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ABSTRACT

Deep learning approaches have been used extensively for medical image segmentation tasks. Training deep
networks for segmentation, however, typically requires manually delineated examples which provide a ground
truth for optimization of the network. In this work, we present a neural network architecture that segments
vascular structures in retinal OCTA images without the need of direct supervision. Instead, we propose a
variational intensity cross channel encoder that finds vessel masks by exploiting the common underlying structure
shared by two OCTA images of the the same region but acquired on different devices. Experimental results
demonstrate significant improvement over three existing methods that are commonly used.
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1. INTRODUCTION

Optical coherence tomography (OCT) based angiography (OCTA) is a recently developed, non-invasive imaging
modality that provides insight into retinal vascular morphology. Current clinical use of OCTA relies on measure-
ments like the mean vessel density computed on binarized en-face angiography of the superfical or deep vascular
plexus.’? The binarization, however, depends greatly on the quality of the scans, the binarization method that
is applied, and the algorithm used to generate the OCTA.*# Although there have been studies on artifacts and
their removal in OCTA,* 7 it is currently difficult to remove all image artifacts that are present in OCTA.
In a typical workflow, poor quality images are excluded by human reviewer, in order to get more consistent
measurements.”® Additionally, to segment vessels from OCTA manually is extremely difficult because of the
widespread presence of artifacts, poor image contrast, and the abundance of fine capillary details that must be
traced.

Deep learning has been used extensively in medical image segmentation tasks.” ! However, investigation of
applying deep learning to segmenting vessels in retinal OCTA images is limited in the literature,'? '3 because of
the above stated challenges. In addition, a trained network model is dedicated to the scanner where the training
data is acquired. Usually, it cannot generalize to images from other scanners, due to the contrast and noise level
differences as well as the presence of various artifacts. In this paper, we propose the variational intensity cross
channel encoder (VICCE) which produces artifact robust and consistent binarization across different devices. Our
proposed architecture is similar to a traditional variational autoencoder' but with cross channel “reconstruction”
of the target image. The latent space produced by the encoder has the same spatial dimension as the input,
effective encoding the intensity information. VICCE is trained without any manual delineated data and is capable
of producing state-of-the-art vessel segmentations in the presence of various artifacts.
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Figure 1. Diagram of the overall network architecture. S and C stand for Spectralis OCTA and Cirrus OCTA, and S
and C are the synthetic results. The binarization of S and C, denoted as S, and C, are obtained by thresholding the
Bernoulli probability Ps and P. at each pixel location. The symbol o represents a sigmoid function attached right after
each Seg-Net. The sample block represent the “reparameterization trick” for Bernoulli random variable, zs and z¢ are
fields of uniform random variables

2. DATASET

The data used in this work were obtained from a Spectralis OCTA (Heidelberg Engineering, Heidelberg, Ger-
many) scanner and a Cirrus OCTA (Carl Zeiss Meditec Inc, Dublin, CA) scanner. Thirty three subjects with
multiple sclerosis (MS) and two healthy controls (HCs) are included. For every subject, each eye was scanned by
both devices and the superficial vascular plexus (SVP) angiograms were automatically generated and exported
from the devices. Each scan covers a 3mm X 3mm area centered at the fovea.

3. METHOD

Our overall network architecture is shown in Fig. 1, two final segmentation networks (Seg-Nets and Seg-Net) are
used to produce the desired segmentation map after training (red boxes): in the Spectralis channel, Seg-Nets
takes a Spectralis angiogram (S) as input and outputs a probability map Ps that indicates the presence of
vascular structure in S; similarly for the Cirrus channel, Seg-Net¢ takes a Cirrus angiogram (C) and outputs
probability map Po. Both Pg and Pc have the same spatial size as their input, and they are thresholded at
intensity 0.5 to give the final binary segmentation S and Cj.

In cases where direct supervision is available, training the segmentation networks is straight forward: first
compute a loss between the Seg-Net output and the given ground truth, then use back propagation to optimize
the network parameters. In this work, in absence of any ground truth, we introduce two synthesis networks:
Syn-Net¢ for the Spectralis channel, and Syn-Netg for the Cirrus channel that take the output of the two
segmentation networks. Through the synthesis networks, Pg is used to synthesize the Cirrus image C and Po
is used to synthesize the Spectralis image S. Therefore, training VICCE requires pairs of OCTA superficial
vascular plexus angiograms exported from two different devices—Spectralis and Cirrus. One serves as the input
to the Seg-Net and the other as the synthesis ground truth, for each channel. To provide a pixel correspondence
between the input (S and C) and the synthesis target (C' and S), we pre-process those paired angiograms by
registering the Cirrus to the Spectralis using mutual information as a cost metric under an affine transformation.
The registered Cirrus and Spectralis are then cropped to have matching fields of view.

