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Preface

Although the underlying principles of medical imaging have not changed in the
nine years since the first edition of this book was published, the instrumentation
and practices have continued to evolve and improve. This second edition
maintains the signals and systems focus of the first edition, with up-to-date
descriptions of instrumentation. We still cover the most important imaging
modalities in radiology: projection radiography, x-ray computed tomography,
nuclear medicine scintigraphy and emission tomography, ultrasound imaging,
and magnetic resonance imaging. But we now provide additional material
on digital radiography, multi-row detector CT systems, 3D ultrasound, both
functional and diffusion-weighted magnetic resonance imaging, and much more.
As before, we expect the reader to be familiar with signals and systems, which are
usually covered in the sophomore year of most engineering curricula, and with
elementary probability. Freshman courses in physics, chemistry, and calculus
are also assumed.

As with the first edition, the book is organized into parts emphasizing
key overall conceptual divisions. Part I introduces basic imaging principles,
including an introduction to medical imaging systems in Chapter 1, a review
of signal processing (with emphasis on two-dimensional signals) in Chapter 2,
and a discussion of image quality in Chapter 3. Our presentation of the theory
of medical imaging systems is strongly based on continuous signals; however, a
development of discrete signals is included to permit discussions on sampling and
implementation. Issues of image quality, including resolution, noise, contrast,
geometric distortion, and artifacts are described in a general context here, and
are revisited within each modality in subsequent chapters.

Part II describes key modalities in radiographic imaging. It begins in
Chapter 4 with a brief presentation of the physics of radiography, including
the generation and detection of ionizing radiation and its effect on the human
body. Chapter 5 describes projection radiography systems, including chest x-ray,
fluoroscopy, and mammography systems. As in all subsequent chapters, cover-
age focuses on signals, including only enough physics and biology to motivate
the modality and provide a model for the analysis. Chapter 5 also presents the
mathematics of projection imaging, a very fundamental idea in medical imaging.
Chapter 6 covers x-ray computed tomography, expanding on the instrumen-
tation and mathematics of projection imaging and introducing the concept
of image reconstruction in medical imaging. Computed tomography produces
true tomograms (images of cross sections of the body) rather than projections
of the body.

Part III presents the physics and modalities of nuclear medicine imaging.
Chapter 7 describes the physics of nuclear medicine, focusing primarily on the
concept of radioactivity. The major modalities in nuclear medicine imaging are
described in Chapter 8, which covers planar scintigraphy, and Chapter 9, which
covers emission computed tomography.

xv



xvi Preface

Part IV covers ultrasound imaging. It begins in Chapter 10 with a brief
presentation of the physics of sound, and continues in Chapter 11 with the
various imaging modes offered within this rich modality. Part V covers mag-
netic resonance imaging. Chapter 12 presents the physics of nuclear magnetic
resonance, and Chapter 13 continues with a presentation of various magnetic
resonance imaging techniques.

We have used the first edition of this book for a one-semester upper-
level/graduate course on medical imaging systems. In order to cover the material
in one semester, we routinely skip some material in the book, and we move
at a very brisk pace. Although it was very tempting to add more depth
in modern instrumentation, reconstruction methods, and diagnostic uses of
medical imaging, we feel that this breadth of material could not be covered in
one semester with sufficient depth, and would be inconsistent with our primary
goal of providing a unified view of medical imaging from a signals and systems
point of view. On the other hand, we feel that this book could be used as the basis
for a two-semester course, perhaps by covering Parts I–III in the first semester
and Parts IV–V in the second semester. A two-semester approach would allow
instructors to use supplementary materials for additional depth in the physics
and instrumentation of medical imaging, or to present current research topics.

Medical imaging is very visual—just ask any radiologist. Although the
formalism of signals and systems is mathematical, we understand the advan-
tages offered through visualization. Therefore, the book contains many images
and diagrams. Some are strictly pedagogical, offered in conjunction with the
exposition or an example problem. Others are motivational, revealing inter-
esting features for discussion or study. Special emphasis is made to provide
biologically relevant examples, so that the important context of medical imag-
ing can be appreciated by students. Many images have been added or replaced
in this edition, in order to provide better coverage of current use and to provide
reference images to help explain features and qualities of the various modalilties.

New to This Edition
The second edition of this book arose primarily from the need to provide
updates to the technology and methods in medical imaging systems, which have
undergone substantial development since the first edition. At the same time,
we were able to incorporate changes to the organization of the book and to
improve certain aspects of pedagogy. Instructors and students alike now have
more modern material from the core medical imaging modalities while still
maintaining the signal processing perspective in a unified treatment of medical
imaging signal and systems.

The most significant changes to this new edition include:

• Completely rewritten overview sections including many new images to better
motivate and explain the core modalities that use x-rays, radioactivity,
ultrasound, and nuclear magnetic resonance.

• New sections on digital radiography systems and mammography in projec-
tion radiography.

• A new section on multi-row detectors in computed tomography.
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• A new section on iterative reconstruction in emission tomography in nuclear
medicine.

• New sections on nonlinear wave propagation and harmonic imaging in
ultrasound imaging.

• New development and presentation of imaging equations in planar scintig-
raphy, single photon emission computed tomography, and positron emission
tomography.

• New sections on three-dimensional imaging, noise, and speckle in ultrasound
imaging.

• New sections on susceptibility weighted imaging, functional magnetic res-
onance imaging, and diffusion magnetic resonance imaging in magnetic
resonance imaging.

• Reorganization of the chapters on signals and systems and image quality to
encourage a better pedagological flow.

• Many new problems, added primarily to the chapters having relatively fewer
problems in the first edition. There are a total of 261 problems in this second
edition.
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P A R T

I
Basic Imaging
Principles

Overview
What does the human body look like on the inside? The smart answer: It depends
on how you look at it. The most direct way to look inside the human body is to
cut it open, for example, through surgery. A refinement of this procedure might
be to use an endoscope, essentially a light tube that is ‘‘threaded’’ through the
body, which conveys an image to a display device. Both methods offer direct
optical viewing, but also involve cutting the body, putting something in it, or
both. These are invasive techniques, which cause (potential) damage or trauma
to the body.

The beauty of medical imaging is that we can see inside the human body
in ways that are less invasive than surgery or endoscopy. In some cases—for
example, magnetic resonance imaging (MRI) and ultrasound imaging—the
methods are completely noninvasive and risk-free so far as we know. In other
cases—for example, projection radiography, x-ray computed tomography (CT),
and nuclear medicine—there is some risk associated with the radiation exposure,
even though these methods are considered noninvasive as well.

Fundamentally, these medical imaging techniques mean that we do not need
to cut the body or put a physical device into it in order to ‘‘see inside.’’ Of perhaps
even greater importance, these techniques allow us to see things that are not
visible to the naked eye in the first place. For example, functional magnetic
resonance imaging (fMRI) allows us to obtain images of organ perfusion or
blood flow, and positron emission tomography (PET) allows us to obtain
images of metabolism or receptor binding. In other words, the various imaging
techniques allow us to see inside the body in different ways—the ‘‘signal’’ is
different in each case and can reveal information which the other methods
cannot. Each of these different methods is a different imaging modality, and the
‘‘signals’’ that arise are intrinsically different. This hearkens back to the opening
question: What does the human body look like on the inside? The answer: It
depends on the measured signal of interest.



2 Part I Basic Imaging Principles

In this book, we use a signals and systems approach to explain and analyze
the most common imaging methods in radiology today. We want to answer
the question: What do the images look like and why? We will discover that
medical imaging physics allows us to image certain parameters of the body’s
tissues, such as reflectivity in ultrasound imaging, linear attenuation coefficient
in computed tomography, and hydrogen proton density in magnetic resonance
imaging. These physical parameters, which one can think of as ‘‘signals’’ within
the body, represent the input signal into an imaging system. In medical imaging,
the ‘‘object’’ or ‘‘signal’’ arising from the patient depends on the physical
processes governing a given imaging modality. Thus, a given patient represents
an ensemble of different objects or signals. In considering a given medical
image, it is thus important to start with the physics that underlie the creation
of signals from the patient for that modality. Accordingly, each part of this
book is organized such that the first chapter describes the relevant physics, and
subsequent chapters describe those modalities based on the specific physical
processes of that part.

The first output of any medical imaging system is based on physical
measurements, which might be returning echoes in an ultrasound system, x-ray

Figure I.1
The four main medical
imaging signals discussed
in this book: (a) x-ray
transmission through the
body, (b) gamma ray
emission from within the
body, (c) ultrasound
echoes, and (d) nuclear
magnetic resonance
induction. The
corresponding medical
imaging modalities are
projection radiography,
planar scintigraphy,
ultrasound imaging, and
magnetic resonance
imaging. All images
courtesy of GE
Healthcare.

(a)

(c) (d)

(b)



Part I Basic Imaging Principles 3

intensities in a CT system, or radio frequency waves in an MRI system. The
final output in this system is created through image reconstruction, the process
of creating an image from measurements of signals. The overall quality of a
medical image is determined by how well the image portrays the true spatial
distribution of the physical parameter(s) of interest within the body. Resolution,
noise, contrast, geometric distortion, and artifacts are important considerations
in our study of image quality. Ultimately, the clinical utility of a medical image
involves both the image’s quality and the medical information contained in the
parameters themselves.

Figure I.1 shows the four main medical imaging signals discussed in this
book: (1) x-ray transmission through the body, (2) gamma ray emission from
within the body, (3) ultrasound echoes, and (4) nuclear magnetic resonance
induction. Part II covers modalities that use x-ray transmission signals, Part III
covers modalities that use gamma ray emission, Part IV covers modalities that use
ultrasound signals, and Part V covers magnetic resonance imaging, which uses
signals that arise from nuclear magnetic resonance. The specific medical imaging
modalities depicted in Figure I.1 are (1) projection radiography, (2) positron
emission tomography, (3) ultrasound imaging, and (4) magnetic resonance
imaging.

In Figure I.1, parts (a) and (b) represent two-dimensional projection images
of the three-dimensional human body. A projection is created as a two-
dimensional ‘‘shadow’’ of the body, a process that is illustrated in Figure I.2.
Figures I.1(c) and (d) are slices within the body. Figure I.3 depicts the three

Figure I.2
The creation of a
two-dimensional
projection through the
body. In this case, x-rays
are transmitted through a
patient creating a
radiograph.
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Figure I.3
The three standard
orthogonal tomographic
or slice or section views:
(a) axial or transaxial or
transverse, (b) coronal or
frontal, and (c) sagittal. (a) (c)(b)

Figure I.4
Representative transverse
slice through the brain
from three different
imaging modalities: (a)
computed tomography,
(b) magnetic resonance
imaging, and (c) positron
emission tomography. (a) (c)(b)

standard orientations of slice (or tomographic) images, axial, coronal, and
sagittal. Figure I.1(d) is a sagittal slice, while Figure I.1(c) is an oblique slice,
that is, an orientation not corresponding to one of the standard slice orientations.

Figure I.4 also shows slice images. In this case, each image is a transverse
slice, oriented perpendicular to the head and body axis through the brain. Each
image is obtained from a different imaging modality: (a) computed tomography,
(b) magnetic resonance imaging, and (c) positron emission tomography. Even
though each image depicts (a slice through) the brain, the images are strikingly
different, because the signals giving rise to each image are themselves strikingly
different. In this part of the book, we study the common signal processing
concepts that relate to all imaging modalities, setting the groundwork for
adding the physical differences that account for the different appearances of the
imaging modalities, and hence their different uses in medicine.
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C H A P T E R

11
In this book, we take a signals and systems approach to the characterization of
medical imaging. As discussed in the Overview, there are a variety of signals in
which we are interested; ultimately, this interest stems from the biological and
medical significance of these signals in patients with various diseases. In practice,
these signals are transformed into images via medical imaging modalities. In this
chapter, we begin to consider these modalities and their characteristics.

1.1 History of Medical Imaging
The first published medical image was a radiograph of the hand of Wilhelm Con-
rad Roentgen’s wife in December 1895. Roentgen had been experimenting with
a Crooke’s tube (the forerunner of today’s x-ray tube) and noticed that ‘‘a new
kind of rays’’ (hence, x-rays) were emitted that could expose a photographic
plate even when optically shielded. It was immediately obvious to Roentgen that
his discovery could have a profound impact in medicine. Indeed, the first clinical
use of x-rays occurred only two months later, in February 1896. The use of x-rays
became widespread, and both static and dynamic (fluoroscopic) techniques were
developed. Here, a static technique refers to an image taken at a single point in
time, whereas a dynamic technique refers to a series of images acquired over time.

For many decades, these planar (i.e., two-dimensional projection) radio-
graphs were the only medical images being produced. Ultimately, radiography
was extended into transmission computed tomography, or cross-sectional imag-
ing. Godfrey Hounsfield produced the first true computed tomography (CT)
scanner in 1972 at EMI in England. He used mathematical methods for image
reconstruction developed a decade earlier by Allan Cormack of the United
States. Hounsfield and Cormack shared the Nobel Prize in Medicine in 1979.
Many radiologists consider CT scanning to be the most important development
in medical imaging since Roentgen’s original discovery.

As radiography arose from the discovery of x-rays, nuclear medicine arose
from the discovery of radioactivity by Antoine Henri Becquerrel in 1896.
Initially, radionuclides were used in cancer therapy rather than in medical

5



6 Chapter 1 Introduction

imaging. The concept of using radioactive tracers to study physiology was
introduced by George de Hevesy in 1923; de Hevesy is considered the father
of nuclear medicine. A radiotracer is a radioactively labeled drug that mimics
a biological compound of interest; the distribution of the radioactivity implies
the distribution of the drug. Early studies with radiotracers used conventional
nonimaging radiation detectors to roughly determine amounts of radioactivity
in various body regions. In 1949, Benedict Cassen at UCLA started the
development of the first imaging system in nuclear medicine, the rectilinear
scanner. The modern Anger scintillation camera was developed by Hal Anger
at UC Berkeley in 1952. The element of the most commonly used radionuclide
in nuclear medicine, technetium-99m, was discovered in 1937 by Carlo Perrier
and Emilio Segre; its first use in medicine was in 1961.

The interaction of acoustic waves with media was first described by Lord
John Rayleigh over one hundred years ago in the context of the propagation
of sound in air. Modern ultrasound imaging had its roots in World War II
Navy sonar technology, and initial medical applications focused on the
brain. Ultrasound technology progressed through the 1960s from A-mode,
B-mode, and M-mode scans to today’s two-dimensional (2-D) Doppler,
three-dimensional (3-D), and nonlinear imaging systems.

The phenomenon of nuclear magnetic resonance, from which magnetic
resonance imaging (MRI) arises, was first described by Felix Bloch and Edward
Purcell; they shared the 1952 Nobel Prize in Physics. This work was extended
by Richard Ernst, who received the Nobel Prize in Chemistry in 1991. In
1971, Raymond Damadian published a paper suggesting the use of magnetic
resonance (MR) in medical imaging; in 1973, a paper by Paul Lauterbur
followed. Lauterbur received the Nobel Prize in Medicine in 2003, along with
Peter Mansfield, who developed key methods in MRI.

1.2 Physical Signals
In this book, we consider the detection of different physical signals arising from
the patient and their transformation into medical images. In practice, these
signals arise from four processes:

• Transmission of x-rays through the body (in projection radiography and CT)

• Emission of gamma rays from radiotracers in the body (in nuclear medicine)

• Reflection of ultrasonic waves within the body (in ultrasound imaging)

• Precession of spin systems in a large magnetic field (in MRI)

Radiography, CT scanning, and nuclear medicine all make use of elec-
tromagnetic energy. Electromagnetic energy or waves consist of electric and
magnetic waves traveling together at right angles. Wavelength and frequency
are inversely related; frequency and energy are directly related. The electromag-
netic spectrum spans the frequency range from zero to that of cosmic rays;
only a relatively small portion of this spectrum is useful in medical imaging.
At long wavelengths—for example, longer than 1 angstrom—most electromag-
netic energy is highly attenuated by the body, prohibiting its exit and external
detection. At wavelengths shorter than about 10−2 angstroms, the corresponding
energy is too high to be readily detected.
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In this book, we express energy in units of electron volts (eV), where
1 eV is the amount of energy an electron gains when accelerated across 1 volt
potential. We will concentrate on electromagnetic radiation whose wavelengths
correspond to energies of roughly 25–500 keV.

Ultrasound imaging utilizes sound waves, and considerations of attenuation
and detection are similar to those above. Image resolution is not adequate when
wavelengths longer than a couple of millimeters are used, and attenuation is
too high for very short wavelengths. An ideal frequency range for ultrasound in
medical imaging is 1–20 MHz, where 1 Hz = 1 cycle/second.

The signal in MRI arises from the precession (like the motion of a child’s
top or dreidel) of nuclei of the hydrogen atom—that is, protons. When placed
in a large magnetic field, collections of protons, termed spin systems, can be
set into motion by applying radio frequency (RF) currents through wire coils
surrounding the patient. Although these spin systems precess at RF frequencies
(64 MHz is typical), the primary signal source is not from radio waves, but from
the Faraday induction of currents in the same or different wire coils.

1.3 Imaging Modalities
The medical imaging areas we consider in detail in this book are projection
radiography, CT, nuclear medicine, ultrasound imaging, and MRI. An imaging
modality is a particular imaging technique or system within one of these
areas. In this section, we give a brief overview of these most common imaging
modalities.

Projection radiography, CT, and nuclear medicine all use ionizing radiation.
The first two transmit x-rays through the body, then use the fact that the body’s
tissues selectively attenuate (reduce) the x-ray intensities to form an image.
These are termed transmission imaging modalities because they transmit energy
through the body. In nuclear medicine, radioactive compounds are injected into
the body. These compounds or tracers move selectively to different regions or
organs within the body, emitting gamma rays with intensity proportional to
the compound’s local concentration. Nuclear medicine methods are emission
imaging modalities because the radioactive sources emit radiation from within
the body.

Ultrasound imaging transmits high-frequency sound into the body and
receives the echoes returning from structures within the body. This method is
often called reflection imaging because it relies on acoustic reflections to create
images. Finally, MRI requires a combination of a high-strength magnetic field
and radio frequency Faraday induction to image properties of the proton nucleus
of the hydrogen atom. This technique is called magnetic resonance imaging since
it exploits the property of nuclear magnetic resonance.

1.4 Projection Radiography
Projection radiography includes the following modalities:

• Routine diagnostic radiography, including chest x-rays, fluoroscopy, mam-
mography, and motion tomography (a form of tomography that is not
computed tomography)
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• Digital radiography, which includes all the scans in routine radiography, but
with images that are recorded digitally instead of on film

• Angiography, including universal angiography and angiocardiography, in
which the systems are specialized for imaging the body’s blood arteries and
vessels

• Neuroradiology, which includes specialized x-ray systems for precision
studies of the skull and cervical spine

• Mobile x-ray systems, which are small x-ray units designed for operating
rooms or emergency vehicles

• Mammography, which includes film-based or digital-based systems opti-
mized for breast imaging

All of these modalities are called ‘‘projection’’ radiography because they all
represent the projection of a 3-D object or signal onto a 2-D image.

The common element in all of these systems is the x-ray tube. As we will
see in Chapter 5, the x-ray tube generates an x-ray pulse in an approximately
uniform ‘‘cone beam’’ (shaped like a cone) geometry. This pulse passes through
the body and is attenuated by the intervening tissues. The x-ray intensity
profile across the beam exiting from the body is no longer uniform—shadows
have been created by dense objects (such as bone) in the body. This intensity
distribution is revealed using a scintillator, which converts the x-rays to visible
light. Finally, the light image on the scintillator is captured either on a large
sheet of photographic film, a camera, or solid-state detectors.

The most common modality in projection radiography is the chest x-ray;
a typical unit is shown in Figure 1.1(a). Here, the x-ray tube is located on the
column projecting down from the ceiling. The scintillator and detector can be
located either in the pedestal unit on the right or in the table itself. The radiologic
technologist stands at a console not shown, protected by lead, but able to see
through a window. A typical chest x-ray is shown in Figure 1.1(b). This image
shows the spine, ribs, heart, lungs, and many other features radiologists are
trained to identify and interpret. A key feature of this image is that structures
located at different depths in the body are overlaid (or superimposed) on the
2-D image. For example, we can see both front and back ribs in the chest x-ray
in Figure 1.1(b). This is a property of projection imaging, and it is common to

Figure 1.1
(a) A chest x-ray unit and
(b) a chest x-ray image.
Source: Courtesy of GE
Healthcare. (a) (b)
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all projection radiographic methods. True tomography, the imaging of a 2-D
slice of the 3-D body, cannot be directly accomplished using any modality in
projection radiography. More details about projection radiography are given in
Chapter 5.

1.5 Computed Tomography
As in projection radiography, CT uses x-rays. Unlike projection radiography,
however, CT collects multiple projections of the same tissues from different
orientations by moving the x-ray source around the body. CT systems have
rows of digital detectors whose signals are input directly to a computer, and
these signals are used to reconstruct one or more cross sections (slices) of
the human body. In this way, although CT systems acquire projections that
represent a ‘‘shadow’’ of the body, they generate truly tomographic images after
reconstruction.

The important historical phases in CT development are single-slice CT,
helical CT, and multiple-row detector CT (MDCT). Single-slice CT systems
acquire data within a single plane and reconstruct only one plane per rotation. In
helical CT systems, the x-ray tube and detectors continuously rotate around in a
large circle, while the patient is moved in a continuous motion through the circle’s
center. From the patient’s perspective, the x-ray tube carves out a helix; hence,
the name helical CT. The importance of this technique is in its ability to rapidly
acquire 3-D data, such as a whole body scan, in less than a minute. In MDCT
systems, there are many rows of detectors used to rapidly gather a cone of x-ray
data, comprising a 2-D projection of the 3-D patient. When the x-ray source and
detectors revolve rapidly around the patient (one to two revolutions per second),
very quick (near real-time) 3-D imaging is possible using these CT scanners.

