segmentations generated by (c) RF+Graph [24]
and (d) our method. The result in (d) is generated from the continuous representation of
the level sets in the subjects native space, shown in (e) is the voxelated equivalent for our
method. The RF+Graph method has to keep each layer at least one voxel thick (the GCIP
and INL in this case). We also observe the voxelated nature of the the RF+Graph result,
whereas our approach has a continuous representation due to its use of levelsets shown in (d)
but can also be converted a voxelated format (e). The same color map is used in this figure
and in Fig. 3.

segmentations agree with each other. It has a range of [0,1], with a score of 0 meaning complete
contradiction between the two, while 1 represents complete concurrence.

The resulting Dice coefficients are shown in Table 1. It is observed that the mean Dice
coefficient is larger for MGDM than RF+Graph in all layers. Further, we used a paired Wilcoxon
rank sum test to compare the distributions of the Dice coefficients. The resulting p-values in
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Table 1 show that six of the eight layers reach significance (α level of 0.001). Therefore, MGDM
is statistically better than RF+Graph in six of the eight layers. The two remaining layers (INL
and OPL) lack statistical significance because of the large variance.

Table 1. Mean (and standard deviations) of the Dice Coefficient across the eight retinal layers.
A paired Wilcoxon rank sum test was used to test the significance of any improvement
between RF+Graph [24] and our method, with strong significance (an α level of 0.001) in
six of the eight layers.

Dice Coefficient

Layer RF+Graph [24] MGDM P-Value

RNFL 0.877 (±0.0533) 0.903 (±0.0279) < 0.001
GCIP 0.892 (±0.0529) 0.911 (±0.0290) < 0.001
INL 0.806 (±0.0261) 0.811 (±0.0339) 0.238
OPL 0.855 (±0.0164) 0.860 (±0.0250) 0.294
ONL 0.909 (±0.0186) 0.926 (±0.0163) < 0.001
IS 0.751 (±0.0295) 0.805 (±0.0225) < 0.001
OS 0.816 (±0.0323) 0.846 (±0.0301) < 0.001
RPE 0.884 (±0.0227) 0.900 (±0.0268) < 0.001

An example of the manual delineations as well as the result of our method on the same subject
are shown in Fig. 3, with a magnified region about the fovea in Fig. 4. Table 2 includes the
absolute boundary error for the nine boundaries we approximate; these errors are measured
along the A-scans in comparison to the same manual rater. We, again, used a paired Wilcoxon
rank sum test to compute p-values between the two methods for the absolute distance error, six
of the nine boundaries reach significance (α level of 0.001).

Table 2. Mean absolute errors (and standard deviation) in microns for our method (MGDM)
in comparison to RF+Graph [24] on the nine estimated boundaries. A paired Wilcoxon rank
sum test was used to compute p-values between the two methods with strong significance (an
α level of 0.001) in six of the nine boundaries.

Absolute Errors

Boundary RF+Graph [24] MGDM P-Value

ILM 4.318 (±1.1089) 3.478 (±0.8084) < 0.001
RNFL-GCL 6.192 (±2.1597) 5.339 (±1.8408) < 0.001
IPL-INL 6.319 (±1.1818) 6.289 (±2.0463) 0.141
INL-OPL 5.464 (±2.8283) 4.467 (±0.4669) < 0.05
OPL-ONL 4.657 (±1.1318) 4.129 (±1.2162) < 0.001
ELM 5.229 (±0.9822) 4.031 (±0.9623) < 0.001
IS-OS 4.108 (±1.2415) 3.309 (±1.0028) < 0.001
OS-RPE 4.944 (±1.3937) 4.437 (±1.5522) < 0.001
BrM 4.291 (±0.8959) 3.739 (±2.4001) 0.411

Overall 4.947 (±1.4558) 4.468 (±1.9830) < 0.001
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4. Discussion and conclusion

The Dice coefficient and absolute boundary error in conjunction with the comparison to RF+GC
suggest that our method has very good performance characteristics. In comparison to the state-
of-the-art methods, Song et al. [27] reports mean unsigned boundary error of 5.14µm (±0.99)
while Dufour et al. [26] reports 3.03µm (±0.54). Our results on the surface appear to be in
between these two recent methods. However, the comparison is inherently flawed as the data
used in both of these methods is of differing quality to our own, and was acquired on a different
scanner with different parameters. The fact that we used a larger cohort than either of these two
methods may account for our larger variance. In terms of specific boundaries, again with the
caveat of different data and noting that layer definitions seem to vary somewhat by group and
scanner used, we compare for the ILM and BrM. Song et al. reports unchanged results from their
earlier work [30] which had an unsigned boundary error of 2.85µm (±0.32), with Dufour et al.
reporting 2.28µm (±0.48); clearly for this boundary we have room for improvement. For BrM,
Song et al. reports unchanged results from their prior work which reported 8.47µm (±2.29),
and Dufour et al. reported 2.63µm (±0.59). Our approach is better than that of Song et al., and
not as good as that of Dufour et al. However, Song et al. and Dufour et al. segment six and
seven boundaries respectively, whereas our method identifies nine boundaries. There are only a
few methods that are able to accurately segment nine or more boundaries [20, 21, 33]. The data
used in our study is of a very high quality for OCT data, with a mean SNR of 30.6 dB, which
might be part of the reason for the improved accuracy of our results. An obvious criticism of
our approach is the use of the same 37 subjects for developing our regression mapping to flat
space and for the validation study. Our current study involved healthy controls and MS subjects
with essentially normal appearing eyes, a future area of work will be in exploring cases of more
pronounced pathology were the flat mapping may fail or the forces driving MGDM may be
insufficient. From a computation standpoint, the MGDM process is computationally expensive,
and currently takes 2 hours and 9 minutes (±4 minutes) to process a full 3D OCT macular cube,
lagging behind the state-of-the-art methods [24, 26] which can run in less than a minute. A GPU
based implementation of MGDM [45] would offer a 10 to 20 fold speed up, taking the run time
to the five minute range.

In this paper, a fully automated algorithm for segmenting nine layer boundaries in OCT retinal
images has been presented. The algorithm uses a multi-object geometric deformable model of
the retinal layers in a unique computational domain, which we refer to as flat space. The forces
used for each layer were built from the same principles. These could be refined or modified on a
per-layer basis to help improve the results.
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