This cross channel synthesis design allows the synthesis loss, computed as the mean squared error between
the synthetic angiogram and the real angiogram, to be back-propagated to Seg-Nets and Seg-Net, forcing them
to extract useful information from the input to synthesize across modalities. Such information is, in fact, the
underlying vascular structure shared by S and C. Compared with a regular autoencoder, VICCE replaces self
reconstruction with cross channel synthesis. This provides additional benefits—artifact and noise suppression—
because the input images cannot have the same artifacts and noise pattern as the target, capturing those elements
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Figure 2. (Row 1) A registered pair of Spectralis OCTA and Cirrus OCTA binarized using (Row 2) K-means, (Row 3)
Enhancement by Frangi followed by local adaptive thresholding, (Row 4) Global Otsu’s method, and (Row 5) the proposed
method. The shaded yellow patch in the first and third column are magnified and shown in the second and fourth column
for better visualization.

will increase the synthesis loss, and thus the networks reduce their presence. Because the latent space (Ps and
P¢) has the same spatial dimension as the input, and the grayscale level of the latent space is now encoded as
Bernoulli random variables, we interpret Seg-Nets as intensity encoders that encode the grayscale level of the
input image.



0.6 JGC_J‘ o % ° 0, %00’ o",\.,.,v.;‘;.o'
'E g 0.6 ."'...\..".' . :"':.‘..‘."*.;', ‘. & ¢ ° %0 o
2 0.55 s M.m‘n‘\"""‘\wm & . ' '..'..,‘.os so o ®
N PR A EAT g 045
T ooELo-Panestet o ____{ Otsu's __ c EAT
S __:.'_+_ _____________________________ K-means 502
@ = be oo Kmeans
0045 ° S ob Otsu’s
° £

0.4 : : : : - : §-02 : : : : : :

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Epoch Epoch

(a) (b)
Figure 3. The performance of VICCE for the validation data over the training epochs. (a) Dice coefficient of Sy and Cb,
and (b) the correlation coefficient of the computed vessel density.

Because Seg-Nets and Seg-Net¢ are not supervised, the probability maps are not intrinsically driven to
be near 0 for background and near 1 for vessels. Without such a constraint, it is difficult to find appropriate
thresholds to yield the desired binary segmentations. VICCE solves this problem by introducing a variational
sampling stage prior to the synthesis networks. Sampling is accomplished by a “reparameterization trick” for
Bernoulli random variables.!? 16 At location (x,%) in the Spectralis channel the output of sampling is given as

o {In(zs(z,y)) —In(l — zs(z,y)) + n(Ps(z,y)) — In(1 — Ps(z,y))}, (1)

where zg is a field of uniform random variables, and ¢ is the sigmoid function. This output is interpreted as a
random sample of the Bernoulli distribution with probability Pg(z,y). During training, zs and z¢ are resampled
for each training pair. The effect of this random sampling is to create “harder” probability maps Ps and Pg,
which in turn makes it possible to choose 0.5 as the threshold for producing the binarized images S, and Cj.
This is because a “harder” Pg and P is more likely to produce predictable samples, and thus better synthetic
images.

4. RESULTS
4.1 Network and training details

After pre-processing, poorly registered pairs were manually identified and excluded. The resultant 65 pairs of
registered Spectralis-Cirrus angiograms were divided into 43 pairs for training, 15 pairs for validation, and 7
pairs for testing. Images were resized to 512 x 512 pixels. We augmented our data with random horizontal and
vertical flips. Random transpose is not used because motion artifacts are always present as horizontal lines.
Our four networks use a five-level U-net architecture.!” The downsample operations were achieved by 2 x 2
maxpooling. There were 8 channels of feature maps at the finest resolution. After downsample, the number of
channels was doubled. Skip connections were use at each of the top four levels. All convolutional layers had
a receptive field of 3 x 3 with zero padding followed by instance normalization. For upsampling, the transpose
convolution used in the traditional U-net was replaced by bilinear interpolation and a 3 x 3 convolutional layer.
Before each downsample and upsample operation, a dropout layer with dropout rate 0.5 is applied. We find the
dropout layer essential for producing segmentations with connected capillary networks, as shown in Fig. 5.