A typical CT scanner is shown in Figure 1.2(a). In the center of the picture,
we can see the cylindrical opening in which the patient lies; a patient table is also
visible. Around the cylindrical opening is a housing containing both the x-ray
tube and the detector array. The gantry holding these components is capable
of spinning rapidly around the patient. The computer displays and keyboard in
the foreground are used for entering patient data and viewing images. Although
CT images can be printed on paper or film, the images are completely digital in
nature since they are computed from the measured projections. The CT image

Figure 1.2
(a) A CT scanner and
(b) a CT image of a slice
through the liver.
Source: Courtesy of GE
Healthcare.(a) (b)
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shown in Figure 1.2(b) is a slice through the liver; the data used to reconstruct
this image were acquired in just one second. Computed tomography is described
in more detail in Chapter 6.

1.6 Nuclear Medicine
Nuclear medicine imaging is distinguished from all other medical imaging
modalities by the fact that images can only be made when appropriate radioactive
substances are introduced into the body. These substances, which are either
injected, ingested, or inhaled into the body, are trace amounts of biochemically
active drugs whose molecules are labeled with radionuclides that emit gamma
rays. These so-called radiotracers move within the body according to the body’s
natural uptake of the biological carrier molecule. For example, radioactive
iodine can be used to study thyroid function. A nuclear medicine image reflects
the local concentration of a radiotracer within the body. Since this concentration
is tied to the physiological behavior of the carrier molecule within the body,
nuclear medicine imaging is an example of a functional imaging method, whereas
standard CT and MRI are anatomical or structural imaging methods.

There are three modalities within nuclear medicine: conventional radionu-
clide imaging or scintigraphy, single-photon emission CT (SPECT), and positron
emission tomography (PET). Conventional radionuclide imaging and SPECT
typically utilize a special 2-D gamma ray scintillation detector called an Anger
camera. This camera is designed to detect single x-rays or gamma rays, rather
than simply detecting the intensity of a collective beam as in projection radiogra-
phy and CT. In conventional radionuclide imaging, this camera is conceptually
analogous to the film or digital detector in projection radiography. A complica-
tion is that this procedure combines the effects of emission with the effects of
attenuation of the rays by intervening body tissues, producing images that are
2-D projections of the 3-D distribution of radiotracers (which we wish to know)
confounded by attenuation.

SPECT and PET produce images of slices within the body. SPECT does
this by rotating the Anger camera around the body. Since the Anger camera is
a 2-D imager, SPECT is fundamentally a 3-D imaging technique. In conven-
tional radionuclide imaging and SPECT, a radioactive atom’s decay produces
a single gamma ray, which may intercept the Anger camera. In PET, however,
a radionuclide decay produces a positron, which immediately annihilates (with
an electron) to produce two gamma rays flying off in opposite directions. The
PET scanner looks for coincident detections from opposing detectors in its
ring, thus determining the line that passes through the site where the annihila-
tion occurred. Both SPECT and PET use computed tomography reconstruction
techniques including iterative reconstruction in order to create diagnostic images.

A SPECT scanner is shown in Figure 1.3(a). The Anger camera at the top
(and side) is capable of rotating completely around the patient, who lies on
the table. The table can move in coordination with the camera (for a helical
tomographic scan), or the table can move with a stationary camera (for a
whole-body standard projection scan). The collection of SPECT images shown
in Figure 1.3(b) are cardiac scans taken at different spatial positions in the heart
depicting blood flow to the heart muscle. Nuclear medicine imaging is described
in more detail in Chapters 7 through 9.
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Figure 1.3
(a) A SPECT scanner and
(b) a series of SPECT
heart scans.
Source: Courtesy of GE
Healthcare.(a) (b)

1.7 Ultrasound Imaging
Ultrasound imaging uses electrical-to-acoustical transducers to generate repeti-
tive bursts of high-frequency sound. These pulses travel into the soft tissue of
the body and reflect back to the transducer. The time-of-return of these pulses
gives information about the location (depth) of a reflector, and the intensity
of these pulses gives information about the strength of a reflector. By rapidly
moving or scanning the transducer or its acoustical beam, real-time images of
cross sections of soft tissue can be generated. Ultrasound imaging systems are
comparatively inexpensive and completely noninvasive; therefore, these systems
are widespread and in common usage. They are designed primarily to image
anatomy and, although their image quality in some ways is not as good as other
anatomical imaging modalities such as CT and MRI, they are real-time and
highly adaptable to a wide variety of imaging goals.

Ultrasound imaging systems offer several imaging modalities:

• A-mode imaging, which generates a one-dimensional waveform, and as such
does not really comprise an image. This mode, however, can provide very
detailed information about rapid or subtle motion (e.g., of a heart valve).

• B-mode imaging, which is ordinary cross-sectional anatomical imaging.
There are several arrangements of transducers that can give rise to images
with different appearances.

• M-mode imaging, which generates a succession of A-mode signals, brightness
modulated and displayed in real time on a computer display. M-mode
generates an image that does not represent a cross section of anatomy but
is important for measuring time-varying displacements of, for example, a
heart valve.

• Doppler imaging, which uses the property of frequency or phase shift caused
by moving objects (like a police siren that has a higher frequency when
approaching and a lower frequency when departing) to generate images that
are color coded by their motion. Doppler is most commonly used, however,
in an audio mode. Running the frequency shifts through speakers allows an
aural analysis of motion which is not possible with a visual display.

• Nonlinear imaging, which permits higher resolution imaging at greater
depths and also permits imaging certain tissue properties.
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Figure 1.4
(a) An ultrasound scanner
and (b) an ultrasound
image of a kidney.
Source: Courtesy of GE
Healthcare. (a) (b)

An ultrasound imaging system is shown in Figure 1.4(a). In addition to
being inexpensive, ultrasound systems are small; most systems are on wheels,
and can be rolled to the bedside or wherever needed. Very compact systems with
limited functionality comprising just a transducer and a tablet or a smart phone
are currently being marketed. Two transducers are shown in the figure, with
their connecting cables; only one is used at any given time. Transducers with dif-
fering frequencies and geometries are usually available to serve the examination
requirements. The ultrasound image shown in Figure 1.4(b) shows a human kid-
ney. The textured appearance of ultrasound images is called speckle, and it is a
form of artifact. Ultrasound imaging is described in detail in Chapters 10 and 11.

1.8 Magnetic Resonance Imaging
Magnetic resonance (MR) scanners use the property of nuclear magnetic reso-
nance to create images. In a strong magnetic field, the nucleus of the hydrogen
atom—a proton—tends to align itself with the field. Given the vast numbers of
hydrogen atoms in the body, this tendency results in a net magnetization of the
body. It is then possible to selectively excite regions within the body, causing
groups of these ‘‘little magnets’’ to tip away from the magnetic field direction.
As the protons return back into alignment with the field, they wobble like
children’s tops. Because protons are charged particles, this precession generates
an RF electromagnetic signature, which can be sensed with an antenna.

There are many modes in which an MR scanner can operate; these scanners
are incredibly flexible imaging devices. The most general categories of operation
are the following:

• Standard MRI, which includes a whole host of pulse sequences (time-series
of different excitation pulses)

• Echo-planar imaging (EPI), which utilizes specialized methods to generate
images in real time

• Magnetic resonance spectroscopic imaging (MRS), which records images of
other nuclei besides that of the hydrogen atom

• Functional MRI (fMRI), which uses oxygenation-sensitive pulse sequences
to image blood oxygenation in the brain, which can be related to brain
activity
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Figure 1.5
(a) An MR scanner and
(b) an MR image of a
human knee.
Source: Courtesy of GE
Healthcare.(b)(a)

• Diffusion MRI (dMRI), which images the degree and orientation of molec-
ular diffusion in tissue

We mainly discuss standard MRI in this book, and brief descriptions of fMRI
and dMRI are also provided.

An MR scanner is shown in Figure 1.5(a). Surrounding the tube in the
center of the picture, within the housing, is a 3 tesla superconducting magnet.
The field is very uniform within the bore, which is required for geometrically
accurate imaging. The MR image in Figure 1.5(b) shows a cross section of a
human knee. MRI is discussed in detail in Chapters 12 and 13.

1.9 Multimodality Imaging
Different medical imaging modalities reveal different properties of the human
body. As a result, it is often useful to obtain diagnostic images of a single
patient and medical condition using multiple modalities. For example, one
might look at bones using CT and soft tissues using MRI, or one might examine
brain structure using MRI and brain function using PET. Combining CT and
PET is particularly useful because PET provides functional information that
complements the structural information provided by CT and also because the
CT data can be directly used to improve the reconstructed PET images. Because
of this, virtually all modern PET systems are sold as PET/CT systems that
combine the two modalities within a single platform.

1.10 Summary and Key Concepts
In practice, radiologists look for specific patterns in medical images. These
patterns depend on both the patient and the imaging modality. It is the job of
the engineers and scientists who develop medical imaging systems to produce
images that are as accurate and useful as possible; these systems depend on
the physics of each modality. In this chapter, we presented the following key
concepts that you should now understand:

1. Medical imaging relies on noninvasive techniques to image body structures
and function.
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2. Each technique or method is a different imaging modality.

3. The main imaging modalities are projection radiography, computed tomog-
raphy, nuclear medicine, ultrasound imaging, and magnetic resonance
imaging.

4. The signal of interest is defined by the modality and specific imaging
parameters.

5. Radiologists are trained to look for specific patterns, defined by the modality,
specific imaging parameters, and differences in the expected signal in health
and disease.
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2.1 Introduction
Signals and systems are two fundamental concepts for modeling medical imag-
ing systems. Signals are mathematical functions of one or more independent
variables, capable of modeling a variety of physical processes. Systems respond
to signals by producing new signals. They are useful for modeling how physical
processes (signals) change in natural environments and how devices, such as
medical imaging instruments, create new signals (i.e., images). This chapter
provides an introduction to the theory of signals and systems, with a focus on
those tools required for modeling medical imaging systems.

Signals can be classified into three categories: (1) continuous, (2) discrete,
and (3) mixed. A continuous signal is a function of independent variables that
range over a continuum of values. For example, in computed tomography (CT),
the distribution of x-ray attenuation in a cross-section within the body can be
mathematically modeled using a function f (x, y) of two independent real-valued
variables x and y, which represent two spatial dimensions. Physical processes
are usually modeled using continuous signals. Some medical images, such as
those obtained on x-ray film, are also modeled as continuous signals.

A discrete signal is a function of independent variables that range over
discrete values. These signals can be used to model physical processes that
naturally correspond to discrete values. For example, the times of arrival of
photons in a radioactive decay process form a discrete sequence of arrival
times—that is, an intrinsically discrete signal. Discrete signals can also be used
to represent continuous signals. For example, the x-ray distribution f (x, y)
described above might be represented in a computer as a function fd(m, n) of
two independent discrete variables m and n.

Finally, a mixed signal is a function of some continuous and some discrete
independent variables. Signals of this type are acquired by certain medical
imaging instruments. For example, in CT, a signal g(�, θk), k = 1, 2, . . . , is
recorded as a result of a parallel or fan beam of x-rays passing through an
object. Variable � is often modeled as continuous-valued, representing the

15
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distance of a particular ray from the center of the object, whereas θk is a
discrete-valued variable, representing the beam’s angle relative to a reference
coordinate system (see Chapter 6).

Based on the previous signal classification, systems can also be organized
into categories. For example, we may consider a continuous-to-continuous
system that responds to a continuous signal by producing a continuous signal,
or a continuous-to-discrete system that responds to a continuous signal by
producing a discrete signal. For example, an analog-to-digital converter takes a
continuous signal as input and produces a discrete signal as output through a
process called sampling (see Chapter 3).

In this book, we consider one-dimensional (1-D), two-dimensional (2-D),
and three-dimensional (3-D) signals and systems. In this chapter, we primarily
develop 2-D continuous signals and systems; restriction to one dimension or
extension to three dimensions is straightforward in most cases. In all cases, you
can think of the input signal (to the imaging system) as coming from the patient
and the output signal as coming from the imaging system. The challenge in
medical imaging is to make the output signal a faithful representation of the
input signal.

2.2 Signals
A continuous signal f is defined as a function

f (x, y), −∞ ≤ x, y ≤ ∞ (2.1)

of two independent real-valued variables x and y. This signal can be represented
and visualized in two different ways. We may plot the signal as a function of
the two independent variables x and y, or we may display it by assigning an
intensity or brightness proportional to its value at (x, y). This is illustrated in
Figure 2.1. In the first case, we call f (x, y) a function or a signal and (x, y) a
point. In the second case, we call f an image and (x, y) a pixel, a word that
is derived from ‘‘picture element.’’ The 3-D analog of the pixel is the voxel,
from ‘‘volume element.’’ This is illustrated in Figure 2.2. The representation in
Figure 2.1(a) is useful in mathematical calculations, while that in Figure 2.1(b)
is most appropriate for human observers. Accordingly, in this book, we focus
primarily on two-dimensional pixel-based representations.

A number of special signals will frequently be used throughout this book.
These include the point impulse, the comb and sampling functions, the line
impulse, the rect and sinc functions, and exponential and sinusoidal signals. In
addition, many signals will have properties that distinguish them from other
signals and make their use in analysis easier. Separability and periodicity are two
such common properties. We now study these special signals and properties.

2.2.1 Point Impulse

It is very useful in medical imaging to mathematically model the concept of a
point source, which is used in the characterization of imaging system resolution.
For example, if the source is very small, yet appears to be very large (blurred out)
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Figure 2.1
Two alternative signal
visualizations: (a) a
functional plot and (b) an
image display.

x

y

x

y

(a) (b)

Figure 2.2
The representation of a
3-D object as a 2-D
image. The 3-D object is
represented by a
collection of voxels; the
2-D image is made up of
pixels. In this example,
the image is a slice
through the 3-D object.
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in its radiological image, then we would say that the resolution of the system is
poor. Precise definitions of resolution will be introduced in Chapter 3.

The concept of a point source in one dimension is known as the 1-D point
impulse, δ(x), which is defined by the following two properties:

δ(x) = 0 , x �= 0 , (2.2)∫ ∞

−∞
f (x)δ(x) dx = f (0) . (2.3)

In other references, the point impulse is also known as the delta function, the
Dirac function, and the impulse function. The point impulse is not a function in
the usual sense, but instead acts on other signals through integration, as we will
see. It models the property of a point source by having infinitesimal width and
unit area, which can be shown by taking f (x) = 1 in (2.3).

The 2-D point impulse, δ(x, y) (also called the 2-D impulse function, 2-D
delta function, or 2-D Dirac function), is analogously characterized by

δ(x, y) = 0 , (x, y) �= (0, 0) , (2.4)∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x, y) dx dy = f (0, 0) . (2.5)
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Figure 2.3
Signals derived from the
point impulse: (a) point
impulse δ(x, y), (b) shifted
point impulse δ(x − ξ ,
y − η), (c) line impulse
δ�(x, y), and (d) sampling
function δs(x, y; �x, �y)
(note that the impulses
extend to infinity in both
x and y directions).
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The 2-D point impulse (also not a function in the usual sense) models the
property of a point source located at (0, 0) by having infinitesimal width and
unit volume. Figure 2.3(a) illustrates this concept.

In (2.5), the point impulse ‘‘picks off’’ the value of f (x, y) at the location
(0, 0) by multiplying f (x, y) with the point impulse followed by integration
over all space. Suppose we shift the delta function to position (ξ , η)—that is,
δ(x − ξ , y − η)—as shown in Figure 2.3(b). Using a change of variables in (2.5),
it can be shown that

f (ξ , η) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x − ξ , y − η) dx dy . (2.6)

This important property of the point impulse is known as the sifting property.

EXAMPLE 2.1
Consider the point impulse shifted to position (ξ , η)—that is, δ(x − ξ , y − η).

Question What is the nature of the function that is defined as the product of f (x, y)
with the shifted point impulse?

Answer Let g(x, y) = f (x, y)δ(x − ξ , y − η). Whenever (x, y) �= (ξ , η), the function δ(x −
ξ , y − η) is zero, which means that

g(x, y) = 0 , (x, y) �= (ξ , η) .

When (x, y) = (ξ , η), the shifted delta function is undefined (because its value is infinity), so
g(ξ , η) is also undefined. However, we know from (2.6) that the integral of g(x, y)—that
is, its volume—is f (ξ , η). Therefore, we can conclude that g(x, y) is a point impulse
function located at (ξ , η) having volume f (ξ , η), or

g(x, y) = f (ξ , η)δ(x − ξ , y − η) . (2.7)
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This result tells us that we can interpret the product of a function with a point impulse as
another point impulse whose volume is equal to the value of the function at the location
of the point impulse.

Two other properties of the point impulse will be used throughout the book.
The scaling property of the point impulse is given by

δ(ax, by) = 1
|ab| δ(x, y) . (2.8)

Finally, we occasionally need to use the fact that the point impulse is an even
function; that is,

δ(−x, −y) = δ(x, y) , (2.9)

which follows from (2.8) by setting a = b = −1.

2.2.2 Line Impulse

When calibrating medical imaging equipment, it is sometimes easier to use a
linelike rather than a pointlike object. For example, it may be easier to position
a wire than a small bead to assess the resolution of a projection radiography
system. For this reason, we would like a mathematical model for a line source.

Consider the set of points defined by

L(�, θ ) = {(x, y) | x cos θ + y sin θ = �} . (2.10)

It can be shown that L(�, θ ) is a line whose unit normal is oriented at an angle θ

relative to the x-axis and is at distance � from the origin in the direction of the
unit normal. This geometry can be seen in Figure 2.3(c).

The line impulse δ�(x, y) associated with line L(�, θ ) is given by

δ�(x, y) = δ(x cos θ + y sin θ − �) . (2.11)

This signal, illustrated in Figure 2.3(c), is effectively a 1-D impulse function
‘‘spread out’’ on the line L(�, θ ).

2.2.3 Comb and Sampling Functions

We now consider two functions that are critical to the way medical images
are produced, manipulated, and stored in real-world systems. In such systems,
medical images are not treated as continuous functions, but as discrete functions.
We will have more to say about this in Chapter 3. Here, we introduce these
two critical functions in relation to the other functions being introduced in this
chapter.

We saw above that through the use of a shifted point impulse [within the
double integral in (2.6)], we could ‘‘pick off’’ the value of a function at a single
point. In nearly all medical imaging modalities, we need to pick off values not
just at a single point but on a grid or matrix of points, a process that is called
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sampling. Collectively, this matrix of values represents the medical image that
is observed. For example, a CT image is typically a 1,024 × 1,024 matrix of
CT numbers, representing a physical parameter called the linear attenuation
coefficient of a cross-section of the human body. A magnetic resonance (MR)
image is typically a 256 × 256 matrix of values, representing one of several
possible nuclear magnetic resonance (NMR) properties of tissues.

As a first step toward characterizing sampling mathematically, we introduce
the comb function, given by

comb(x) =
∞∑

n=−∞
δ(x − n) . (2.12)

The comb function is also known as the shah function. It is called the comb
function because the set of shifted point impulses constituting it resembles the
teeth of a comb. In 2-D, the comb function is given by

comb(x, y) =
∞∑

m=−∞

∞∑
n=−∞

δ(x − m, y − n) . (2.13)

It is useful in describing signal sampling (see Section 3.6) to space the point
impulses in the comb function by amounts �x in the x direction, and �y in the
y direction. This yields the sampling function δs(x, y;�x, �y), defined by

δs(x, y;�x, �y) =
∞∑

m=−∞

∞∑
n=−∞

δ(x − m�x, y − n�y). (2.14)

It can be shown using the scaling property (2.8) of the point impulse, that the
sampling function is related to the comb function as follows:

δs(x, y;�x, �y) = 1
�x�y

comb
(

x
�x

,
y

�y

)
. (2.15)

The sampling function is a sequence of point impulses located at points
(m�x, n�y), −∞ < m, n < ∞, in the plane, as illustrated in Figure 2.3(d).
The concept of the sampling function is critical for understanding discretiza-
tion—the process of going from a continuous signal to a discrete signal.

2.2.4 Rect and Sinc Functions

Two signals that are frequently used in the study of medical imaging systems
are the rect and sinc functions. The rect function is given by

rect(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for |x| <
1
2

and |y| <
1
2

0, for |x| >
1
2

or |y| >
1
2

, (2.16)
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where the value at |x| = 1/2, |y| ≤ 1/2 or |x| ≤ 1/2, |y| = 1/2 is immaterial.
(If this value is desired, we usually set it to 1/2.) The rect function is a finite
energy signal, with unit total energy, that models signal concentration over a
unit square centered around point (0, 0). We can use the product

f (x, y) rect
(

x − ξ

X
,

y − η

Y

)
(2.17)

to select that part of signal f (x, y) centered at a point (ξ , η) of the plane with
width X and height Y, and set the rest to zero.

The rect function can be written as the product of two 1-D rect functions,

rect(x, y) = rect(x) rect(y) , (2.18)

where

rect(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for |x| <
1
2

0, for |x| >
1
2

. (2.19)

The 1-D rect function is plotted in Figure 2.4(a).
The sinc function is given by

sinc(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1, for x = y = 0

sin(πx) sin(πy)
π2xy

, otherwise.
(2.20)

The sinc function is a finite energy signal with unit total energy. Its maximum
value equals 1, and is attained at point (0, 0). The sinc function can be written
as the product of two 1-D sinc functions,

sinc(x, y) = sinc(x) sinc(y), (2.21)

Figure 2.4
(a) The 1-D rect function
rect(x), and (b) the 1-D
sinc function sinc(x).

x

1

1 2 3 40

rect(x)

sinc(x)

x1/2

1

0

(a) (b)

�1/2 �4 �3 �2 �1
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where

sinc(x) = sin(πx)
πx

. (2.22)

The 1-D sinc function is plotted in Figure 2.4(b). This function consists of a
main lobe and side lobes, which are smaller in height and eventually diminish
to zero for large values of x. It alternates between positive and negative values
by passing through zero at points x = ±1, ±2, . . . .

The rect and sinc functions are useful in understanding the influence of
the finite width of pixels in portraying an originally continuous signal as a
discrete image.

2.2.5 Exponential and Sinusoidal Signals

Another continuous signal is the complex exponential signal, given by

e(x, y) = ej2π (u0x+v0y) , (2.23)

where u0 and v0 are two real-valued parameters and j2 = −1. These parameters
are usually referred to as fundamental frequencies, and have units that are the
inverse of the units of x and y. For example, if x and y are given in mm, then u0
and v0 have the unit mm−1.

The complex exponential signal can be decomposed into real and imaginary
parts using two sinusoidal signals:

s(x, y) = sin[2π (u0x + v0y)] and c(x, y) = cos[2π (u0x + v0y)] . (2.24)

Indeed,

e(x, y) = ej2π (u0x+v0y)

= cos[2π (u0x + v0y)] + j sin[2π (u0x + v0y)]

= c(x, y) + js(x, y) . (2.25)

On the other hand, a sinusoidal signal can be written in terms of two
complex exponential signals, since

s(x, y) = sin[2π (u0x + v0y)] = 1
2j

ej2π (u0x+v0y) − 1
2j

e−j2π (u0x+v0y) , (2.26)

c(x, y) = cos[2π (u0x + v0y)] = 1
2

ej2π (u0x+v0y) + 1
2

e−j2π (u0x+v0y) . (2.27)

The fundamental frequencies u0 and v0 affect the oscillating behavior of the
sinusoidal signals in the x and y directions, respectively. For example, small
values of u0 result in slow oscillations in the x direction, whereas large values
result in fast oscillations in the x direction. This is illustrated in Figure 2.5.

The concepts of exponential signals are particularly useful in Fourier analy-
sis, which is used in image reconstruction and in understanding MRI.
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Figure 2.5
Six instances of the
sinusoidal signal s(x, y) =
sin[2π (u0x + v0y)],
0 ≤ x, y ≤ 1, for various
values of the fundamental
frequencies u0, v0. Notice
that small values result in
slow oscillations in the
corresponding direction,
whereas large values
result in fast oscillations.

u0 � 1, v0 � 0 u0 � 2, v0 � 0 u0 � 4, v0 � 0

u0 � 4, v0 � 1 u0 � 4, v0 � 2 u0 � 4, v0 � 4

2.2.6 Separable Signals

Separable signals form another class of continuous signals. A signal f (x, y) is a
separable signal if there exist two 1-D signals f1(x) and f2(y) such that

f (x, y) = f1(x)f2(y) . (2.28)

A 2-D separable signal that is a function of two independent variables x and
y can be separated into a product of two 1-D signals, one of which is only
a function of x and the other only of y. Notice that the point impulse is a
separable signal, since δ(x, y) = δ(x)δ(y). From (2.18) and (2.21), the rect and
sinc functions are separable signals as well.

Separable signals are limited in the sense that they can only model signal
variations independently in the x and y directions. However, there are instances
in which use of separable signals is appropriate. Of major importance is the fact
that operating on separable signals is much simpler than operating on purely 2-D
signals, since, for separable signals 2-D operations reduce to simpler consecutive
1-D operations.

2.2.7 Periodic Signals

A signal f (x, y) is a periodic signal if there are two positive constants X and Y
such that

f (x, y) = f (x + X, y) = f (x, y + Y) , (2.29)
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where X and Y are known as the signal periods in the x and y direction, respec-
tively. From (2.29), we need to know a periodic signal only in the rectangular
window 0 ≤ x < X, 0 ≤ y < Y. The sampling function δs(x, y;�x, �y) [(2.14)]
is a periodic signal with periods X = �x and Y = �y, whereas exponential and
sinusoidal signals [(2.23) and (2.24)] are periodic with periods X = 1/u0 and
Y = 1/v0.

2.3 Systems
A continuous-to-continuous (or simply continuous) system is defined as a
transformation S of an input continuous signal f (x, y) to an output continuous
signal g(x, y). This is illustrated in Figure 2.6, which depicts the response of a
system S to a point impulse. In general,

g(x, y) = S[f (x, y)] , (2.30)

which is known as the input-output equation of system S. With a slight abuse of
notation, we denote by S[f (x, y)] the value, at point (x, y), of the signal obtained
by applying the transformation S on the entire signal f (x, y). The importance of
(2.30) is that it implies that we can predict the output of an imaging system if
we know the input f and the characteristics of the imaging system S.

Equation (2.30) is too general to be useful in practice. In a particular
application, there might be many choices for S, and the question is which one
is more appropriate. For a choice of S to be useful, it should be mathematically
tractable. It is therefore necessary to limit our choices, by considering systems
obtained using transformations S that satisfy certain simplifying assumptions.
Of course, any choice of S should accurately portray the actual situation.

2.3.1 Linear Systems

A simplifying assumption is that of linearity. A system S is a linear system
if, when the input consists of a weighted summation of several signals, the
output will also be a weighted summation of the responses of the system
to each individual input signal. More precisely, for any collection {fk(x, y),
k = 1, 2, . . . , K} of input signals, and for any collection {wk, k = 1, 2, . . . , K} of
weights, we have

S

⎡
⎣ K∑

k=1

wkfk(x, y)

⎤
⎦ =

K∑
k=1

wkS
[
fk(x, y)

]
. (2.31)

Figure 2.6
The response of a
continuous system to a
point impulse. Input f Output gSystem 
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The linearity assumption leads to a class of relatively simple systems, which are
tractable and enjoy a number of useful properties. Linearity is thus a critical
assumption used in this book.

How reasonable is the assumption of linearity in practice? Are linear systems
good mathematical approximations of the physical phenomena underlying med-
ical imaging? It turns out that many medical imaging systems are approximately
linear. In practice, this means that the image of an ensemble of signals is (nearly)
identical to the sum of separate images of each signal, which is considered next.

2.3.2 Impulse Response

We now investigate how a linear system responds to an arbitrary input signal
f (x, y) and demonstrate the fact that linearity leads to tractable systems. How-
ever, before we pursue this investigation, it will be beneficial to first consider the
output of a system S to a point impulse. Let us denote by h(x, y; ξ , η) the output
of system S to input δξη(x, y) = δ(x − ξ , y − η) [that is, a point impulse located
at (ξ , η)]. In this case,

h(x, y; ξ , η) = S[δξη(x, y)] . (2.32)

In general, this output depends on four independent variables; it is therefore a
four-dimensional signal. The response h(x, y; ξ , η) is known as the point spread
function (PSF) of system S, or, equivalently, the impulse response function.

Let us now assume that S is a linear system. If f (x, y) is an arbitrary input to
S, then by starting with (2.30) and applying (2.6), (2.31), and (2.32), the output
g(x, y) will be given by

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (ξ , η)h(x, y; ξ , η) dξdη . (2.33)

The integral in (2.33) is known as the superposition integral. This equation
shows that the PSF h(x, y; ξ , η) uniquely characterizes a linear system; that is,
we only need to know the PSF of a linear system in order to calculate its output
in response to a given input.

In fact, (2.33) facilitates computation of the output g(x, y) from an arbitrary
but known input f (x, y). If the PSF h(x, y; ξ , η) is known for every (x, y, ξ , η),
then this computation reduces to calculating the double integral in (2.33). In
practice, however, knowing the PSF for every (x, y, ξ , η) is a formidable task,
since this either requires that h(x, y; ξ , η) is known analytically, which is true
only in limited circumstances of usually no practical interest, or that h(x, y; ξ , η)
is experimentally measured and stored in numerical form, which is usually
not practical due to the four-dimensional nature of h(x, y; ξ , η). Therefore,
additional simplification is needed at this point, which may be achieved by
imposing additional conditions on system S.

2.3.3 Shift Invariance

An additional simplifying assumption is shift invariance. A system S is shift-
invariant if an arbitrary translation of the input results in an identical translation
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in the output. In mathematical terms, if

fx0y0 (x, y) = f (x − x0, y − y0) (2.34)

is a translated version of an input signal f (x, y) shifted at a point (x0, y0), then

g(x − x0, y − y0) = S[fx0y0 (x, y)] , (2.35)

where g(x, y) is given by (2.30). Therefore, the response of a shift-invariant
system to a translated input equals the response of the system to the actual input
translated by the same amount.

Shift invariance does not require or imply linearity: a system may be
shift-invariant but not linear and vice versa. However, if a linear system S
is shift-invariant and

h(x, y) = S[δ(x, y)] , (2.36)

then

S[δξη(x, y)] = h(x − ξ , y − η) . (2.37)

In this case, the PSF is a 2-D signal. Therefore, by imposing shift invariance on
a linear system, we are able to reduce the dimensionality of the PSF by a factor
of two.

In practice, this means that the PSF is the same throughout the field-of-view
of a shift-invariant imaging system. If we measure the PSF at one position, we
can assume the same PSF at all other positions within the imaging field. Such a
measurement is accomplished by using a (very) small point object (to mimic a
point impulse) and (2.36), which indicates that the image of this point object is
the PSF.

A system S that is both linear and shift-invariant is known as a linear
shift-invariant (LSI) system. If S is an LSI system, then [see (2.32), (2.33), and
(2.37)]

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (ξ , η)h(x − ξ , y − η) dξdη , (2.38)

or, simply,

g(x, y) = h(x, y) ∗ f (x, y) . (2.39)

Equations (2.38) and (2.39) are known as the convolution integral and the
convolution equation, respectively. Convolution plays a fundamental role in the
theory of signals and systems. In this book, we almost exclusively deal with
LSI systems. Treating imaging systems as LSI systems significantly simplifies our
analysis of these systems, and in most cases is accurate enough for practical use.

EXAMPLE 2.2
Consider a continuous system with input-output equation

g(x, y) = 2f (x, y) . (2.40)
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Question Is this system linear and shift-invariant?

Answer If g′(x, y) is the response of the system to input
∑K

k=1 wkfk(x, y), then

g′(x, y) = 2

⎛
⎝ K∑

k=1

wkfk(x, y)

⎞
⎠

=
K∑

k=1

wk2fk(x, y)

=
K∑

k=1

wkgk(x, y) , (2.41)

where gk(x, y) is the response of the system to input fk(x, y). Therefore, the system is
linear. On the other hand, if g′(x, y) is the response of the system to input f (x − x0, y − y0),
then

g′(x, y) = 2f (x − x0, y − y0) = g(x − x0, y − y0) , (2.42)

and the system is also shift-invariant.

EXAMPLE 2.3
Consider a continuous system with input-output equation

g(x, y) = xyf (x, y) . (2.43)

Question Is this system linear and shift-invariant?

Answer If g′(x, y) is the response of the system to input
∑K

k=1 wkfk(x, y), then

g′(x, y) = xy

⎛
⎝ K∑

k=1

wkfk(x, y)

⎞
⎠

=
K∑

k=1

wkxyfk(x, y)

=
K∑

k=1

wkgk(x, y) , (2.44)

where gk(x, y) is the response of the system to input fk(x, y). Therefore, the system is
linear. On the other hand, if g′(x, y) is the response of the system to input f (x − x0, y − y0)
where x0 �= 0 and y0 �= 0, then

g′(x, y) = xyf (x − x0, y − y0)

�= (x − x0)(y − y0)f (x − x0, y − y0) .

Thus,

g′(x, y) �= g(x − x0, y − y0) , (2.45)

and the system is not shift-invariant.
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2.3.4 Connections of LSI Systems

LSI systems can be stand-alone or connected with other LSI systems. Two types
of connections are usually considered: (1) cascade or serial connections and
(2) parallel connections.

Figure 2.7(a) illustrates two equivalent cascade connections of two LSI
systems with PSFs h1(x, y) and h2(x, y), as well as the equivalent ‘‘single’’ LSI
system. In this case, the following is true:

g(x, y) = h2(x, y) ∗ [h1(x, y) ∗ f (x, y)]

= h1(x, y) ∗ [h2(x, y) ∗ f (x, y)]

= [h1(x, y) ∗ h2(x, y)] ∗ f (x, y) , (2.46)

and

h1(x, y) ∗ h2(x, y) = h2(x, y) ∗ h1(x, y) . (2.47)

Equations (2.46) and (2.47) are two properties of convolution, known as
associativity and commutativity, respectively. From the commutativity property,
we see that g(x, y) = h(x, y) ∗ f (x, y) = f (x, y) ∗ h(x, y), which leads to

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (ξ , η)h(x − ξ , y − η) dξdη

=
∫ ∞

−∞

∫ ∞

−∞
h(ξ , η)f (x − ξ , y − η) dξdη . (2.48)

Figure 2.7(b) illustrates a parallel connection of two LSI systems with PSFs
h1(x, y) and h2(x, y), as well as the resulting equivalent single LSI system. In this
case,

g(x, y) = h1(x, y) ∗ f (x, y) + h2(x, y) ∗ f (x, y)

= [h1(x, y) + h2(x, y)] ∗ f (x, y) , (2.49)

which is another property of convolution, known as distributivity.

Figure 2.7
(a) Cascade connection of
two LSI systems.
(b) Parallel connection of
two LSI systems. (a) (b)
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The properties of associativity, commutativity, and distributivity associated
with LSI systems significantly simplify our analysis. (We imagine you are getting
the idea why we like treating medical imaging systems as LSI so much!)

EXAMPLE 2.4
Consider two LSI systems connected in cascade, with Gaussian PSFs of the form

h1(x, y) = 1

2πσ 2
1

e−(x2+y2)/2σ2
1 and h2(x, y) = 1

2πσ 2
2

e−(x2+y2)/2σ2
2 , (2.50)

where σ1 and σ2 are two positive constants.

Question What is the PSF of this system?

Answer This connection is equivalent to a single LSI system with impulse response
h(x, y), given by

h(x, y) = h1(x, y) ∗ h2(x, y)

=
∫ ∞

−∞

∫ ∞

−∞
h2(ξ , η)h1(x − ξ , y − η) dξdη

= 1

4π2σ 2
1 σ 2

2

∫ ∞

−∞

∫ ∞

−∞
e−(ξ2+η2)/2σ2

2 e−[(x−ξ )2+(y−η)2]/2σ2
1 dξdη

= 1

4π2σ 2
1 σ 2

2

∫ ∞

−∞
e−ξ2/2σ2

2 −(x−ξ )2/2σ2
1 dξ

∫ ∞

−∞
e−η2/2σ2

2 −(y−η)2/2σ2
1 dη . (2.51)

However,

∫ ∞

−∞
e−ξ2/2σ2

2 −(x−ξ )2/2σ2
1 dξ = e−x2/2(σ2

1 +σ2
2 )
∫ ∞

−∞
e
− σ2

1 +σ2
2

2σ2
1 σ2

2

{
ξ−[σ2

2 /(σ2
1 +σ2

2 )]x
}2

dξ

= e−x2/2(σ2
1 +σ2

2 )
∫ ∞

−∞
e
− σ2

1 +σ2
2

2σ2
1 σ2

2
τ2

dτ

=
√

2πσ1σ2√
σ 2

1 + σ 2
2

e−x2/2(σ2
1 +σ2

2 ) , (2.52)

in which case

h(x, y) = 1

2π (σ 2
1 + σ 2

2 )
exp

{
−(x2 + y2)

2(σ 2
1 + σ 2

2 )

}
. (2.53)

To obtain the second equality in (2.52), we have substituted the variable ξ − [σ 2
2 /(σ 2

1 +
σ 2

2 )] x with τ ; whereas, to obtain the third equality, we have used the fact that

∫ ∞

−∞
e−a2τ2

dτ =
√

π

a
, for a �= 0 . (2.54)

The resulting PSF is Gaussian as well.
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2.3.5 Separable Systems

Separable systems form an important class of LSI systems. As with separable
signals, a 2-D LSI system with PSF h(x, y) is a separable system if there are two
1-D systems with PSFs h1(x) and h2(y), such that

h(x, y) = h1(x)h2(y) . (2.55)

A 2-D separable system consists of a cascade of two 1-D systems, one applied
in the x direction and the other one in the y direction. Therefore, for a 2-D
separable system, the 2-D convolution integral (2.38) can be calculated using
two simpler 1-D convolution integrals, as follows:

• Compute w(x, y) =
∫ ∞

−∞
f (ξ , y)h1(x − ξ ) dξ , for every y.

• Compute g(x, y) =
∫ ∞

−∞
w(x, η)h2(y − η) dη, for every x.

Indeed,

∫ ∞

−∞
w(x, η)h2(y − η) dη =

∫ ∞

−∞

[∫ ∞

−∞
f (ξ , η)h1(x − ξ )dξ

]
h2(y − η) dη

=
∫ ∞

−∞

∫ ∞

−∞
f (ξ , η)h1(x − ξ )h2(y − η) dξdη

=
∫ ∞

−∞

∫ ∞

−∞
f (ξ , η)h(x − ξ , y − η) dξdη [from (2.55)]

= h(x, y) ∗ f (x, y) = g(x, y) . (2.56)

The first step keeps y fixed, treats image f (x, y) as a 1-D signal, and convolves
it with the PSF h1(x) to obtain w(x, y) for every y. The second step keeps x fixed,
treats image w(x, y) as a 1-D signal, and convolves it with the PSF h2(y). This is
illustrated in Figure 2.8, which depicts the result of convolving an image with a

Figure 2.8
Calculation of the output
of a 2-D separable system
by using two 1-D steps in
cascade.

1-D convolution

f(x, y) g(x, y)w(x, y)
x x

y

(0, 0) (0, 0) (0, 0)

y y

x

f(x, y) � h1(x)

1-D convolution

w(x, y) � h2(y)
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2-D Gaussian PSF of the form

h(x, y) = 1
2πσ 2 e−(x2+y2)/2σ2

, (2.57)

with σ = 4, by using two 1-D steps in cascade. This PSF is separable, with

h1(x) = 1√
2πσ

e−x2/2σ2
and h2(y) = 1√

2πσ
e−y2/2σ2

. (2.58)

In practice, it is often faster (and easier) to execute two consecutive 1-D
operations than a single 2-D operation, so the concept of separability is quite
useful (when applicable).

2.3.6 Stable Systems

Stability is an important property of medical imaging systems. Informally, a
medical imaging system is stable if small inputs lead to outputs that do not
diverge. Although there are many ways to characterize system stability, we
only consider bounded-input bounded-output (BIBO) stability here. A system is
a bounded-input bounded-output (BIBO) stable system if, when the input is a
bounded signal—that is, when∣∣f (x, y)

∣∣ ≤ B < ∞ , for every (x, y) , (2.59)

for some finite B—there exists a finite B′ such that∣∣g(x, y)
∣∣ = ∣∣h(x, y) ∗ f (x, y)

∣∣ ≤ B′ < ∞ , for every (x, y) , (2.60)

in which case the output will also be a bounded signal. It can be shown that an
LSI system is a BIBO stable system if and only if its PSF is absolutely integrable,
in which case ∫ ∞

−∞

∫ ∞

−∞

∣∣h(x, y)
∣∣ dx dy < ∞ . (2.61)

In practice, it is very important to design medical imaging systems that are
stable. The output of an unstable system may grow out of bound, even if the
input is small. This is an undesirable problem that strongly affects the accuracy
and diagnostic utility of a medical imaging system. In the physical world, most
systems are stable. However, when we design a medical imaging system, we may
occasionally be tempted to model it using a PSF that does not satisfy (2.61), in
which case we need to find alternative stable PSFs. This will be encountered in
Chapter 6, for example, where computed tomography is discussed.

2.4 The Fourier Transform
Although the convolution equation provides a means of relating the output of
an LSI system to its input, there exists an alternative (and equivalent) way of
viewing this relationship: the Fourier transform. The Fourier transform provides
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a different perspective on how signals and systems interact, and it leads to
alternative tools for system analysis and implementation.

Recall that the convolution equation [(2.39)] was obtained by decomposing
a signal into point impulses [see (2.6), (2.32), and (2.33)]. An alternative way to
decompose a signal is in terms of complex exponential signals. It can be shown
that if

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2π (ux+vy) dx dy , (2.62)

then

f (x, y) =
∫ ∞

−∞

∫ ∞

−∞
F(u, v)ej2π (ux+vy) du dv . (2.63)

The double integral in (2.62) [as well as the function F(u, v)] is known as
the (2-D) Fourier transform of f (x, y), whereas the double integral in (2.63) is
known as the (2-D) inverse Fourier transform. We use the notation

F(u, v) = F2D(f )(u, v) and f (x, y) = F −1
2D (F)(x, y) (2.64)

to denote the Fourier transform and its inverse, respectively. The subscript ‘‘2D’’
is used to indicate that the Fourier transform is 2-D.

Before we can use the Fourier transform and its inverse, we need to make
sure that the integrals in (2.62) and (2.63) exist. A sufficient condition for the
existence of such integrals is that the signal f (x, y) is continuous, or has a finite
number of discontinuities, and that it is absolutely integrable. These conditions
are almost always satisfied in practice.

Equation (2.63) shows that the Fourier transform produces a decomposition
of a signal f (x, y) into complex exponentials ej2π (ux+vy) with strength F(u, v).
The variables u and v are known as the x and y (spatial) frequencies of signal
f (x, y), respectively. The Fourier transform F(u, v) is frequently referred to as the
spectrum of f (x, y). Since

ej2π (u0x+v0y) = cos[2π (u0x + v0y)] + j sin[2π (u0x + v0y)] , (2.65)

the Fourier transform provides information on the sinusoidal composition
of a signal f (x, y) at different frequencies. Notice the relationship between
the Fourier transform and the exponential and sinusoidal signals discussed
in Section 2.2.5.

In practice, the Fourier transform allows us to separately consider the action
of an LSI system on each sinusoidal frequency. This general characterization of
an LSI system then carries over to the action on arbitrary signals by considering
the signals’ Fourier transforms.

In general, the Fourier transform is a complex-valued signal, even if f (x, y)
is real-valued. It is quite common then to separately consider the Fourier
transform’s magnitude and phase, given by

|F(u, v)| =
√

F2
R(u, v) + F2

I (u, v) , (2.66)
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and
� F(u, v) = tan−1

(
FI(u, v)
FR(u, v)

)
, (2.67)

where FR(u, v) and FI(u, v) are the real and imaginary parts of F(u, v), respectively
[i.e., F(u, v) = FR(u, v) + jFI(u, v)], in which case

F(u, v) = |F(u, v)| ej� F(u,v) . (2.68)

The magnitude |F(u, v)| and phase � F(u, v) are usually referred to as the mag-
nitude spectrum and the phase spectrum, respectively. Moreover, the square
|F(u, v)|2 of the magnitude spectrum is usually referred to as the power spec-
trum. Notice that both the magnitude and phase spectra are required to uniquely
determine f (x, y).

We now provide a few examples of signals and their corresponding Fourier
transforms. Some basic Fourier transform pairs are summarized in Table 2.1.

EXAMPLE 2.5
Consider the point impulse δ(x, y).