All four networks were trained for 6,000 epochs using Adam optimizer. The learning rate for the two
segmentation networks was set to 0.001 and for the two synthesis networks was 0.00005. This encourages
denoising and artifact removal to be done by the segmentation networks, which in turn encourages artifact and
noise suppressed binarization. A sigmoid layer was attached after Seg-Nets to ensure Pg and Pc were between
[0,1]. To prevent the networks from entering the other local minima, where background is bright and vessels
are dark, we added an MSE loss between the probability map (Ps and Px) and the input (S and C). This loss
decayed and had almost no effect after 200 epochs. We assumed no prior probability of the presence of vessel,
thus there was no KL-divergence loss term for the Bernoulli probability map.
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Figure 4. The vessel density for seven pairs of test images by VICCE and three other methods. The least square fitted
lines are shown in the same color as the data points.

4.2 Validation and testing

We compare VICCE with three other commonly used methods: Global K-means binarization, which is also the
default ImageJ binarization method; Enhancement by Frangi filter followed by local adaptive threshold (EAT);
and Global Otsu’s method. Methods similar to EAT have been previously reported.'®!'? From the 15 pairs
of validation data, the Dice coefficient?® of the segmented vessels and the correlation coefficient of the vessel
density (VD) are computed between Spectralis OCTA and Cirrus OCTA. Because the same underlying anatomy
structure are imaged, we expect those metrics to be the same regardless of the scanner type. We find that even
without enforcing the similarity between two binary maps, both metrics are higher with VICCE after 2,000
training epochs (Fig. 3(a,b)). We used the model at 5,000 epochs and tested on 7 pairs of Spectralis and Cirrus
angiograms. An example of binarization produced by VICCE and the other methods is shown in Fig. 2. A
major banding artifact is present in the Spectralis OCTA image, which result in the Spectralis binarized image
being unuseable for K-means, EAT, and Otsu’s methods. Whereas the VICCE result successfully recovers the
capillaries even within the region of the artifacts. The vessel densities of all 7 pairs of test images are shown
in Fig. 4. For each method, the least square fitted lines are shown in the same color as the data points. It is
evident that VICCE line (red) is closer to the line of identity. It proves that VICCE produces more consistent
vessel density measures across the two scanners. The coefficient of determination between VD computed from
the Cirrus versus Spectralis images are much higher (R? = 0.95) than the three competing methods. Which
suggests the potential of combining vessel density measures from scans that are acquired using different scanners.

In addition to the binarized images, we also produce the synthetic images (C’ and S) during testing time
using the Syn-Nets (Fig. 5). Notice that the synthetic images are almost noise and artifact free, with detailed
capillary networks. This further demonstrates the advantage of cross channel synthesis, and also the possibility
of using VICCE to produce harmonized OCTA images, similar to those used in magnetic resonance imaging.?!

5. CONCLUSION

We proposed a novel network architecture for unsupervised segmentation. It is trained using registered paired
data but each channel can be used individually after training. In the application of vessel segmentation in OCTA,
it is evident that the binarized images from different modality using VICCE are similar and do not suffer as
much from artifacts as do the other three comparing methods. The results indicate much greater consistency
between the computed measurements derived from the Cirrus and Spectralis OCTA images—the two devices are
essentially equivalent when using the VICCE binarization.
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Figure 5. The result of synthesis during test time. In Spectralis channel, the Spectralis image (S) passes through Seg-Nets

to produce Pg, which is used to synthesize its corresponding Cirrus image (C) through Syn-Netc. Similarly in the Cirrus

channel, a Cirrus image (C) is used as input to VICCE and produce Pc and synthesize its Spectralis counterpart (.5).

VICCE architecture can be easily extended to more than two modalities. Either by adding more channels or
by using a universal encoder to separate vessel segmentation and scanner dependent information, and a universal
decoder. Future work will focus on adding more constraints to the Syn-Nets for a more interpretable latent
space, currently it is achieved by using a small learning rate on the Syn-Nets.
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