Question What is its Fourier transform?

Answer From (2.62), we have

F2D(δ)(u, v) =
∫ ∞

−∞

∫ ∞

−∞
δ(x, y)e−j2π(ux+vy) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
δ(x, y)e−j2π(u0+v0) dx dy [from (2.7)]

=
∫ ∞

−∞

∫ ∞

−∞
δ(x, y) dx dy = 1 [from (2.5)] . (2.69)

In this case, the magnitude spectrum is 1, whereas the phase spectrum is 0. Therefore,
the Fourier transform of a point impulse is constant over all frequencies, with strength
equal to 1.

TABLE 2.1

Basic Fourier Transform Pairs

Signal Fourier Transform

1 δ(u, v)
δ(x, y) 1
δ (x − x0, y − y0) e−j2π(ux0+vy0)

δs (x, y; �x, �y) comb(u�x, v�y)
ej2π(u0x+v0y) δ(u − u0, v − v0)
sin [2π (u0x + v0y)] 1

2j [δ (u − u0, v − v0) − δ (u + u0, v + v0)]

cos [2π (u0x + v0y)] 1
2 [δ (u − u0, v − v0) + δ (u + u0, v + v0)]

rect(x, y) sinc(u, v)
sinc(x, y) rect(u, v)
comb(x, y) comb(u, v)

e−π(x2+y2) e−π(u2+v2)
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EXAMPLE 2.6
Consider the complex exponential signal

f (x, y) = ej2π(u0x+v0y) . (2.70)

Question What is its Fourier transform?

Answer From (2.62), we have

F2D( f )(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2π(ux+vy) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
ej2π(u0x+v0y)e−j2π(ux+vy) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
e−j2π[(u−u0)x+(v−v0)y] dx dy

= δ(u − u0, v − v0) , (2.71)

where the last step is based on the fact that∫ ∞

−∞

∫ ∞

−∞
e−j2π(ux+vy) dx dy = δ(u, v) , (2.72)

which relates the complex exponential to the point impulse. In this case, the magnitude
spectrum is a point impulse located at frequency (u0, v0), whereas the phase spectrum is 0.
When u0 = v0 = 0, the complex exponential becomes the unit-valued signal f (x, y) = 1,
for every (x, y), in which case (2.71) implies that the Fourier transform of a unit-valued
signal is a point impulse at frequency (0, 0).

A point impulse, which has an extremely concentrated profile in space,
results in a uniform frequency content (i.e., a magnitude spectrum with constant
value). On the other hand, a constant signal, which does not vary in space, has
a spectrum that is all concentrated at frequency (0, 0). This extreme behavior
reveals a more general property. Slow signal variation in space produces a
spectral content that is primarily concentrated at low frequencies, whereas fast
signal variation results in spectral content at high frequencies. This is illustrated
in Figure 2.9, where three images with decreasing spatial variation (from left to
right) produce spectra with decreasing high frequency content. Notice that in
order to reduce the dynamic range of values in the magnitude spectrum |F(u, v)|
for display purposes, we calculate and display the 2-D function log(1 + |F(u, v)|)
instead.

The Fourier transform of a 1-D signal and its inverse can be easily obtained
from (2.62) and (2.63) by simply eliminating one of the two dimensions. In fact,
if f (x), −∞ ≤ x ≤ ∞, is a 1-D signal, then

F(u) = F1D(f )(u) =
∫ ∞

−∞
f (x)e−j2πux dx , (2.73)

and

f (x) = F −1
1D (F)(x) =

∫ ∞

−∞
F(u)ej2πux du , (2.74)

where the subscript ‘‘1D’’ denotes that the Fourier transform is one-dimensional.
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Figure 2.9
Three images of
decreasing spatial
variation (from left to
right) and the associated
magnitude spectra
[depicted as
log(1 + |F(u, v)|)].Decreasing high-frequency content
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EXAMPLE 2.7
Consider the 1-D rect function

rect(x) =
⎧⎨
⎩

1, for |x| < 1
2

0, for |x| > 1
2

. (2.75)

Question What is its Fourier transform?

Answer From (2.73), we have

F1D(rect)(u) =
∫ ∞

−∞
rect(x)e−j2πux dx

=
∫ 1/2

−1/2
e−j2πux dx

= 1
−j2πu

e−j2πux
∣∣∣1/2

−1/2

= 1
πu

ejπu − e−jπu

2j

= sin(πu)
πu

= sinc(u) . (2.76)

To derive (2.76), we have used the fact that if f (x) is a single-valued, bounded, and
integrable function on [a, b] and there exists a function F(x) such that dF(x)/dx = f (x),
for a ≤ x ≤ b, then ∫ x

a
f (ξ ) dξ = F(ξ )

∣∣∣x
a

= F(x) − F(a) , (2.77)
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for a ≤ x ≤ b. Therefore, the 1-D Fourier transform of the rect function is the sinc
function (and vice versa).

2.5 Properties of the Fourier Transform
The Fourier transform satisfies a number of useful properties. Most of them
are used in both theory and application to simplify calculations. The following
sections discuss the most important ones. Refer to Table 2.2 for a summary.

2.5.1 Linearity

If the Fourier transforms of two signals f (x, y) and g(x, y) are F(u, v) and G(u, v),
respectively, then

F2D(a1f + a2g)(u, v) = a1F(u, v) + a2G(u, v) , (2.78)

where a1 and a2 are two constants. This property can be extended to a linear
combination of an arbitrary number of signals.

TABLE 2.2

Properties of the Fourier Transform

Property Signal Fourier Transform

f (x, y) F(u, v)
g(x, y) G(u, v)

Linearity a1f (x, y) + a2g(x, y) a1F(u, v) + a2G(u, v)
Translation f (x − x0, y − y0) F(u, v)e−j2π(ux0+vy0)

Conjugation f ∗(x, y) F∗(−u, −v)
Conjugate f (x, y) is real-valued F(u, v) = F∗(−u, −v)

symmetry
FR(u, v) = FR(−u, −v)
FI(u, v) = −FI(−u, −v)
|F(u, v)| = |F(−u, −v)|
� F(u, v) = −� F(−u, −v)

Signal f (−x, −y) F(−u, −v)
reversing

Scaling f (ax, by)
1

|ab|F
(

u
a

,
v
b

)
Rotation f (x cos θ − y sin θ , x sin θ + y cos θ ) F(u cos θ − v sin θ , u sin θ + v cos θ )
Circular f (x, y) is circularly symmetric F(u, v) is circularly symmetric

symmetry
|F(u, v)| = F(u, v)
� F(u, v) = 0

Convolution f (x, y) ∗ g(x, y) F(u, v)G(u, v)
Product f (x, y)g(x, y) F(u, v) ∗ G(u, v)
Separable f (x)g(y) F(u)G(v)

product

Parseval’s theorem
∫ ∞

−∞

∫ ∞

−∞
|f (x, y)|2 dx dy =

∫ ∞

−∞

∫ ∞

−∞
|F(u, v)|2 du dv .
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2.5.2 Translation

If F(u, v) is the Fourier transform of a signal f (x, y), and if

fx0y0 (x, y) = f (x − x0, y − y0) , (2.79)

then

F2D(fx0y0 )(u, v) = F(u, v)e−j2π (ux0+vy0) . (2.80)

Notice that, in this case, ∣∣F2D(fx0y0 )(u, v)
∣∣ = |F(u, v)| , (2.81)

and

� F2D(fx0y0 )(u, v) = � F(u, v) − 2π (ux0 + vy0) . (2.82)

Therefore, translating a signal f (x, y) does not affect its magnitude spectrum but
subtracts a constant phase of 2π (ux0 + vy0) at each frequency (u, v).

2.5.3 Conjugation and Conjugate Symmetry

If F(u, v) is the Fourier transform of a complex-valued signal f (x, y), then

F2D(f ∗)(u, v) = F∗(−u, −v) , (2.83)

where ∗ denotes the complex conjugate. This is known as the conjugation
property of the Fourier transform. When f is real-valued, its Fourier transform
exhibits conjugate symmetry, which is defined by

F(u, v) = F∗(−u, −v) . (2.84)

In this case, the real part FR(u, v) of F(u, v) and the magnitude spectrum |F(u, v)|
are symmetric functions, whereas the imaginary part FI(u, v) and phase spectrum
� F(u, v) are antisymmetric functions:

FR(u, v) = FR(−u, −v) and FI(u, v) = −FI(−u, −v) , (2.85)

|F(u, v)| = |F(−u, −v)| and � F(u, v) = −� F(−u, −v) . (2.86)

Notice that the three magnitude spectra depicted in Figure 2.9 are symmetric
around the origin.

2.5.4 Scaling

If F(u, v) is the Fourier transform of a signal f (x, y), and if

fab(x, y) = f (ax, by) , (2.87)
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where a and b are two nonzero constants, then

F2D(fab)(u, v) = 1
|ab|F

(
u
a

,
v
b

)
. (2.88)

If we set a = b = −1, then the Fourier transform of signal f (−x, −y) will be
F(−u, −v). Thus, reversing a signal in space also reverses its Fourier transform.

EXAMPLE 2.8
Detectors of many medical imaging systems can be modeled as rect functions of different
sizes and locations.

Question Compute the Fourier transform of the following scaled and translated rect
function:

f (x, y) = rect
(

x − x0

�x
,

y − y0

�y

)
.

Answer The Fourier transform of the rect function is the sinc function:

F2D(rect)(u, v) = sinc(u, v) .

We see that f (x, y) is the rect function scaled by factors �x and �y in each direction and
then translated to (x0, y0). By using the scaling property of the Fourier transform, we
have

F2D

{
rect

(
x

�x
,

y
�y

)}
= �x�y sinc(�xu, �yv) .

By using the translation property, we have

F2D(f )(u, v) = �x�y sinc(�xu, �yv)e−j2π(ux0+vy0) .

2.5.5 Rotation

Let us denote by fθ (x, y) the signal

fθ (x, y) = f (x cos θ − y sin θ , x sin θ + y cos θ ) . (2.89)

We note that fθ (x, y) is a rotated version of f (x, y), rotated by an angle θ around
the origin (0, 0). If F(u, v) is the Fourier transform of f (x, y), then

F2D(fθ )(u, v) = F(u cos θ − v sin θ , u sin θ + v cos θ ) . (2.90)

If f (x, y) is rotated by an angle θ , then its Fourier transform is rotated by angle
θ as well.

2.5.6 Convolution

If F(u, v) and G(u, v) are the Fourier transforms of two signals f (x, y) and g(x, y),
then the Fourier transform of the convolution f (x, y) ∗ g(x, y) equals the product
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of the individual Fourier transforms:

F2D(f ∗ g)(u, v) = F(u, v)G(u, v) . (2.91)

This property, known as the convolution theorem, provides a fundamental and
very useful link between the space (f ) and frequency (F) domains.

EXAMPLE 2.9
The convolution theorem provides a practical tool for computing the convolution of two
signals, which may be difficult to conduct in the spatial domain.

Question Consider the two signals f (x, y) and g(x, y) given by

f (x, y) = sinc (Ux, Vy) ,

g(x, y) = sinc (Vx, Uy) ,

where 0 < V ≤ U. What is the convolution f (x, y) ∗ g(x, y)?

Answer From Table 2.1, we know that

F2D{sinc(x, y)} = rect(u, v) .

By using the scaling property of the Fourier transform, we have

F(u, v) = F2D(f )(u, v) = 1
UV

rect
( u

U
,

v
V

)
and

G(u, v) = F2D(g)(u, v) = 1
UV

rect
( u

V
,

v
U

)
.

The convolution of f (x, y) and g(x, y) is

f (x, y) ∗ g(x, y) = F −1
2D {F(u, v)G(u, v)}

= F −1
2D

{
1

(UV)2 rect
( u

U
,

v
V

)
rect

( u
V

,
v
U

)}

= F −1
2D

{
1

(UV)2 rect
( u

V
,

v
V

)}

= 1
U2 F −1

2D

{
1

V2 rect
( u

V
,

v
V

)}

= 1
U2 sinc (Vx, Vy) .

2.5.7 Product

If F(u, v) and G(u, v) are the Fourier transforms of two signals f (x, y) and g(x, y),
the Fourier transform of the product f (x, y)g(x, y) equals the convolution of the
two Fourier transforms:

F2D(fg)(u, v) = F(u, v) ∗ G(u, v)

=
∫ ∞

−∞

∫ ∞

−∞
G(ξ , η)F(u − ξ , v − η) dξdη . (2.92)
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2.5.8 Separable Product

If f is a separable signal, such that

f (x, y) = f1(x)f2(y) , (2.93)

then

F2D(f )(u, v) = F1(u)F2(v) , (2.94)

where

F1(u) = F1D(f1)(u) and F2(v) = F1D(f2)(v) (2.95)

are the 1-D Fourier transforms of f1(x) and f2(y), respectively. Therefore, the
Fourier transform of a separable signal is also separable. In this case, the Fourier
transform of a separable 2-D signal f (x, y) can be computed by independently cal-
culating the two 1-D Fourier transforms of f1(x) and f2(y) and then multiplying
the results.

2.5.9 Parseval’s Theorem

If F(u, v) is the Fourier transform of a signal f (x, y), then∫ ∞

−∞

∫ ∞

−∞
|f (x, y)|2 dx dy =

∫ ∞

−∞

∫ ∞

−∞
|F(u, v)|2 du dv , (2.96)

which is known as Parseval’s theorem. This relationship says that the total
energy of a signal f (x, y) in the spatial domain equals its total energy in the
frequency domain. In other words, the Fourier transform (as well as its inverse)
are energy-preserving (‘‘unit gain’’) transformations.

2.5.10 Separability

The Fourier transform F(u, v) of a 2-D signal f (x, y) can be calculated using two
simpler 1-D Fourier transforms, as follows:

• Compute r(u, y) =
∫ ∞

−∞
f (x, y)e−j2πux dx, for every y.

• Compute F(u, v) =
∫ ∞

−∞
r(u, y)e−j2πvy dy, for every u.

Indeed, ∫ ∞

−∞
r(u, y)e−j2πvy dy =

∫ ∞

−∞

[∫ ∞

−∞
f (x, y)e−j2πux dx

]
e−j2πvy dy

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2π (ux+vy) dx dy

= F(u, v) . (2.97)
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Figure 2.10
Calculation of the 2-D
Fourier transform by
using two 1-D Fourier
transforms in cascade.1-D Fourier transform

f(x, y) r(u, y) F(u, v)

x

y

(0, 0) (0, 0)

(0, 0)

y y

u

u

1-D Fourier transform

The first step fixes y, treats image f (x, y) as a 1-D signal, and calculates
its 1-D Fourier transform r(u, y). The second step fixes u, treats r(u, y) as
a 1-D signal, and calculates its 1-D Fourier transform. This is illustrated in
Figure 2.10. Notice that calculation of 1-D Fourier transforms is simpler than
their 2-D counterparts. Therefore, this technique is strongly recommended for
calculating 2-D Fourier transforms (and their inverses).

2.6 Transfer Function
In (2.38), we represented an image as the convolution of the object with the
PSF. Using the Fourier transform, we can develop an equivalent representation
in Fourier space. In order to do so we need to introduce the Fourier space
equivalent of the PSF.

In order to determine the PSF h(x, y) of an LSI system S, we observe
the output of the system to a point impulse [see (2.36)]. We now replace
the point impulse with one of the complex exponential signals ej2π (ux+vy) in
decomposition (2.63), for any arbitrary but fixed (u, v). As a direct consequence
of the convolution integral (2.38), following a short derivation that uses (2.48),
we have

g(x, y) = H(u, v)ej2π (ux+vy) , (2.98)

where

H(u, v) =
∫ ∞

−∞

∫ ∞

−∞
h(ξ , η)e−j2π (uξ+vη) dξ dη . (2.99)

Notice that in (2.98) the output equals the input multiplied by H(u, v). Recalling
that (2.98) applies to any arbitrary but fixed (u, v), this means that when the
input to an LSI system is a complex exponential the output will be the same
complex exponential but scaled by H(u, v).

From (2.62) and (2.99), it is clear that H(u, v) is the Fourier transform of
the PSF h(x, y). H(u, v) is known as the transfer function of the LSI system S.
H(u, v) is also known as the frequency response or the optical transfer function
(OTF) of system S. The transfer function uniquely characterizes an LSI system
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since, given H(u, v), the PSF is uniquely determined using the inverse Fourier
transform:

h(x, y) =
∫ ∞

−∞

∫ ∞

−∞
H(u, v)ej2π (ux+vy) du dv . (2.100)

The transfer function is an important tool for studying the behavior of
LSI systems because of the convolution property of the Fourier transform.
If an input f (x, y) to an LSI system S with transfer function H(u, v) pro-
duces an output g(x, y) then, as a direct consequence of (2.39) and (2.91),
we have

G(u, v) = H(u, v)F(u, v) , (2.101)

where F(u, v) and G(u, v) are the Fourier transforms of f (x, y) and g(x, y),
respectively. This equation is much simpler than the convolution equation
(2.39) and allows an alternative (and simpler) method of studying the behavior
of an LSI system.

EXAMPLE 2.10
Consider an idealized system whose PSF is h(x, y) = δ(x − x0, y − y0).

Question What is the transfer function H(u, v) of the system, and what is the output
g(x, y) of the system to an input signal f (x, y)?

Answer The transfer function of the system is

H(u, v) = F {h(x, y)}
= F {δ(x − x0, y − y0)}
= e−j2π(ux0+vy0) .

For an input signal f (x, y), the output is its translated version f (x − x0, y − y0). This
conclusion can be drawn from the sifting property of the δ function. Now, let us prove
this using the transfer function.
The Fourier transform of the input signal f (x, y) is F(u, v) = F (f )(u, v). The Fourier
transform of the output signal g(x, y) is

G(u, v) = F(u, v)H(u, v)

= F(u, v)e−j2π(ux0+vy0) .

By applying the translation property of the Fourier transform, we have g(x, y) =
F −1(G)(x, y), which is the input signal f (x, y) translated to (x0, y0).

Remember that in Fourier or frequency space we are dealing with the repre-
sentation of an object as sine waves of different frequencies. In medical images,
these are frequencies in space—spatial frequencies. Low spatial frequencies
represent signals that vary slowly across the image; high spatial frequencies rep-
resent signals that vary rapidly across a local region (e.g., at the edges of
structures within an image).
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Figure 2.11
The response of an ideal
low-pass filter for two
values of the cutoff
frequency c (c1 > c2).

Ideal low-pass filter

c1

c2

As an example, consider an LSI system S whose transfer function H(u, v) is
given by

H(u, v) =
{

1, for
√

u2 + v2 ≤ c
0, for

√
u2 + v2 > c

. (2.102)

This is known as an ideal low-pass filter with cutoff frequency c. From (2.101)
and (2.102), we have

G(u, v) =
{

F(u, v), for
√

u2 + v2 ≤ c
0, for

√
u2 + v2 > c

. (2.103)

Therefore, the input spectrum will be eliminated at high spatial frequencies (u, v)
given by

√
u2 + v2 > c. Applying such a system to an input signal will result in

signal smoothing, with fine signal details (details that are mainly responsible for
high-frequency spectral content) being eliminated. The amount of smoothing
depends directly on the value of c, with smaller values of c producing more
smoothing. This is illustrated in Figure 2.11. Most imaging systems can be
modeled as some sort of low-pass filter.

We should point out here that, usually, the numerical implementation of the
convolution equation (2.39) is not done in the space domain [i.e., by calculating
the double integral in (2.38)], but in the frequency domain, using (2.101). The
main reason is the existence of an efficient algorithm (the fast Fourier transform,
or FFT) that allows a fast computer implementation of (2.101).

2.7 Circular Symmetry and the Hankel
Transform

Often, the performance of a medical imaging system does not depend on
the orientation of the patient with respect to the system. This orientation
independence arises from the circular symmetry of certain signals, especially the
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PSF. A 2-D signal f (x, y) is defined to be circularly symmetric if it satisfies

fθ (x, y) = f (x, y), for every θ , (2.104)

where fθ (x, y) is a rotated version of f (x, y) [see (2.89)]. It follows from (2.90)
that F2D(fθ )(u, v) is also circularly symmetric. If f (x, y) is circularly symmetric,
then it is even in both x and y, and F(u, v) is even in both u and v. In addition,
F(u, v) is real; therefore,

|F(u, v)| = F(u, v) and � F(u, v) = 0 . (2.105)

Functions f (x, y) that are circularly symmetric can be written as a function
of radius only; that is,

f (x, y) = f(r) , (2.106)

where r =
√

x2 + y2. Since in this case F(u, v) is also circularly symmetric, F(u, v)
must satisfy

F(u, v) = F(q) , (2.107)

where q = √
u2 + v2. The functions f(r) and F(q) are 1-D functions representing

2-D functions that are related by the Fourier transform. It can be shown (see
Problem 2.19) that f(r) and F(q) are related by

F(q) = 2π

∫ ∞

0
f(r)J0(2πqr) r dr , (2.108)

where J0(r) is the zero-order Bessel function of the first kind. The nth order
Bessel function of the first kind is given by

Jn(r) = 1
π

∫ π

0
cos(nφ − r sin φ) dφ , n = 0, 1, 2, . . . , (2.109)

and therefore

J0(r) = 1
π

∫ π

0
cos(r sin φ) dφ . (2.110)

The relation (2.108) is called the Hankel transform, and we will use the
notation

F(q) = H{f(r)} . (2.111)

The inverse Hankel transform is identical to the forward transform,

f(r) = 2π

∫ ∞

0
F(q)J0(2πqr) q dq . (2.112)
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TABLE 2.3

Selected Hankel Transform Pairs

Signal Hankel Transform

exp{−πr2} exp{−πq2}
1 δ(q)/πq = δ(u, v)

δ(r − a) 2πaJ0(2πaq)

rect(r) J1(πq)
2q

sinc(r) 2 rect(q)

π
√

1−4q2
1
r

1
q

If a 2-D signal is circularly symmetric, the Fourier transform of the signal can
be found using the Hankel transform. Some Hankel transform pairs are given
in Table 2.3.

Table 2.1 presented the Fourier transform of the 2-D Gaussian function as

F
{
e−π (x2+y2)

}
= e−π (u2+v2) , (2.113)

which itself is a 2-D Gaussian function. These Gaussian functions are circularly
symmetric, and by direct substitution of r2 = x2 + y2 and q2 = u2 + v2, we find
the Hankel transform pair

H
{
e−πr2

}
= e−πq2

. (2.114)

The Gaussian function is a good model for the blurring inherent in medical
imaging systems, and we will have many occasions throughout the text to use it
and its Fourier (or Hankel) transform.

The unit disk, defined as

f(r) = rect(r) , (2.115)

is another example of a circularly symmetric function. It can be shown (see
Problem 2.20) that the Hankel transform of the unit disk is given by

H {rect(r)} = J1(πq)
2q

, (2.116)

where J1 is the first-order Bessel function of the first kind [see (2.109)]. Forming
an analogy to the special relationship between the rect and sinc functions in
Fourier transforms, the so-called jinc function is defined as

jinc(q) = J1(πq)
2q

. (2.117)

Therefore, the rect and jinc form a Hankel transform pair.
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Figure 2.12
The 1-D jinc and sinc
functions.

jinc(x)

sinc(x)
1.0

p/4

x � 1.2197
x � 3.2383

x � 2.2331

x10 2 3 4 5�5 �4 �3 �2 �1

A plot of the jinc(x) function, shown with the sinc(x) function for compari-
son, is shown in Figure 2.12. Like the sinc, the jinc function has a central lobe
with its maximum value at the origin (see Figure 2.12),

jinc(0) = π

4
, (2.118)

and has a set of zeros as x → ∞. The first few zeros are at the following
locations:

jinc(1.2197) = 0 , (2.119a)

jinc(2.2331) = 0 , (2.119b)

jinc(3.2383) = 0 . (2.119c)

The jinc function takes on half its peak value at x = 0.70576.
The scaling theorem for the Hankel transform is derived from that of the

Fourier transform. First, it is recognized that the scaling parameters, a and b,
must be equal, a = b, in order for circular symmetry to be preserved. From
(2.88) it follows that

H
{
f(ar)

} = 1
a2 F(q/a) . (2.120)

EXAMPLE 2.11
In some medical imaging systems, only spatial frequencies smaller than �0 can be imaged.

Question What is the function having uniform spatial frequencies within the disk of
radius �0 and what is its inverse Fourier transform?

Answer The disk of radius �0 is a circularly symmetric function, a scaled version of
rect(q) given by

F(q) = rect
(

q
2�0

)
.

Since the inverse Hankel transform is the same as the forward Hankel transform, we
have

jinc(r) = H−1 {rect(q)
}

.
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The scaling theorem for the Hankel transform, (2.120), is then used to yield

f(r) = H−1
{

rect
(

q
2�0

)}

= 4�2
0 jinc(2�0r) .

2.8 Summary and Key Concepts
In this book, we take a signals and systems approach to the understanding and
analysis of medical imaging systems. Signals model physical processes; systems
model how medical imaging systems create new signals (images, in our case)
from these original signals. In this chapter, we presented the following key
concepts that you should now understand:

1. Signals are mathematical functions, and they can be continuous, discrete, or
mixed.

2. The point impulse or impulse function is used as the input signal to
characterize the response of a system, which is the impulse response.

3. Comb and sampling functions, rect and sinc functions, and exponential
and sinusoidal signals are used to help describe and characterize imaging
systems.

4. A system is linear if, when the input consists of a collection of signals, the
output is a summation of the responses of the system to each individual
input signal.

5. A system is shift-invariant if an arbitrary translation of the input signal
results in an identical translation of the output.

6. A signal is separable if it can be represented as the product of 1-D signals.

7. The Fourier transform represents signals as a sum of sinusoids of different
frequencies, with associated magnitude and phase.

8. The Fourier space analog of the impulse response is the transfer function.

9. The output of a linear, shift-invariant system is the convolution of the input
with the impulse response; in Fourier space, it is the product of the Fourier
transform of the input and the transfer function.

10. Functions that are circularly symmetric have Fourier transforms that are
also circularly symmetric.

11. The Hankel transform is a one-dimensional transform that yields the Fourier
transform of circularly symmetric functions.

Further Reading

Gonzalez, R.C. and Woods, R.E. Digital Image Pro-
cessing, 3rd ed. Upper Saddle River, NJ: Prentice
Hall, 2007.

Macovski, A. Medical Imaging Systems. Englewood
Cliffs, NJ: Prentice Hall, 1983.

Oppenheim, A.V., Willsky, A.S., and Nawad, S.H.
Signals and Systems, 2nd ed. Upper Saddle
River, NJ: Prentice Hall, 1996.
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Problems
Signals and Their Properties

2.1 Determine whether the following signals are separable. Fully justify your
answers.

(a) δs(x, y) = ∑∞
m=−∞

∑∞
n=−∞ δ(x − m, y − n).

(b) δ�(x, y) = δ(x cos θ + y sin θ − �).
(c) e(x, y) = exp{j2π (u0x + v0y)}.
(d) s(x, y) = sin[2π (u0x + v0y)].

2.2 Determine whether the following signals are periodic. If they are, find the
smallest periods.

(a) δ(x, y).
(b) comb(x, y).
(c) f (x, y) = sin(2πx) cos(4πy).
(d) f (x, y) = sin(2π (x + y)).
(e) f (x, y) = sin(2π (x2 + y2)).
(f) fd(m, n) = sin

(
π
5 m

)
cos

(
π
5 n

)
.

(g) fd(m, n) = sin
(1

5 m
)

cos
(1

5 n
)
.

2.3 We define the energy of a signal f in the finite rectangular window defined
by −X ≤ x ≤ X and −Y ≤ y ≤ Y, where X, Y < ∞, by

EXY =
∫ X

−X

∫ Y

−Y
|f (x, y)|2 dx dy ,

where f might be complex-valued, in which case | · | denotes complex
magnitude (or modulus). The total energy is defined as

E∞ = lim
X→∞

lim
Y→∞

EXY .

The power of signal f is defined as

PXY = 1
4XY

∫ X

−X

∫ Y

−Y
|f (x, y)|2 dx dy = EXY

4XY

and the total power as

P∞ = lim
X→∞

lim
Y→∞

PXY .

For each of the signals in Problem 2.1, determine the values of E∞ and
P∞.

Systems and Their Properties

2.4 Two LSI systems are connected in cascade. Show that the overall system
is an LSI system and prove equations (2.46) and (2.47).

2.5 Show that an LSI system is BIBO stable if and only if its PSF is absolutely
integrable.
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2.6 Determine whether the system g(x, y) = f (x, −1) + f (0, y) is

(a) linear.
(b) shift-invariant.

2.7 For each system with the following input-output equation, determine
whether the system is (1) linear and (2) shift-invariant.

(a) g(x, y) = f (x, y)f (x − x0, y).
(b) g(x, y) = ∫∞

−∞ f (x, η)dη.

2.8 For each system with the following PSF, determine whether the system is
stable.

(a) h(x, y) = x2 + y2.
(b) h(x, y) = exp{−(x2 + y2)}.
(c) h(x, y) = x2 exp{−y2}.

2.9 Consider the 1-D system whose input-output equation is given by

g(x) = f (x) ∗ f (x) ,

where * denotes convolution.

(a) Write an integral expression that gives g(x) as a function of f (x).
(b) Determine whether the system is linear.
(c) Determine whether the system is shift-invariant.

Convolution of Signals

2.10 Given a continuous signal f (x, y) = x + y2, evaluate the following:

(a) f (x, y)δ(x − 1, y − 2).
(b) f (x, y) ∗ δ(x − 1, y − 2).
(c)

∫∞
−∞

∫∞
−∞ δ(x − 1, y − 2)f (x, 3)dx dy.

(d) δ(x − 1, y − 2) ∗ f (x + 1, y + 2).

2.11 Consider two continuous signals f (x, y) and g(x, y) that are separa-
ble—that is, f (x, y) = f1(x)f2(y) and g(x, y) = g1(x)g2(y).

(a) Show that their convolution is also separable.
(b) Express the convolution in terms of f1(x), f2(y), g1(x), and g2(y).

2.12 By using two 1-D convolution integrals, calculate the 2-D convo-
lution of signal f (x, y) = x + y with the exponential PSF h(x, y) =
exp{−(x2 + y2)}.

Fourier Transforms and Their Properties

2.13 Find the Fourier transforms of the following continuous signals:

(a) δs(x, y) = ∑∞
m=−∞

∑∞
n=−∞ δ(x − m, y − n).

(b) δs(x, y;�x, �y) = ∑∞
m=−∞

∑∞
n=−∞ δ(x − m�x, y − n�y).

(c) s(x, y) = sin[2π (u0x + v0y)].
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(d) c(x, y) = cos[2π (u0x + v0y)].
(e) f (x, y) = 1

2πσ2 exp{−(x2 + y2)/2σ 2}.
2.14 Suppose F(u) is the Fourier transform of a 1-D real signal f (x),

F(u) = F [f (x)]. Prove the following, where superscript ∗ denotes complex
conjugate:

(a) If f (x) = f (−x), then F∗(u) = F(u).
(b) If f (x) = −f (−x), then F∗(u) = −F(u).

2.15 In the previous problem, if f (x) is not a real signal, can we still arrive
at the same conclusions? If not, what kind of symmetric property does
F(u) = F [f (x)] have when f (x) = f (−x)?

2.16 Prove the following properties of the Fourier transform:

(a) Conjugate and conjugate symmetry.
(b) Scaling.
(c) Convolution.
(d) Product.

2.17 Show that the 2-D Fourier transform of the rect function is the sinc fun-
ction, whereas the 2-D Fourier transform of the sinc function is the rect
function. Determine the values of E∞ and P∞ for the sinc function (see
Problem 2.3).

2.18 Find the Fourier transform of the separable continuous signal f (x, y) =
sin(2πax) cos(2πby).

2.19 Prove that a circularly symmetric function and its Fourier transform are
related by the zero-order Bessel function of the first kind, as expressed by
(2.108).

2.20 Show that the Hankel transform of a unit disk is a jinc function.

Transfer Function

2.21 A new imaging system with which you are experimenting has anisotropic
properties. You measure the impulse response function as h(x, y) =
e−π (x2+y2/4).

(a) Sketch the impulse response function.
(b) What is the transfer function?

2.22 A medical imaging system has the following line spread function, where
α = 2 radians/cm:

l(x) =
{

cos(αx) |αx| ≤ π/2
0 otherwise

.

(a) Suppose a bar phantom is imaged, where the bars have width w,
separation w, and unity height. Assume π/2α ≤ w ≤ π/α. What are
the responses of the system at the center of a bar and halfway between
two bars?

(b) From the line spread function, can we tell whether the system is
isotropic?

(c) Assume the system is separable with h(x, y) = h1D(x)h1D(y). Compute
its transfer function.
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Applications, Extensions, and Advanced Topics

2.23 The PSF of a medical imaging system is given by

h(x, y) = e−(|x|+|y|),

where x and y are in millimeters.

(a) Is the system separable? Explain.
(b) Is this system isotropic? Explain.
(c) What is the response of the system to the line impulse f (x, y) = δ(x)?
(d) What is the response of the system to the line impulse f (x, y) =

δ(x − y)?

2.24 Consider a one-dimensional linear imaging system whose PSF is given by

h(x; ξ ) = e
−(x−ξ )2

2 ,

which represents the response to the shifted impulse δ(x − ξ ).

(a) Is this imaging system shift-invariant? Explain.
(b) Write the output image g(x) of this system when the input signal is

f (x) = δ(x + 1) + δ(x) + δ(x − 1)?

2.25 Consider a 1-D ideal high-pass filter whose spectrum is shown in
Figure P2.1.

Figure P2.1
An ideal high-pass filter
H(u). For Problem 2.25.

H(u)

uU0�U0

1

(a) Compute the impulse response of the filter.
(b) Using the linearity of convolution, compute the system response to (1)

a constant function f (t) = c and (2) a unit step f (t) =
{

1, t ≥ 0
0, t < 0

.

2.26 The impulse response of a 1-D LTI system is

h(t) = 1
T

[
− rect

(
t + 0.75T

0.5T

)
+ rect

(
t
T

)
− rect

(
t − 0.75T

0.5T

)]
.

(a) Plot h(t) with labeled axes. Is the system stable? Is it causal?
(b) Find and plot the response of the system to a constant signal f (t) = c.
(c) Find and plot the response of the system to a unit step signal

f (t) =
{

1, t ≥ 0
0, t < 0

.
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(d) Compute the Fourier transform of h(t).
(e) Plot the magnitude spectrum |H(u)| for T = 0.25, T = 0.1, and T =

0.05.
(f) What kind of filter is this LTI system?

2.27 In CT image reconstruction, a ramp filter is used in filtered backprojection.
The transfer function of the ramp filter is defined as

H(�) = |�| .

For practical reasons, a windowed ramp filter Ĥ(�) = W(�)|�| is used
instead of H(�).

(a) Assume that W(�) is a rectangular window defined as

W(�) =
{

1, |�| ≤ �0
0, otherwise

,

where �0 is the cutoff frequency. Find ĥ(r) = F −1{Ĥ(�)}.
(b) What are the responses of a ramp filter to (1) a constant function

f (r) = c and (2) a sinusoid function f (r) = sin(ωr).

2.28 For the imaging system depicted in Figure P2.2, show that the output is a
scaled and inverted replica of the input.

Figure P2.2
A cascade of subsystems
representing the imaging
system in Problem 2.28.

f(x, y) f(ax, by) g(x, y)
scaling 2D 2D( )( )

2.29 A continuous signal

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1, for x = y = 0

sin(ax) sin(by)
π2xy

, otherwise

is corrupted by an additive sinusoidal signal

η(x, y) = cos [2π (Ax + By)] , A, B ≥ 0,

and a set of measurements

g(x, y) = f (x, y) + η(x, y)

is obtained. Design an ideal low-pass filter (an LSI system whose transfer
function equals 1, for 0 ≤ |u| ≤ U, 0 ≤ |v| ≤ V, and 0 otherwise) with
impulse response h(x, y), such that

f (x, y) = h(x, y) ∗ g(x, y) .
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Given a and b, determine all possible values of A and B for which this is
possible. Explain your answers in full detail. You might use the formula

∫ ∞

−∞

sin(αt)
π t

e−jτ tdt =
{

1, for |τ | ≤ α

0, for |τ | > α
.

2.30 The discrete-time Fourier transform (DTFT) of a 1-D aperiodic discrete
time signal with finite energy, f (m), is defined as

F(eiω) =
+∞∑

m=−∞
f (m)e−jωm

and the inverse transform is

f (m) = 1
2π

∫ π

−π

F(eiω)ejωmdω.

A continuous signal g(x) = rect(x/2) is sampled with a given sampling
period �x1 to give a discrete signal g1(m).

(a) Compute and plot the continuous Fourier transform of g(x).
(b) Let �x1 = 1/2. Compute and plot G1(ω), the DTFT of g1(m) =

g(m�x1).
(c) Let �x2 = 1. Compute and plot G2(ω), the DTFT of g2(m) = g(m�x2).
(d) Derive a relationship between the continuous Fourier transform of

g(x) and its discrete version sampled with �x.
(e) Prove the convolution property of the DTFT:

FDTFT{x(m) ∗ y(m)} = FDTFT{x(m)}FDTFT{y(m)}.

(f) Verify the convolution property by computing g1(m) ∗ g2(m).
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Image Quality

3.1 Introduction
The primary purpose of a medical imaging system is to create images of the
internal structures and functions of the human body that can be used by medical
professionals to diagnose abnormal conditions, determine the underlying mech-
anisms that produce and control these conditions, guide therapeutic procedures,
and monitor the effectiveness of treatment. The ability of medical professionals
to successfully accomplish these tasks strongly depends on the quality of the
images acquired by the medical imaging system at hand, where by ‘‘quality’’ we
mean the degree to which an image allows medical professionals to accomplish
their goals.

Image quality depends on the particular imaging modality used. With each
modality, the range of image quality may be considerable, depending on the
characteristics and setup of the particular medical imaging system, the skill
of the operator handling the system, and several other factors, such as patient
characteristics and imaging time. Studying how these factors affect image quality
is an important and complicated task. This task is simplified by focusing on
the following six important factors: (1) contrast, (2) resolution, (3) noise,
(4) artifacts, (5) distortion, and (6) accuracy.

The ability of medical professionals to discriminate among anatomical or
functional features in a given image strongly depends on contrast. Contrast
quantifies the difference between image characteristics (e.g., intensities in shades
of gray or color) of an object (or feature within an object) and surrounding
objects or background. High contrast allows easier identification of individual
objects in an image, whereas low contrast makes this task difficult. In the
overview to Part I, we presented images from different modalities that have
different contrast. For example, the brain structures in the positron emission
tomography (PET) image in Figure I.4(c) are of higher contrast than the same
structures in Figure I.4(a) or (b), because the actual signal coming from the
patient is of intrinsically higher contrast in PET.

54



3.2 Contrast 55

Sometimes, medical images are blurry and lack detail. The ability of a
medical imaging system to depict details is known as resolution. High resolution
systems create images of high diagnostic quality. Low resolution systems create
images that lack fine detail. For example, while the PET image in Figure I.4(c)
has higher contrast than the CT image in Figure I.4(a) or the MRI image in
Figure I.4(b), it has poorer spatial resolution.

A medical image may be corrupted by random fluctuations in image intensity
that do not contribute to image quality. This is known as noise. The source,
amount, and type of noise depends on the particular imaging modality used.
Object visibility is often reduced by the presence of noise, because the noise
masks image features. Nuclear medicine images tend to have the highest noise,
as reflected in the PET image in Figure I.4(c).

Most medical imaging systems can create image features that do not rep-
resent a valid object within, or characteristic of, the patient. These features
are known as artifacts, and can frequently obscure important features or be
falsely interpreted as abnormal findings. Medical images should not only make
desired features visible but should also give an accurate impression of their
shape, size, position, and other geometric characteristics. Unfortunately, for
many reasons to be explained later in this book, medical imaging systems
frequently introduce distortion of these important factors. Distortion in med-
ical images should be corrected in order to improve the diagnostic quality of
these images.

Ultimately, the quality of medical images should be judged on their utility in
the context of a specific clinical application. For example, medical images that
increase the chance of tumor detectability in nuclear medicine should be prefer-
able to images with poor tumor detectability. Fundamentally, we are interested
in the accuracy of medical images in the context of a clinical application, where
‘‘accuracy’’ means both conformity to truth and clinical utility.

The user of a medical imaging system is very interested in adjusting the
system to produce images of the highest possible quality, while maintaining a
safe environment for the patient. In order to achieve this, methods must be
developed for evaluating image quality. Since image quality depends primarily
on the six previously discussed factors, we need to mathematically quantify these
factors and systematically study their influence on image quality. The purpose
of this chapter is to provide a fundamental exposition on contrast, resolution,
noise, artifacts, distortion, and accuracy. More detailed discussions on these
factors, and how they affect image quality for a specific imaging modality, will
be provided later.

3.2 Contrast
Contrast refers to differences between the image intensity of an object and
surrounding objects or background. This difference, or image contrast, is itself
the result of the inherent object contrast within the patient. In general, the goal
of a medical imaging system is to accurately portray or preserve the true object
contrast in the image. Particularly for detection of abnormalities, a medical
imaging system that produces high contrast images is preferable to a system
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that produces low contrast images, since anatomical and functional features are
easier to identify in high contrast images.

3.2.1 Modulation

Use of a periodic signal and its modulation is an effective way to quantify
contrast. The modulation mf of a periodic signal f (x, y), with maximum and
minimum values fmax and fmin, is defined by

mf = fmax − fmin

fmax + fmin
. (3.1)

Modulation quantifies the relative amount by which the amplitude (or difference)
(fmax − fmin)/2 of f (x, y) stands out from the average value (or background)
(fmax + fmin)/2. In general, mf refers to the contrast of the periodic signal f (x, y)
relative to its average value. We assume here that f (x, y) has nonnegative values,
in which case 0 ≤ mf ≤ 1. Of importance, mf = 1 only when fmin = 0. Thus, in
practice, the usual presence of a nonzero ‘‘background’’ intensity in a medical
image reduces image contrast. If mf = 0 (in which case, fmin = fmax), we say
that f (x, y) has no contrast. If f (x, y) and g(x, y) are two periodic signals with
the same average value, we say that f (x, y) has more contrast than g(x, y) if
mf > mg.

3.2.2 Modulation Transfer Function

The way a medical imaging system affects contrast can be investigated by
imaging a sinusoidal object f (x, y) of the form

f (x, y) = A + B sin(2πu0x) , (3.2)

where A and B are two nonnegative constants such that A ≥ B. This is a
sinusoidal object that varies only in the x direction with spatial frequency u0.
Notice that fmax = A + B and fmin = A − B, so the modulation of f (x, y) is given
by

mf = B
A

. (3.3)

Figure 3.1 depicts four instances of f (x, y) for the cases when mf = 0, 0.2, 0.5,
1. Notice that as modulation increases, it becomes much easier to distinguish
differences in shades of gray in the image of f (x, y); in other words, contrast
increases.

We are now interested in determining how an linear shift-invariant (LSI)
imaging system with point spread function (PSF) h(x, y) affects the modulation
of f (x, y); that is, we are interested in mathematically relating the modulation
mg of the output g(x, y) to the modulation mf of the input f (x, y). In order
to simplify our discussion, we assume that h(x, y) is circularly symmetric [see
(2.104)]. Since

f (x, y) = A + B sin(2πu0x) = A + B
2j

[
ej2πu0x − e−j2πu0x

]
, (3.4)
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Figure 3.1
Four instances of a
sinusoidal signal f (x, y) =
A + B sin(2πu0x), with
mf = B/A = 0,
0.2, 0.5, 1.

mf � 0 mf � 0.2

mf � 0.5 mf � 1

the output g(x, y) of the system is given by

g(x, y) = AH(0, 0) + B |H(u0, 0)| sin(2πu0x) . (3.5)

Notice that the recorded image g(x, y) of the sinusoidal object f (x, y) is
also sinusoidal with (the same) frequency u0. From (3.5), gmax = AH(0, 0) +
B|H(u0, 0)| and gmin = AH(0, 0) − B|H(u0, 0)|, in which case the modulation of
g(x, y) is given by

mg = B|H(u0, 0)|
AH(0, 0)

= mf
|H(u0, 0)|
H(0, 0)

. (3.6)

The modulation mg of g(x, y) depends on the spatial frequency u0.
The way an LSI medical imaging system affects modulation, and therefore

contrast, is illustrated in Figure 3.2. The output modulation mg is a scaled version
of the input modulation mf , the scaling factor being the magnitude spectrum
|H(u0, 0)| of the medical imaging system under consideration. If H(0, 0) = 1
and |H(u0, 0)| < 1, then mg < mf , and since both signals f (x, y) and g(x, y) have
the same average value, the output g(x, y) will have less contrast than the input
f (x, y).

The ratio of the output modulation to the input modulation as a function
of spatial frequency is called the modulation transfer function (MTF), and
[by rearranging (3.6)] is given by

MTF(u) = mg

mf
= |H(u, 0)|

H(0, 0)
. (3.7)
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Figure 3.2
Basic principles for
determining the
modulation of the output
of an LSI medical imaging
system from the
modulation of the input,
when the input object is
sinusoidal.

A � B

A � B

A
Medical
imaging
system

Input f(x, y) Output g(x, y)

mf �
B
A

mg �
B�H(u0, 0)�

AH(0, 0)

AH(0, 0) � B�H(u0, 0)�

AH(0, 0) � B�H(u0, 0)�

AH(0, 0)

This shows that the MTF of a medical imaging system is, in essence, the
‘‘frequency response’’ of the system, and it can be directly obtained from
the Fourier transform of the PSF of the system (remember that H(u, v) =
F 2D{h(x, y)}). Since |H(u, 0)| = |H(−u, 0)|, the MTF is usually considered only
at nonnegative frequencies. Since the MTF, which characterizes contrast, can be
mathematically related to the PSF, which characterizes blurring (or resolution),
we can assume that blurring reduces contrast. We will have more to say about
this in Section 3.3.3.

The MTF quantifies degradation of contrast as a function of spatial fre-
quency. For most medical imaging systems,

0 ≤ MTF(u) ≤ MTF(0) = 1, for every u , (3.8)

with the MTF becoming significantly less than unity (or even zero) at high
spatial frequencies.

EXAMPLE 3.1
A typical MTF is depicted in Figure 3.3. Note that 0 ≤ MTF(u) ≤ 1, with the maximum
value attained at u = 0. Note also that the MTF monotonically decreases to zero with
increasing frequency, becoming zero at spatial frequencies larger than 0.8 mm−1.

Question What can we learn about the contrast behavior of an imaging system with
this MTF?

Answer At spatial frequency 0.6 mm−1, the MTF takes a value of 0.5. This means that
the contrast of a sinusoidal object at spatial frequency 0.6 mm−1 is reduced by half when
imaged through this system. Moreover, since the MTF is zero at all spatial frequencies
larger than 0.8 mm−1, any sinusoidal input with frequency larger than 0.8 mm−1 will be
imaged as a constant output of zero contrast.

As indicated above, we can think of loss of contrast as the result of the
blurring action of a medical imaging system. This is illustrated in Figure 3.4,
which depicts the outputs of three radiographic imaging systems with increas-
ingly poorer MTFs. Here, a poorer MTF is one that drops to zero at lower
spatial frequencies. A poorer MTF results in less contrast.

It should be noted here that the PSF of a medical imaging system need not
be isotropic—that is, equivalent in all (2-D or 3-D) directions. In a nonisotropic
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Figure 3.3
A typical MTF of a
medical imaging system.Spatial frequency u
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Figure 3.4
Impact of the MTF of a
medical imaging system
on contrast. Clearly, a
poorer MTF results in
lower contrast. Original
image courtesy of GE
Healthcare.Decreasing contrast
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system, the profile through the PSF changes with orientation; thus, the system has
an orientation-dependent response. In the nonisotropic (2-D) case, the MTF is
rotationally dependent, and (3.7) can be generalized to

MTF(u, v) = mg

mf
= |H(u, v)|

H(0, 0)
, (3.9)

in which case

mg = mf
|H(u, v)|
H(0, 0)

. (3.10)
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For a typical nonisotropic medical imaging system,

0 ≤ MTF(u, v) = |H(u, v)|
H(0, 0)

≤ MTF(0, 0) = 1, for every u, v. (3.11)

3.2.3 Local Contrast

The identification of some specific object or feature within an image is only
possible if its value differs from that of surrounding areas. The definition of
modulation or contrast for sinusoidal signals can be adapted for use in this
situation as well. It is common in many imaging modalities (e.g., nuclear
medicine) to refer to an object of interest (e.g., a tumor in the liver) as the
target, as illustrated in Figure 3.5. Suppose that the target has a nominal image
intensity of ft. The target (i.e., the tumor) is surrounded by other tissues (i.e.,
the liver tissue), called the background, which may obscure our ability to see or
detect the target. Suppose that the background has a nominal image intensity of
fb. The difference between the target and its background is captured by the local
contrast, defined as

C = ft − fb

fb
. (3.12)

The definition of local contrast in (3.12) differs from the definition of
modulation in (3.1) for sinusoidal signals in that the intensities ft and fb may
be selected locally—for example, within the liver—and they need not be the
maximum and minimum intensities within the image as a whole. For example,
ft could be taken to be the average image intensity within the tumor, whereas
fb could be taken as the average image intensity within the liver. The tumor
intensity could be larger than fb or less than fb. If ft is less than fb, then C
is negative and, in certain circumstances, it may be convenient to report its
absolute value.

EXAMPLE 3.2
Consider an image showing an organ with intensity Io and a tumor with intensity It > Io.

Question What is the local contrast of the tumor? If we add a constant intensity Ic > 0
to the image, what is the local contrast? Is the local contrast improved?

Answer By definition, the local contrast of the tumor is

C = It − Io

Io
.

Figure 3.5
Local contrast scenario.

x

ft

fb

Target

Background
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If we add a constant intensity Ic to the image, the intensities of the background and the
target become fb = Io + Ic, and ft = It + Ic. The local contrast of the processed image is

C′ = (It + Ic) − (Io + Ic)
Io + Ic

= It − Io

Io + Ic
= C

Io

Io + Ic
< C.

So, the local contrast is worse if we add a constant intensity Ic to the image.

3.3 Resolution
Resolution is another basic measure of image quality. For our purposes, resolu-
tion can be thought of as the ability of a medical imaging system to accurately
depict two distinct events in space, time, or frequency as separate. In this case,
we talk about spatial, temporal, or spectral resolution, respectively. Resolution
can also be thought of as the degree of smearing, or blurring, a medical imaging
system introduces to a single event in space, time, or frequency. These two
ways of looking at resolution are related, because the less smearing a system
introduces, the closer in space, time, or frequency two events can be and still be
distinguished as separate. Therefore, a high resolution medical imaging system
is characterized by low smearing, whereas a low resolution system is character-
ized by high smearing. In this section, we mostly focus on spatial resolution,
although a brief discussion of temporal and spectral resolution is also provided.
Therefore, when we talk about ‘‘resolution,’’ we mean spatial resolution, unless
otherwise specified.

3.3.1 Line Spread Function

As suggested above, we can think of resolution as the degree of smearing, or
blurring, a medical imaging system introduces to a single event (e.g., a point)
in space. This is the traditional PSF described in Chapter 2, and the response
of an imaging system to a point source (i.e., a point impulse) is often used to
characterize resolution. As an alternative, we can consider the response of a
medical imaging system to a line impulse (see Section 2.2.2).

Consider an LSI medical imaging system with isotropic PSF h(x, y) that is
normalized to 1. Suppose that a line source, passing through the origin of the
spatial domain, is imaged through the system. We will mathematically represent
this line source by the line impulse f (x, y) = δ�(x, y) [see (2.11)]. Since the system
is isotropic, it is sufficient to consider the response to a vertical line through the
origin; from (2.11), we see that for this case, f (x, y) = δ(x). Then, the output
g(x, y) of the system will be given by

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
h(ξ , η)f (x − ξ , y − η) dξ dη

=
∫ ∞

−∞

[∫ ∞

−∞
h(ξ , η)δ(x − ξ ) dξ

]
dη

=
∫ ∞

−∞
h(x, η) dη , (3.13)

where, in the third equality, we have used the 1-D analog of (2.6).
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The resulting image g(x, y) is only a function of x, say l(x). This is known
as the line spread function (LSF) of the system under consideration, and it can
be used to quantify resolution. This function is directly related to the PSF h(x, y)
since, from (3.13), we have

l(x) =
∫ ∞

−∞
h(x, η) dη. (3.14)

Notice that, since the PSF h(x, y) is assumed to be isotropic, l(x) is symmetric
[i.e., l(x) = l(−x)], and since the PSF is normalized to 1,∫ ∞

−∞
l(x) dx = 1. (3.15)

Moreover, the 1-D Fourier transform L(u) of the LSF l(x) is related to the
transfer function H(u, v) of the system, since

L(u) = F1D[l](u)

=
∫ ∞

−∞
l(x)e−j2πux dx

=
∫ ∞

−∞

∫ ∞

−∞
h(x, η)e−j2πux dx dη

= H(u, 0). (3.16)

Therefore, the values of the transfer function along the horizontal line that
passes through the origin of the frequency domain are adequate for determining
the 1-D Fourier transform of the LSF, and hence the LSF itself. Since the PSF
h(x, y) is assumed to be isotropic, the transfer function is isotropic as well. Thus,
the LSF is adequate for determining the PSF of the system. Indeed, from the
LSF l(x), we can calculate the 1-D Fourier transform L(u), and H(u, 0) = L(u).
However, since the transfer function H(u, v) is isotropic, the values of H(u, v)
along any line that passes through the origin of the frequency domain will be
the same as the values of H(u, 0).

3.3.2 Full Width at Half Maximum

Given the LSF (or the PSF) of a medical imaging system, its resolution can be
quantified using a measure called the full width at half maximum (FWHM).
This is the (full) width of the LSF (or the PSF) at one-half its maximum value.
The FWHM is usually expressed in millimeters. Provided there is no geometric
scaling, the FWHM equals the minimum distance that two lines (or points)
must be separated in space in order to appear as separate in the recorded image.
This is depicted in Figure 3.6, where we see the profiles of two points through
a 1-D imaging system with PSF h(x). The points move closer to each other as
we go from (a) to (d). In a linear system, the observed profile is the sum of the
individual profiles from the two points. In practice, a residual ‘‘dip’’ between the
points must occur in the (summed) profile for the two points to be visualized or
resolved as separate. The profile depicted in Figure 3.6(c) shows the separation
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Figure 3.6
An example of the effect
of system resolution on
the ability to differentiate
two points. The FWHM
equals the minimum
distance that the two
points must be separated
in order to be
distinguishable.
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distance at which the two points are just distinguishable. Notice that, in this
case, the two points are separated by the FWHM. Therefore, a decrease in the
FWHM indicates an improvement in resolution.

3.3.3 Resolution and Modulation Transfer Function

Another way to quantify the resolution of a medical imaging system is as the
smallest separation (in mm) between two adjacent maxima (or minima) in a
sinusoidal input that can be resolved in the image. Consider the case when the
input of a medical imaging system is sinusoidal of the form f (x, y) = B sin(2πux),
with amplitude B and frequency u. From (3.5) and (3.7), the output of the system
is given by

g(x, y) = MTF(u)H(0, 0)B sin(2πux) . (3.17)
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Notice that the separation between two adjacent maxima (or minima) of the
sinusoidal input f (x, y) is 1/u. The recorded image g(x, y) is also sinusoidal, with
1/u being the separation between two adjacent maxima (or minima) as well.
However, the amplitude of the output image equals the amplitude of the input
multiplied by the MTF at spatial frequency u. In practice, MTF(u) �= 0, for every
u ≤ uc, and MTF(u) = 0, for every u > uc, for some spatial cutoff frequency uc,
in which case, g(x, y) = 0, for every u > uc. In this case, the resolution of the
system will be 1/uc.

EXAMPLE 3.3
The MTF depicted in Figure 3.3 becomes zero at spatial frequencies larger than 0.8 mm−1.

Question What is the resolution of this system?

Answer The resolution of a system with such an MTF is 1/(0.8 mm−1) = 1.25 mm.
Fine structures of an object to be imaged by such a system with spatial frequencies larger
than 0.8 mm−1 cannot be seen at the output of the system.

From our discussion, we find that the MTF can be effectively used to
compare two competing medical imaging systems in terms of their contrast and
resolution. If the MTFs of the two systems under consideration are of a similar
shape but have a different cutoff frequency uc, we can conclude that the system
with higher MTF values will be better in terms of contrast and resolution.
For example, the radiographic imaging system depicted in the first panel in
Figure 3.4 is better in terms of contrast and resolution than the system depicted
in the third panel.

If the MTF curves are of different shapes, the situation is more complicated.
Figure 3.7 depicts two MTF curves that correspond to two competing medical
imaging systems: SYSTEM 1 and SYSTEM 2. SYSTEM 1 has better low fre-
quency contrast, and is thus better for imaging coarse details, while SYSTEM 2
has a better high frequency contrast, and is thus better for imaging fine details.
Since contrast, as quantified by the MTF, is a function of spatial frequency, we
can make this sort of frequency-by-frequency comparison. Spatial resolution,
as described here, is not frequency-dependent, so it becomes harder to directly
compare MTFs in the context of ‘‘better resolution.’’ As described above, the
FWHM of the PSF or LSF is the most direct metric of resolution. Further

Figure 3.7
MTF curves of two
competing medical
imaging systems.
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understanding of a system’s resolution from its MTF usually comes from MTF
values at higher spatial frequencies and the cutoff frequency uc.

The MTF can be directly obtained from the LSF. Indeed, from (3.7) and
(3.16),

MTF(u) = |L(u)|
L(0)

, for every u. (3.18)

Therefore, the MTF equals the (normalized) magnitude of the 1-D Fourier
transform of the LSF. The next example shows that this relationship can be used
to determine the FWHM of a medical imaging system directly from its MTF.

EXAMPLE 3.4
Sometimes, the PSF, LSF, or MTF can be described by a mathematical function by either
fitting observed data or by making simplifying assumptions about its shape. Assume that
the MTF of a medical imaging system is given by

MTF(u) = e−πu2
. (3.19)

Question What is the FWHM of this system?

Answer By using the 1-D inverse Fourier transform and the fact that |L(u)| = MTF(u),
we have l(x) = e−πx2

. The FWHM will then be given by FWHM = 2x0, where x0 is such
that

e−πx2
0 = 1

2
. (3.20)

This results in FWHM = 2
√

ln 2/π .

3.3.4 Subsystem Cascade

Medical imaging systems are often modeled as a cascade of LSI subsystems,
as introduced in Section 2.3.4. Accordingly, the recorded image g(x, y) can be
modeled as the convolution of the input object f (x, y) with the PSF of the first
subsystem, followed by the convolution with the PSF of the second subsystem,
etc. (see Section 2.3.4). For example, in the case of K subsystems with PSFs
h1(x, y), h2(x, y), . . . , hK(x, y),

g(x, y) = hK(x, y) ∗ · · · ∗ (h2(x, y) ∗ (h1(x, y) ∗ f (x, y))) . (3.21)

The quality of the overall system, in terms of contrast and resolution, can be
predicted by considering the quality of each subsystem.

If resolution is quantified using the FWHM, then the FWHM of the overall
system can be determined approximately from the FWHMs R1, R2, . . . , RK of
the individual subsystems, by

R =
√

R2
1 + R2

2 + · · · + R2
K . (3.22)
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Notice that the overall FWHM R is dominated by the largest (i.e., the poorest
resolution) term. Thus, small improvements in any given subsystem’s resolution
do not often yield noticeable improvements in overall system resolution.

The following example shows that, when a medical imaging system is
composed of subsystems with Gaussian PSFs, (3.22) gives the exact value of the
FWHM of the overall system.

EXAMPLE 3.5
Consider a 1-D medical imaging system with PSF h(x) composed of two subsystems with
Gaussian PSFs of the form

h1(x) = 1√
2πσ1

exp

{
−x2

2σ 2
1

}
and h2(x) = 1√

2πσ2
exp

{
−x2

2σ 2
2

}
. (3.23)

Question What is the FWHM of this system?

Answer The FWHMs R1 and R2 associated with the two subsystems h1 and h2,
respectively, are given by R1 = 2x1 and R2 = 2x2, where x1 and x2 are such that

h1(x1) = 1√
2πσ1

exp

{
−x2

1

2σ 2
1

}
= 1

2
√

2πσ1
, (3.24)

and

h2(x2) = 1√
2πσ2

exp

{
−x2

2

2σ 2
2

}
= 1

2
√

2πσ2
. (3.25)

After algebraic manipulation of (3.24) and (3.25),

R1 = 2σ1

√
2 ln 2 and R2 = 2σ2

√
2 ln 2 . (3.26)

Following Example 2.4, it can be shown that the PSF h(x) of the overall system is given
by

h(x) = h1(x) ∗ h2(x) = 1√
2π (σ 2

1 + σ 2
2 )

exp

{
−x2

2(σ 2
1 + σ 2

2 )

}
. (3.27)

The FWHM R of this system is given by R = 2x0, where x0 is such that

h(x0) = exp

{
−x2

0

2(σ 2
1 + σ 2

2 )

}
= 0.5 , (3.28)

from which we obtain

R = 2
√

σ 2
1 + σ 2

2

√
2 ln 2 . (3.29)

If contrast and resolution are quantified using the MTF, then the MTF of
the overall system will be given by

MTF(u, v) = MTF1(u, v)MTF2(u, v) · · · MTFK(u, v) , (3.30)
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in terms of the MTFs MTFk(u, v), k = 1, 2, . . . , K, of the individual subsystems.
This is a direct consequence of (3.9) and the fact that the frequency response
H(u, v) of the overall system is given by

H(u, v) = H1(u, v)H2(u, v) · · · HK(u, v), (3.31)

which is the product of the frequency responses Hk(u, v), k = 1, 2, . . . , K, of the
individual subsystems.

Figure 3.8 depicts the MTF curves of three subsystems of a medical imaging
system together with the MTF curve of the overall system. If one subsystem has
a small value of the MTF at some spatial frequency, then the MTF of the overall
system will be small at that frequency as well. In other words, the MTF of the
overall system will always be less than the MTF of each subsystem. This follows
from (3.30), which suggests that, for every k = 1, 2, . . . , K,

MTF(u, v) ≤ MTFk(u, v), for every u, v, (3.32)

provided that MTFk(u, v) ≤ 1, for every k = 1, 2, . . . , K. Therefore, the overall
quality of a medical imaging system, in terms of contrast and resolution, will be
inferior to the quality of each subsystem.

From the previous discussion, the resolution of a medical imaging system
can be specified by either its PSF or its LSF. In some medical imaging systems, we
are able to create an object consisting of a very small ‘‘point’’ or ‘‘line’’ of some
material. For example, we may create a very small and highly radioactive point
or line source for measuring the resolution of a nuclear medicine camera. When
a medical imaging system is mathematically modeled using an LSI system, its
output to these objects will be the PSF and the LSF, respectively. This provides
a practical way for calculating these two important response functions.

From our discussion, we can see that spatial resolution and image contrast
are tightly linked, since the Fourier transforms of the PSF and the LSF, which
are measures of resolution, yield the MTF, which is a measure of contrast.
Indeed, spatial resolution can be thought of as the ability of an imaging system
to preserve object contrast in the image, since blurring, due to poor resolution,
is what actually reduces contrast.

In a nonisotropic system, the profile through the PSF changes with orienta-
tion; thus, the system has an orientation-dependent resolution. A good example

Figure 3.8
MTF curves of three
subsystems of a medical
imaging system and the
MTF curve of the overall
system.
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of this situation is in ultrasound imaging systems where the range resolution
(along the transducer axis) is usually substantially better than the lateral reso-
lution (orthogonal to the transducer axis). (See Chapters 10 and 11 for more
details.) In the nonisotropic case, the MTF is given by (3.9).

It is also possible for a medical imaging system to be linear but not shift-
invariant. Then, the resolution is spatially dependent. For example, this situation
exists in ultrasound systems because the acoustic energy spreads out with
increasing distance from the transducer. This makes the FWHM increase with
depth, which corresponds to a degradation of lateral resolution. Magnification
in pinhole collimators, or focused collimators in nuclear medicine, also leads
to spatially dependent resolution, in which case the image plane resolution is
related, in a precise geometric way, to actual resolution within the object.

3.3.5 Resolution Tool

Images with better resolution are preferable to images with poorer resolution,
since they contain more image details. Resolution can be quantified in terms of
the ability of a system to image details of a given test pattern. For example,
one common way to measure resolution for a particular system is to image the
so-called resolution tool or bar phantom, such as the one depicted in Figure 3.9.
This tool is composed of groups of parallel lines of a certain width, separated by
gaps having the same width as the line width (yielding an overall duty cycle of
50 percent). Each group is characterized by the density of such lines, measured
in line pairs per millimeter (lp/mm). The tool is imaged through the system
under consideration, and system resolution is reported as the frequency (in
lp/mm) of the finest line group that can be resolved at the output. For example,
the resolution might be 6–8 lp/mm for a projection radiography system and
2 lp/mm for a CT scanner.

3.3.6 Temporal and Spectral Resolution

The preceding discussion on spatial resolution and the concepts embodied in the
PSF, LSF, and FWHM apply equally well to temporal and spectral resolution.

Figure 3.9
A resolution tool or bar
phantom.
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Temporal resolution is the ability to distinguish two events in time as being
separate. Spectral resolution is the ability to distinguish two different frequen-
cies (or, equivalently, energies). Conceptually, we could create a frequency
distribution histogram of the number of observed events as a function of time
or energy from a single-time or single-energy process (i.e., a point impulse
in time or energy) to yield the equivalent of a PSF. As with the PSF, the
ideal system response would be a delta function and the actual FWHM (in
time or energy) would quantify the resolution. In other words, the concept of
PSF applies equally well to events in time or frequency as it does to events
in space.

3.4 Noise
An unwanted characteristic of medical imaging systems is noise. Noise is a
generic term that refers to any type of random fluctuation in an image, and
it can have a dramatic impact on image quality; image quality decreases as
noise increases. The source and amount of noise depend on the imaging method
used and the particular medical imaging system at hand. For example, in
projection radiography, x-rays arrive at the detector in discrete packets of
energy, called quanta or photons. The discrete nature of their arrival leads
to random fluctuations, called quantum mottle, which give an x-ray image a
textured or grainy appearance. On the other hand, in MRI, radio frequency
pulses generated by nuclear spin systems are sensed by antennas connected
to amplifiers. Since these signals have very low power, they compete with
signals being generated in the antenna from natural thermal vibrations. Thermal
vibrations are unpredictable—that is, random—and therefore comprise one
source of noise in magnetic resonance images. The effect of increasing noise is
shown in Figure 3.10.

The source of noise in a medical imaging system depends on the physics
and instrumentation of the particular modality, subjects that will be developed
in depth later in this book. The main objective of this section is to provide an
introductory exposition of the tools used to mathematically characterize noise.
A general way to characterize noise is to consider it as the numerical outcome
of a random event or experiment. In nuclear medicine, for example, certain
radioactive sources emit gamma ray photons that are received and recorded
by a detector. Although governed by fixed physical properties (such as photon
energy and decay rate), the specific nature of radioactive decay is random:
photons are emitted at random times in random directions. We think of the
noise as the deviation from a nominal value that would be predicted from

Figure 3.10
The effect of noise on
image quality: image
quality decreases rapidly
with increasing noise
contamination.Increasing Noise
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purely deterministic arguments. This deviation, arising from the random nature
of radioactive emissions, accounts for the noise that is present in all nuclear
medicine images.

3.4.1 Random Variables

The numerical quantity associated with a random event or experiment is called a
random variable. Different repetitions of the experiment may produce different
observed values—that is, the experiment has a random outcome. A random vari-
able is mathematically described by PN(η), its probability distribution function
(PDF), given by

PN(η) = Pr[N ≤ η] , (3.33)

where Pr[·] denotes probability. The PDF gives the probability that random
variable N will take on a value less than or equal to η. Notice that 0 ≤ PN(η) ≤ 1,
PN(−∞) = 0, PN(∞) = 1, and PN(η1) ≤ PN(η2), for η1 ≤ η2.

3.4.2 Continuous Random Variables

If PN(η) is a continuous function of η, then N is a continuous random variable.
This random variable is uniquely specified by its probability density function
(pdf),1

pN(η) = dPN(η)
dη

. (3.34)

Any pdf satisfies the following three properties:

pN(η) ≥ 0 , (3.35)∫ ∞

−∞
pN(η) dη = 1 , (3.36)

PN(η) =
∫ η

−∞
pN(u) du . (3.37)

In practice, the pdf of a random variable may not be known. Instead, a
random variable is often characterized by its expected value

μN = E[N] =
∫ ∞

−∞
ηpN(η) dη , (3.38)

also called its mean, and its variance

σ 2
N = Var[N] = E[(N − μN)2] =

∫ ∞

−∞
(η − μN)2pN(η) dη , (3.39)

1By convention, the abbreviation for probability density function is (lower case) pdf, and the
abbreviation for probability distribution function is (upper case) PDF.
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where E[·] and Var[·] denote expectation and variance, respectively. The square
root σN of the variance is called the standard deviation of N.

The mean can be thought of as the average value of the random variable,
whereas the standard deviation can be thought of as the ‘‘average’’ variation
of the values of the random variable about its mean. The larger the standard
deviation, the ‘‘more random’’ the random variable. As the standard deviation
approaches zero, the observed values of the random variable more tightly cluster
around the mean and, in the limit, the random variable becomes a constant that
equals μN.

Uniform Random Variable A random variable N is said to be uniform over
the interval [a, b] if its pdf is of the form

pN(η) =

⎧⎪⎨
⎪⎩

1
(b − a)

, for a ≤ η < b

0, otherwise

. (3.40)

In this case, the distribution function is given by

PN(η) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, for η < a

η − a
b − a

, for a ≤ η ≤ b

1, for η > b

, (3.41)

and the expected value and variance are given by

μN = a + b
2

and σ 2
N = (b − a)2

12
, (3.42)

respectively.

Gaussian Random Variable If the pdf of a random variable N is given by

pN(η) = 1√
2πσ 2

e−(η−μ)2/2σ2
, (3.43)

then N is a Gaussian random variable. In this case, the distribution function is
given by

PN(η) = 1
2

+ erf
(

η − μ

σ

)
, (3.44)

where erf(x) denotes the error function given by the integral

erf(x) = 1√
2π

∫ x

0
e−u2/2 du . (3.45)
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The expected value and variance are given by

μN = μ and σ 2
N = σ 2 , (3.46)

respectively. The integral in (3.45) cannot be evaluated in closed form, but it is
usually tabulated in mathematics handbooks and can be numerically evaluated
using most mathematics, statistics, and engineering software packages.

EXAMPLE 3.6
Distribution functions can be found by integrating their corresponding density function
using (3.37).

Question Can (3.44) be proved by direct integration?

Answer The distribution function of a Gaussian random variable with mean μ and
variance σ 2 is

PN(η) =
η∫

−∞
pN(τ ) dτ

=
η∫

−∞

1√
2πσ 2

e−(τ−μ)2/2σ2
dτ

= 1√
2πσ 2

η−μ
σ∫

−∞
e−t2/2σ dt, let t = τ−μ

σ

= 1√
2π

0∫
−∞

e−t2/2 dt + erf
(

η − μ

σ

)

= 1
2

+ erf
(

η − μ

σ

)
.

To get the last equality, we use the fact that 1√
2π

e−t2/2 is the pdf of the standard Gaussian
random variable and is symmetric around t = 0.

In general, the mean and variance do not uniquely specify a random
variable. This means that, given μN and σ 2

N , there might be more than one pdf
that produces the same mean and variance. However, in the case of a Gaussian
random variable, the pdf is uniquely specified by its mean and variance.

Usually, noise in medical imaging systems is the result of a summation of
a large number of independent noise sources. According to the central limit
theorem of probability, a random variable that is the sum of a large number of
independent causes tends to be Gaussian. Therefore, it is often natural to model
noise in medical imaging system by means of a Gaussian random variable.

3.4.3 Discrete Random Variables

When the random variable N takes only values η1, η2, . . . , ηk, it is said to
be a discrete random variable. This random variable is uniquely specified
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by the probability mass function (PMF) Pr[N = ηi], for i = 1, 2, . . . , k, where
Pr[N = ηi] is the probability that random variable N will take on the particular
value ηi. The PMF satisfies the following three properties:

0 ≤ Pr[N = ηi] ≤ 1, for i = 1, 2, . . . , k , (3.47)

k∑
i=1

Pr[N = ηi] = 1 , (3.48)

PN(η) = Pr[N ≤ η] =
∑

all ηi≤η

Pr[N = ηi] . (3.49)

It is permissible for k → ∞, meaning that there will be an infinite (but still
countable) number of possible outcomes.

In the case of a discrete random variable, the mean value and variance are
given by

μN = E[N] =
k∑

i=1

ηiPr[N = ηi] , (3.50)

and

σ 2
N = Var[N] = E[(N − μN)2] =

k∑
i=1

(ηi − μN)2Pr[N = ηi] , (3.51)

respectively. Notice that the integrals in (3.38) and (3.39) have been replaced by
sums in (3.50) and (3.51).

Poisson Random Variable Let N be a discrete random variable that takes
values 0, 1, . . . , and has the PMF

Pr[N = k] = ak

k!
e−a , for k = 0, 1, . . . , (3.52)

where a > 0 is a real-valued parameter. N is said to be a Poisson random
variable, and it turns out that its mean equals its variance and

μN = a , (3.53)

σ 2
N = a . (3.54)

Poisson random variables play an important role in medical imaging sys-
tems, and most particularly in radiographic and nuclear medicine imaging. For
example, they are used to statistically characterize the distribution of photons
counted per unit area by an x-ray image intensifier, or to characterize the photon
counts produced by a radiotracer in nuclear medicine.

EXAMPLE 3.7
In x-ray imaging, the Poisson random variable is used to model the number of photons
that arrive at a detector in time t, which is a random variable referred to as a Poisson
process and given the notation N(t). The PMF of N(t) is given by

Pr[N(t) = k] = (λt)k

k!
e−λt,



74 Chapter 3 Image Quality

where λ is called the average arrival rate of the x-ray photons.

Question What is the probability that there is no photon detected in time t?

Answer The probability that there is no photon detected in time t is

Pr[N(t) = 0] = (λt)0

0!
e−λt = e−λt.

EXAMPLE 3.8
For the Poisson process of Example 3.7, the time that the first photon arrives is a random
variable, say T.

Question What is the pdf pT(τ ) of random variable T?

Answer Assume that the first photon arrives in the interval t < T < t + �t. For very
small �t, we have

Prob[t < T < t + �t] ≈ pT(t)�t.

For this to happen, it must be true that no photons arrived in the interval [0, t] and
exactly one photon arrived in the interval [t, t + �t]. We learned from Example 3.7 that

Prob[no photon detected in time t] = e−λt.

The probability that exactly one photon will be detected in the interval [t, t + �t] is

Prob[One photon detected in interval [t, t + �t]] = (λ�t)1

1!
e−λ�t = λ�t e−λ�t .

Using the Taylor series expansion for the exponential function

ex = 1 + x + x2

2!
+ x3

3!
+ · · ·

and the fact that �t is very small (and will go to zero in the limit) permits the
approximation

Prob[One photon detected in interval [t, t + �t]] ≈ λ�t

where second-order terms in �t have been dropped. Putting all this together yields

pT(t)�t ≈ Prob[no photon detected in time t]

· Prob[One photon detected in interval [t, t + �t]]

≈ e−λt · λ�t .

As �t → 0, all approximations get tighter, and so we recognize by dividing both sides of
the above equation by �t that

pT(t) = λe−λt, t ∈ [0, ∞).

The random variable T corresponding to this pdf is called the exponential random
variable.
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3.4.4 Independent Random Variables

It is usual in imaging experiments to consider more than one random variable
at a time. The theory that is required in order to characterize a collection of
random variables follows from the theory of a single random variable, with
parallel definitions of distribution, density, and mass functions. In this book,
however, we require only a simplified discussion related to sums of independent
random variables. Loosely speaking, a collection of random variables are
independent if knowledge of some of the random variables (i.e., making a
partial observation) tells you nothing, statistically speaking, about the remaining
random variables.

Consider the collection of random variables N1, N2, . . . Nm, having the
pdf’s p1(η), p2(η), . . . , pm(η), respectively. The sum of these random variables
S is another random variable having another pdf, pS(η). It is always the case
that the mean of S is precisely the sum of the means of N1, N2, . . . , Nm.
That is,

μS = μ1 + μ2 + · · · + μm , (3.55)

where μ1, . . . , μm are the means of the pdf’s given above. Independence is not
required for this to be true.

When the random variables are independent, we can go a step further. In
this case, the variance of S is the sum of the individual variances,

σ 2
S = σ 2

1 + σ 2
2 + · · · + σ 2

m . (3.56)

We emphasize that the variances, not the standard deviations, are added. Also,
in the case of independence, it is possible to determine the pdf of S by

pS(η) = p1(η) ∗ p2(η) ∗ · · · ∗ pm(η) , (3.57)

where ∗ is convolution. The facts that the variances add and that the pdf
of the sum can be determined easily are powerful results following from
the independence of random variables. We will use these facts to derive
approximate noise and signal-to-noise ratio (SNR) expressions for CT imaging
in Chapter 6.

EXAMPLE 3.9
Consider the sum S of two independent Gaussian random variables N1 and N2, each
having a mean of zero and variance of σ 2.

Question What are the mean, variance, and pdf of the resulting random variable?

Answer The mean of S is zero since

μS = μ1 + μ2 = 0 + 0 = 0 ,

and the variance of S is 2σ 2 since

σ 2
S = σ 2

1 + σ 2
2 = σ 2 + σ 2 = 2σ 2 .

Using the fact that the convolution of two Gaussian waveforms yields a Gaussian
waveform, we conclude that the pdf of S has a Gaussian form. Furthermore,
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since the Gaussian pdf is characterized completely by its mean and variance, we
conclude that

pS(η) = 1√
2πσ 2

S

exp

{
−η2

2σ 2
S

}
= 1√

4πσ 2
exp

{−η2

4σ 2

}
.

3.5 Signal-to-Noise Ratio
In this book, we often assume that the output of a medical imaging system is
a random variable G (or a collection of random variables), composed of two
components, f and N. Component f , which is usually referred to as signal, is
the (deterministic or nonrandom) ‘‘true’’ value of G, whereas N is a random
fluctuation or error component due to noise. The identification of an abnormal
condition within the human body most often depends on how ‘‘close’’ an
observed value g of G, characteristic to that condition, is to its true value f .

A useful way to quantify this is by means of the signal-to-noise ratio (SNR).
The SNR describes the relative ‘‘strength’’ of signal f with respect to that of
noise N. Higher SNR values indicate that g is a more accurate representation
of f , whereas lower SNR values indicate that g is less accurate. Therefore,
higher image quality requires that the output of a medical imaging system be
characterized by high SNR.

One way of thinking about the ‘‘signal’’ is that it is the modulation or
contrast in the image, as discussed in Section 3.2, whereas ‘‘noise’’ is the
unwanted, random fluctuations discussed in Section 3.4. As discussed above,
blurring reduces contrast and thus SNR; noise also reduces SNR. Figure 3.11
depicts the effects of both blur and noise on SNR; as one moves from the upper
left to the lower right, SNR decreases.

Figure 3.11
The effect of increasing
blur and noise on SNR.
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3.5.1 Amplitude SNR

Most frequently, the SNR is expressed as the ratio of signal amplitude to noise
amplitude:

SNRa = Amplitude(f )
Amplitude(N)

. (3.58)

We refer to SNRa as the amplitude SNR. Notice that there are many ways
to specify what we mean by ‘‘signal’’ and ‘‘noise.’’ Moreover, exact def-
inition of the amplitude SNR depends on specifying what we mean by
‘‘signal amplitude’’ and ‘‘noise amplitude.’’ Thus, the amplitude SNR is case-
dependent, and its definition must be specifically adapted to the particular
situation at hand.

EXAMPLE 3.10
In projection radiography, the number of photons G counted per unit area by an x-ray
image intensifier follows a Poisson distribution as in (3.52). In this case, we may consider
signal f to be the average photon count per unit area (i.e., the mean of G) and noise N to
be the random variation of this count around the mean, whose amplitude is quantified
by the standard deviation of G.

Question What is the amplitude SNR of such a system?

Answer From (3.52) to (3.54), it follows that the amplitude SNR is given by

SNRa = μG

σG
= μ√

μ
= √

μ . (3.59)

This quantity is known as the intrinsic SNR of x-rays, and we will have much more to
say about this in Part II of the book. This tells us something very important and practical:
The greater the average number μ of photons, the larger the amplitude SNR, and the
smaller the relative amplitude of random fluctuations in G. Therefore, a higher x-ray
exposure generally improves the quality of radiographic images. Keep in mind, however,
that greater exposure to ionizing radiation means more risk of radiogenic cancer.

3.5.2 Power SNR

Another way to express the SNR is as the ratio of signal power to noise power:

SNRp = power(f )
power(N)

. (3.60)

We refer to SNRp as the power SNR. Notice that exact definition of the power
SNR depends on specifying what we mean by ‘‘signal power’’ and ‘‘noise
power.’’ Thus, as with the amplitude SNR, the power SNR is case-dependent,
and its definition must be specifically adapted to the particular situation at hand.

EXAMPLE 3.11
If f (x, y) is the input to a noisy medical imaging system with PSF h(x, y), then the output at
(x, y) may be thought of as a random variable G(x, y) composed of signal h(x, y) ∗ f (x, y)
and noise N(x, y), with mean μN(x, y) and variance σ 2

N(x, y).
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Question What is the power SNR of such a system?

Answer In this framework, the power SNR at the output of this system is given by

SNRp =

∫ ∞

−∞

∫ ∞

−∞
|h(x, y) ∗ f (x, y)|2 dx dy

σ 2
N

, (3.61)

where the noise power is specified by the variance σ 2
N. Usually, it is assumed that there is

no correlation between noise values and that for every (x, y)

μN(x, y) = 0 and σN(x, y) = σN. (3.62)

This type of noise is known as white noise.

White noise is a crude approximation of reality, but it is convenient to use
since it leads to mathematically simple models. Keep in mind that, in most cases,
it is more accurate to consider correlated noise and assume some mathematical
expression for such correlation. In this case, if we assume that the noise mean
and variance do not depend on (x, y) (a common assumption that characterizes
so-called wide-sense stationary noise), then it can be shown that

SNRp =

∫ ∞

−∞

∫ ∞

−∞
|h(x, y) ∗ f (x, y)|2 dx dy∫ ∞

−∞

∫ ∞

−∞
NPS(u, v) du dv

, (3.63)

where

NPS(u, v) = lim
x0,y0→∞

1
4x0y0

E
[∣∣∣∣
∫ x0

−x0

∫ y0

−y0

[N(x, y) − μN]

exp (−j2π (ux + vy)) dx dy

∣∣∣∣
2
]

, (3.64)

is known as the noise power spectrum (NPS). From (3.63) and Parseval’s
theorem, given by (2.96), we have

SNRp =

∫ ∞

−∞

∫ ∞

−∞
|H(u, v)|2 |F(u, v)|2 du dv∫ ∞

−∞

∫ ∞

−∞
NPS(u, v) du dv

(3.65)

=

∫ ∞

−∞

∫ ∞

−∞
SNRp(u, v)NPS(u, v) du dv∫ ∞

−∞

∫ ∞

−∞
NPS(u, v) du dv

, (3.66)
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where [see also (3.9)]

SNRp(u, v) = |H(u, v)|2|F(u, v)|2
NPS(u, v)

= MTF2(u, v)
NPS(u, v)

|F(u, v)|2H2(0, 0) (3.67)

is called the frequency-dependent power SNR. The frequency-dependent power
SNR quantifies, at a given frequency, the relative ‘‘strength’’ of signal to that
of noise at the output of the LSI system under consideration. From (3.66) and
(3.67), SNRp(u, v) provides a relationship between contrast, resolution, noise,
and image quality. For a given output noise level (i.e., a fixed NPS) and a given
input f (x, y), better contrast and resolution properties (i.e., a larger MTF) result
in better image quality (i.e., a higher output power SNR).

3.5.3 Differential SNR

Consider an object (or target) of interest placed on a background. Let ft

and fb be the average image intensities within the target and background,
respectively. A useful choice for SNR is obtained by taking the ‘‘signal’’ to
be the difference in average image intensity values between the target and the
background integrated over the area A of the target, and by taking the ‘‘noise’’
to be the random fluctuation of image intensity from its mean over an area A
of the background. This leads to the differential signal-to-noise ratio (SNRdiff),
given by

SNRdiff = A(ft − fb)
σb(A)

, (3.68)

where σb(A) is the standard deviation of image intensity values from their mean
over an area A of the background. From (3.12), we have

SNRdiff = CAfb

σb(A)
, (3.69)

which relates the differential SNR to contrast.

EXAMPLE 3.12
Consider the case of projection radiography. We may take fb to be the average photon
count per unit area in the background region around a target, in which case, fb = λb,
where λb is the mean of the underlying Poisson distribution governing the number of
background photons counted per unit area. Notice that, in this case, σb(A) = √

λbA.

Question What is the average number of background photons counted per unit area,
if we want to achieve a desirable differential SNR?

Answer From (3.69),

SNRdiff = CAλb√
Aλb

= C
√

Aλb . (3.70)

From (3.70), the differential SNR is approximately proportional to contrast as well as
to the square root of the object area multiplied by radiation exposure (characterized by
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the average photon count per unit area λb). To achieve a desirable differential SNR, it is
required that

λb = SNR2
diff

C2A
. (3.71)

This relationship was first suggested by Albert Rose and is known as the Rose model.
Clearly, to maintain good image quality (i.e., to obtain images with high SNR), high
radiation dose is required when viewing small, low-contrast objects.

3.5.4 Decibels

The SNR is sometimes given in decibels (dB). When the SNR is the ratio of
amplitudes, such as with the amplitude SNR or the differential SNR, then

SNR (in dB) = 20 × log10 SNR (ratio of amplitudes) . (3.72)

When the SNR is the ratio of powers, such as with the power SNR, then

SNR (in dB) = 10 × log10 SNR (ratio of powers) . (3.73)

3.6 Sampling
To electronically sense, store, and process continuous signals using computers,
we must transform them into collections of numbers. This transformation, called
discretization or sampling, means that we only retain representative signal values
and discard the rest. There are many ways to do this. In this book, we focus
our attention on the so-called rectangular sampling scheme. According to this
scheme, a 2-D continuous signal is replaced by a discrete signal whose values
are the values of the continuous signal at the vertices of a 2-D rectangular
grid. More precisely, given a 2-D continuous signal f (x, y), rectangular sampling
generates a 2-D discrete signal fd(m, n), such that

fd(m, n) = f (m�x, n�y), for m, n = 0, 1, . . . . (3.74)

In (3.74), �x and �y are the sampling periods in the x and y directions,
respectively. This is illustrated in Figure 3.12. Notice that fd(m, n) forms an
array of numbers that contains the values of the 2-D continuous signal f (x, y)
at the discrete points (m�x, n�y). The inverses 1/�x and 1/�y of �x and �y
are referred to as the sampling frequencies in the x and y direction, respectively.
As shown below, these sampling frequencies are related to the comb and
sampling functions presented in Chapter 2.

Ideally, we would like to keep as few samples as possible. This strategy
minimizes the number of detectors (or the scanning time needed by a single
detector) and reduces signal storage and subsequent processing requirements. So
we ask: Given a 2-D continuous signal f (x, y), what are the maximum possible
values for �x and �y such that f (x, y) can be reconstructed from the 2-D discrete
signal fd(m, n), obtained by (3.74)? As illustrated in Figure 3.12, we may be
tempted to perform coarse sampling as opposed to fine sampling. However, if
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Figure 3.12
Illustration of coarse (left)
and fine (right)
rectangular sampling
schemes. Although coarse
sampling results in fewer
samples, it may not allow
reconstruction of the
original continuous signal
from these samples.

x

y

�x�x

�y
�y

x

y

we give in to this temptation, we will end up (in the extreme case) with only one
sample, which is clearly not enough to represent a continuous signal in general
(unless the signal is constant).

Sampling a continuous signal with too few samples results in a type of signal
corruption called aliasing, in which higher frequencies ‘‘take the alias of’’ lower
frequencies. A signal sampled with too few samples cannot be reconstructed
from its discrete representation; the best possible continuous reconstruction
from these samples will be corrupted by aliasing. The visual appearance of
this artifact depends on the signal’s spectrum, but generally it appears as new
high-frequency patterns where none should exist. The spatial frequency of
these patterns is always lower than it should be but may be relatively high
compared with other spatial information in the image. An example of this
phenomenon is depicted in Figure 3.13. The improperly sampled image, as
shown in Figure 3.13(b), is corrupted by a high-frequency texture that is not
present in the original image. When proper anti-aliasing is used, as described in
Section 3.6.3, sampling will produce an image with reduced resolution but no
aliasing artifacts, as shown in Figure 3.13(c). Obviously, it is vital that medical
imaging systems sample without aliasing.

3.6.1 Signal Model for Sampling

It is intuitive to believe that a slowly varying signal could be reconstructed
from fewer samples than a rapidly varying signal, which may require finer
sampling at regions of rapid signal variation. Since signal variation in space
is directly associated with frequency content, we suspect that there must be a
direct relationship between the appropriate values of sampling periods �x and
�y and the frequency content of the signal under consideration. Here, we prove
this intuition mathematically, and derive a recipe for choosing appropriate
values for �x and �y. We do this by using the comb function comb(x, y),
given by (2.13), and its close relative, the sampling function δs(x, y;�x, �y),
given by (2.14).
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(a) (b) (c)

Figure 3.13
(a) Original chest x-ray image and sampled images, (b) without, and (c) with anti-aliasing.
Inserts show a zoomed region.

Consider multiplying a continuous signal f (x, y) by the sampling function.
We have

fs(x, y) = f (x, y)δs(x, y;�x, �y)

=
∞∑

m=−∞

∞∑
n=−∞

f (x, y)δ(x − m�x, y − n�y) [from (2.14)]

=
∞∑

m=−∞

∞∑
n=−∞

f (m�x, n�y)δ(x − m�x, y − n�y) [from (2.7)]

=
∞∑

m=−∞

∞∑
n=−∞

fd(m, n)δ(x − m�x, y − n�y) , (3.75)

where we have used (3.74) for the final step. It follows that, given the discrete
signal fd(m, n) = f (m�x, n�y), we can calculate the continuous signal fs(x, y)
regardless of the sampling periods �x and �y. Thus, if we can reconstruct
f (x, y) from fs(x, y), then f (x, y) can also be reconstructed from fd(m, n). The
most important point here is that, in order to understand the effects of sam-
pling, we need only look at the continuous signal fs(x, y) and its relationship
to f (x, y).

Since fs(x, y) is the product of two functions, its Fourier transform is the
convolution of the Fourier transforms of the two functions. This is a consequence
of the product property (2.92) of the Fourier transform. Therefore,

Fs(u, v) = F(u, v) ∗ comb(u�x, v�y)

= F(u, v) ∗
∞∑

m=−∞

∞∑
n=−∞

δ(u�x − m, v�y − n) [from (2.13)]
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= 1
�x�y

F(u, v) ∗
∞∑

m=−∞

∞∑
n=−∞

δ(u − m/�x, v − n/�y) [from (2.8)]

= 1
�x�y

∞∑
m=−∞

∞∑
n=−∞

F(u, v) ∗ δ(u − m/�x, v − n/�y)

= 1
�x�y

∞∑
m=−∞

∞∑
n=−∞

[∫ ∞

−∞

∫ ∞

−∞

F(ξ , η)δ(u − m/�x − ξ , v − n/�y − η) dξ dη

]

= 1
�x�y

∞∑
m=−∞

∞∑
n=−∞

F(u − m/�x, v − n/�y) [from (2.6)] , (3.76)

where we have used the fact that the Fourier transform of the sampling function
is given by

F2D(δs(x, y;�x, �y)) = comb(u�x, v�y) , (3.77)

as indicated in Table 2.1.
From (3.76), it is clear that the spectrum Fs(u, v) of fs(x, y) is calculated

by shifting the spectrum F(u, v) of f (x, y) to locations (m/�x, n/�y), for all
m and n, adding all shifted spectra and dividing the result by �x�y. This is
illustrated in Figure 3.14. If the shifted spectra in Fs(u, v) do not overlap, then
the original spectrum F(u, v) of f (x, y), and thus f (x, y) itself, can be recovered
by filtering fs(x, y) to ‘‘pick’’ one of the (equivalent) spectra. It is customary to
use a low-pass filter [see (2.102)] to capture the spectrum centered at the origin,
like the one outlined with a gray box in Figure 3.14(b).

3.6.2 Nyquist Sampling Theorem

In order that the spectra in Fs(u, v) do not overlap, it is first necessary that the
spectrum of f (x, y) be zero outside a rectangle in frequency space. Such signals
are called band-limited. If the highest frequencies present in f (x, y) in the x and
y directions are U and V, respectively, then if

�x ≤ 1
2U

and �y ≤ 1
2V

, (3.78)

the spectrum F(u, v) can be reconstructed from the spectrum Fs(u, v), in which
case f (x, y) can be reconstructed from fs(x, y) and thus from the samples fd(m, n).

If �x > 1/2U or �y > 1/2V, there is overlap of ‘‘high’’ frequencies of
F(u, v) in Fs(u, v), producing aliasing. Aliasing is illustrated in Figure 3.14(c). In
this case, the spectrum F(u, v) cannot be recovered from the spectrum Fs(u, v)
and, therefore, f (x, y) cannot be reconstructed from its samples fd(m, n).

In summary, we have the following important result: A 2-D continuous
band-limited signal f (x, y), with cutoff frequencies U and V, can be uniquely
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(a) (b) (c)

Figure 3.14
(a) The spectrum F(u, v) of a band-limited continuous signal f (x, y) with cutoff frequencies
U and V. (b) The spectrum Fs(u, v) of signal fs(x, y) obtained by sampling f (x, y) with
sampling periods �x < 1/2U and �y < 1/2V. In this case, F(u, v) can be perfectly
reconstructed from Fs(u, v). The spectrum F(u, v) takes value one within the light gray
area and zero outside. (c) The spectrum Fs(u, v) of fs(x, y) obtained by sampling f (x, y)
with sampling periods �x > 1/2U and �y > 1/2V. In this case, fs(x, y) experiences
aliasing and F(u, v) cannot be reconstructed perfectly in general.

determined from its samples fd(m, n) = f (m�x, n�y), if and only if the sampling
periods �x and �y satisfy

�x ≤ 1
2U

and �y ≤ 1
2V

.

This is known as the sampling theorem (or the Nyquist sampling theorem, after
its discoverer). To avoid aliasing, the maximum allowed values for �x and �y
are given by

(�x)max = 1
2U

and (�y)max = 1
2V

, (3.79)

and are known as the Nyquist sampling periods.
From our previous discussion, aliasing-free sampling requires band-limited

continuous signals. From (3.79), the minimum number of samples required for
aliasing-free sampling is directly proportional to the cutoff frequencies U and V.
This verifies the fact that slowly varying signals, which are characterized by small
values of U and V, require fewer samples than rapidly varying signals, which
are characterized by large values of U and V. From the preceding discussion,
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we can see why undersampled signals tend to show high-frequency artifacts: The
overlap of high-frequency spectra in the aliased Fourier transform artificially
boosts high-frequency content.

3.6.3 Anti-Aliasing Filters

In medical imaging systems, there is an inherent trade-off between the number
of samples acquired by a detector and image quality. Acquiring a large number
of samples typically produces the highest image resolution but is almost always
either expensive or time-consuming. Reducing the number of samples may lead to
aliasing, which will introduce unwanted artifacts into the image. An alternative
is to first filter the continuous signal using a low-pass filter, and then sample
with fewer samples. In this case, the image is degraded by blurring rather than
aliasing artifacts, which is usually preferable. Such a low-pass filter is called an
anti-aliasing filter, and must be applied before sampling.

Anti-aliasing filtering is often an inherent part of a medical imaging instru-
ment because the true continuous signal is blurred by the impulse response of
the system. It is useful to consider two sources of blurring, that caused by the
inherent physics and geometry of the system and that caused by the detectors
themselves. Ideally, the physics and geometry cause only a small amount of
blurring and therefore a high frequency signal is presented to the detectors.
Although this situation is highly dependent on the modality, it would be fairly
accurate to say that very little anti-aliasing is accomplished by the physics and
geometry of the system.

Anti-aliasing is more often accomplished by the detectors, which (in most
cases) integrate the incident signal over the area of each detector. This additional
integration, which is still part of the overall PSF of the system, provides
additional low-pass filtering prior to sampling. Since the detectors are not point
samplers, it is incorrect to model the discretization of a medical imaging system
as the multiplication of the incident signal f (x, y) with the sampling function
δs(x, y;�x, �y). Instead, the effect of detector integration can be modeled by
first convolving f (x, y) with the PSF h(x, y) of the detector. The overall detector
system PSF is the result of the cascade of PSFs that characterize the individual
components of resolution, including the detector’s geometric resolution. Here
we focus on a specific component of resolution: any sampling process that is
not point sampling. In many cases, the sampling is area sampling rather than
point sampling. This occurs when the detector is either intrinsically digital (i.e.,
it is a pixelated detector) or its output is represented by an array of pixels.
In either case, the PSF of the area sampling component can be represented
by a rect function [(2.16)], and the sampling process can be mathematically
modeled by

fd(m, n) = fs(m�x, n�y) , (3.80)

fs(x, y) = [h(x, y) ∗ f (x, y)] δs(x, y;�x, �y) . (3.81)

Since integration is a low-pass process, this resembles the anti-aliasing filtering
approach described above: The continuous signal f (x, y) is first filtered by a
low-pass filter with PSF h(x, y), from which fd(m, n) is obtained by sampling.
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Note that the part of the overall PSF due to the other individual components
of resolution can be included in this analysis simply by considering h(x, y) to
be the overall PSF of the system rather than just the PSF of the area sampling
component.

EXAMPLE 3.13
Consider a medical imaging system with sampling period � in both the x and y directions.

Question What is the highest frequency allowed in the images so that the sampling
is free of aliasing? If an anti-aliasing filter, whose PSF is modeled as a rect function, is
used and we ignore all the side lobes of its transfer function, what are the widths of the
rect function?

Answer From the Nyquist sampling theorem, we know that if the image contains
frequency higher than 1/2�, then there will be aliasing. So the highest allowed frequency
is 1/2�.
If an anti-aliasing filter is used, the highest frequency of the image being sampled is the
cutoff frequency of the filter (here, we assume the transfer function of the filter has value
0 outside the cutoff frequency). In this example, the anti-aliasing filter is modeled as a
rect function. Its transfer function is given by the sinc function (we ignore the magnitude
of the rect function, since it does not change the cutoff frequency),

H(u, v) = sinc(�xu, �yv) ,

where �x and �y are the widths of the filter in the x and y directions, respectively.
If we ignore the side lobes of H(u, v), the cutoff frequencies of the filter are the first zeros
of the sinc function, which are 1/�x and 1/�y. For the given sampling periods �, we
must have

1
�x

≤ 1
2�

and
1

�y
≤ 1

2�
,

which is equivalent to

�x ≥ 2� and �y ≥ 2�.

Figure 3.13 shows the impact of sampling with and without anti-aliasing.
When the sampling period is too small, there is spectral overlap and the resulting
image has artifacts that are most typically seen as high-frequency patterns, as
are visible in Figure 3.13(b). Anti-aliasing low-pass filters the image before
sampling, making the image blurrier but devoid of artifacts, as is apparent in
Figure 3.13(c).

3.7 Other Effects
3.7.1 Artifacts

A problem that frequently affects image quality is the creation of image features
known as artifacts that do not represent valid anatomical or functional objects.
Artifacts can obscure important targets, and they can be falsely interpreted
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as valid image features. Moreover, they can impair correct detection and
characterization of features of interest by adding ‘‘clutter’’ to images.

Artifacts are caused by a variety of reasons and can appear at any step of
the imaging process. For example, in projection radiography, artifacts can be
generated by the x-ray source, by restricting the x-ray beam in order to avoid
exposing parts of a patient that need not be imaged, and by nonuniformities in
the x-ray image intensifier over the imaging area.

In CT, artifacts may arise from patient motion, which produces streak
artifacts throughout the image, known as motion artifacts; Figure 3.15(a) shows
an example. Another typical artifact in CT is known as a star artifact. This
artifact is generated by the presence of metallic materials in the patient, which
results in incomplete projections. An example of this artifact is depicted in
Figure 3.15(b). Another artifact is the so-called beam hardening artifact. This
artifact shows up as broad dark bands or streaks in the image, and it is due
to significant beam attenuation caused by certain materials. An example of this
artifact is depicted in Figure 3.15(d). Finally, a common artifact in CT is the
so-called ring artifact, illustrated in Figure 3.15(c). This artifact is caused by
detectors that go out of calibration and do not properly record incoming data.

There are many reasons for medical images to be corrupted by artifacts.
Evaluation and possibly removal of artifacts should be part of any high quality
medical imaging system. Good design, proper calibration, and maintenance of
medical imaging systems may control and even eliminate artifacts. The specific

Figure 3.15
Examples of artifacts in
CT: (a) motion artifact,
(b) star artifact, (c) ring
artifact, and (d) beam
hardening and partial
voluming artifact.
Courtesy of Vince Blasko
and Beatrice Mudge,
Department of Radiology,
Johns Hopkins Hospital.

(a) (b)

(c) (d)
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Figure 3.16
(a) Size distortion in a
radiographic imaging
system due to
magnification: although
the sizes of the two dark
objects are different, their
projections are the same.
(b) Shape distortion in a
radiographic imaging
system due to x-ray beam
divergence: although the
two dark objects are the
same, the shapes of their
projections are different.

(a)

X-ray source

(b)

X-ray source

artifacts that appear in each particular imaging modality will be discussed in
subsequent chapters.

3.7.2 Distortion

Medical imaging systems often introduce distortion, another factor affecting
image quality. Distortion is geometrical in nature and refers to the inability of a
medical imaging system to give an accurate impression of the shape, size, and/or
position of objects of interest.

In projection radiography, for example, size distortion can be present due to
magnification caused by the distance of the x-ray source from the object being
imaged. This is illustrated in Figure 3.16(a). Notice that although the sizes of
the two dark objects are different their projections are the same.

On the other hand, shape distortion can be generated as a result of unequal
magnification of the object being imaged. One common cause of shape distortion
is the fact that anatomical structures lie at different levels within the human body.
In projection radiography, shape distortion is also caused by the divergence of
the x-ray beam. This is illustrated in Figure 3.16(b). Notice that although the
two dark objects are the same the shapes of their projections are different.

Unfortunately, distortion can be very difficult to determine and correct.
In order to evaluate distortion, knowledge of the actual shape and size of
the object being imaged is required. Moreover, a good understanding of the
imaging geometry is necessary. Developing methods for correcting distortion
is very important for increasing image quality and improving diagnosis. Dis-
tortions introduced by each particular imaging modality will be discussed in
later chapters.

3.8 Accuracy
The preceding discussions in this chapter have focused on quantitative metrics
of image quality. Even so, we said at the outset that image quality ultimately
must be judged in the context of a specific clinical application. Medical images
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are used for diagnosis (‘‘Is the disease present?’’), prognosis (‘‘How will the
disease progress, and what is the expected outcome?’’), treatment planning
(‘‘Which treatment will work best?’’), and treatment monitoring (‘‘Is the treat-
ment reversing the disease, and to what extent?’’). Fundamentally, we are
interested in the accuracy of medical images in the context of these clinical
applications. Here, ‘‘accuracy’’ means both conformity to truth (i.e., free-
dom from error) and clinical utility. In practice, we are usually interested in
quantitative accuracy and diagnostic accuracy.

3.8.1 Quantitative Accuracy

Sometimes, we are interested in the numerical value of a given anatomic or
functional feature within an image. For example, we may wish to measure
tumor dimensions from a radiograph, or estimate glucose metabolic rate from
a nuclear medicine image. In such situations, we need to know the error
in our measurement. This error, or difference from the true value, arises
from two sources: bias, which represents a systematic, reproducible difference
from the truth, and imprecision, which represents a random, measurement-to-
measurement variation.

It is helpful to separate the component of error due to bias from that
due to imprecision. If we can establish that the measurement is precise (i.e.,
reproducible), then we can correct for systematic errors through the use of
a calibration standard that converts the measured value to the true value. In
practice, error usually arises from both components, and our measurements are
never error-free.

3.8.2 Diagnostic Accuracy

We can conceptualize a medical image as representing some parameter (or set
of parameters) of interest in a patient. For the sake of simplicity, we assume
that the diagnostic process involves a test that extracts this parameter (or set of
parameters), which is then used to classify a given patient as either normal or
diseased. We further conceptualize two Gaussian distributions of the parameter
(or set of parameters), one for normal patients and another for diseased patients,
with (usually) some degree of overlap. This implies that some normal patients
may be classified as diseased and vice versa.

In a clinical setting, we are interested in two parameters:

• Sensitivity, also known as the true-positive fraction; this is the frac-
tion of patients with disease who the test (e.g., the medical image) calls
abnormal.

• Specificity, also known as the true-negative fraction; this is the fraction
of patients without disease who the test (e.g., the medical image) calls
normal.

In practice, sensitivity and specificity are established in a group of patients
through the use of a 2 × 2 contingency table, as shown in Figure 3.17. Here,
a and b are, respectively, the number of diseased and normal patients who the
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Figure 3.17
A contingency table.

Disease

a b

�

�

�

� c dT
es

t

test calls abnormal, whereas c and d are, respectively, the number of diseased
and normal patients who the test calls normal. In this case, the sensitivity and
specificity are given by

sensitivity = a
a + c

and specificity = d
b + d

. (3.82)

Typically, the ultimate diagnosis that confirms the presence or absence of
disease is through a more-invasive test than medical imaging, a ‘‘gold standard’’
that is used to verify the accuracy of (noninvasive) medical imaging procedures.
The diagnostic accuracy (DA) is the fraction of patients that are diagnosed
correctly, and is given by

DA = a + d
a + b + c + d

. (3.83)

In order to maximize diagnostic accuracy, both sensitivity and specificity
must be maximized. In practice, because of overlap in the distribution of
parameter values between normal and diseased patients, a threshold must be
established to call a study ‘‘abnormal,’’ as shown in Figure 3.18. A lower
threshold implies that more studies will be called abnormal, thus increasing
sensitivity but decreasing specificity. A higher threshold implies that fewer studies
will be called abnormal, thus increasing specificity but decreasing sensitivity.
One way of graphically depicting this relation is via a receiver operating
characteristic (ROC) curve, which plots sensitivity as a function of 1 − specificity
(see Problem 3.29).

Figure 3.18
Probability distributions
of the test results for
normal subjects and
patients with certain
disease.
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In practice, the threshold must be chosen as a balance between sensitivity
and specificity. The choice of threshold for a specific test depends on the
relative cost-of-errors in calling a normal patient abnormal or a diseased patient
normal. The threshold also depends on the prevalence or proportion of all
patients who have the disease, because in practice we are interested in two other
parameters:

• Positive predictive value (PPV), which is the fraction of patients called
abnormal who actually have the disease

• Negative predictive value (NPV), which is the fraction of persons called
normal who do not have the disease

Notice that

PPV = a
a + b

and NPV = d
c + d

, (3.84)

and that both depend on prevalence (PR), which is given by

PR = a + c
a + b + c + d

. (3.85)

EXAMPLE 3.14
Diagnostic accuracy alone cannot tell how good a diagnostic method is. This example
shows that a bad diagnostic method can still achieve a high DA.

Question Consider a group of 100 patients, among which 10 are diseased and
90 are normal. We simply label all patients as normal. Construct the contingency
table for this test and determine the sensitivity, specificity, and diagnostic accuracy of
the test.

Answer The contingency table for the test is shown below.

Disease
+ −

Test + 0 0
− 10 90

From the table, we have a = b = 0, c = 10, and d = 90. So the sensitivity, specificity,
and diagnostic accuracy of the test are

Sensitivity = a
a + c

= 0 ,

Specificity = d
b + d

= 1.0 ,

DA = a + d
a + b + c + d

= 0.9 .

It can be seen that although all patients with the disease are diagnosed wrong, we still
have a relatively high diagnostic accuracy of 0.9. This is simply because the patients
without the disease comprise the majority of patients in the group being studied. This
would be considered a flawed experimental design.
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3.9 Summary and Key Concepts
Image quality characterizes the performance of a medical imaging system and
directly affects clinical utility. It is assessed through a combination of specific
performance parameters as measured in images. In this chapter, we presented
the following key concepts that you should now understand:

1. Image quality refers to the degree to which an image allows a radiologist to
accomplish the clinical goals of the imaging study.

2. The six most important factors influencing image quality are contrast,
resolution, noise, artifacts, distortion, and accuracy.

3. Contrast refers to the difference in image intensity of an object or target and
surrounding objects or background.

4. Resolution is the ability of an imaging system to distinguish and depict two
signals that differ in space, time, or energy as distinct.

5. Noise is any random fluctuation in an image; noise generally interferes with
the ability to detect a signal in an image.

6. Continuous signals are transformed by sampling or discretization into
discrete signals in order to be digitally represented.

7. Aliasing is caused by improper sampling of a continuous signal, yielding
artifacts in the resulting digital image.

8. Artifacts are false signals in an image that do not represent any valid
structural or functional signal in the patient.

9. Distortion is any geometric inaccuracy in size or shape.

10. Quantitative accuracy refers to the accuracy, compared with the truth, of
numerical values obtained from an image; diagnostic accuracy refers to the
accuracy of interpretations and conclusions about the presence or absence
of disease drawn from image patterns.
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Problems
Contrast

3.1 Prove Equation (3.5).
3.2 Consider an LSI medical imaging system with PSF given by

h(x, y) = 1
2π

e−(x2+y2)/2.

(a) Calculate the MTF associated with this system.
(b) Plot the MTF as a function of frequency.
(c) If a sinusoidal object f (x, y) = 2 + sin(πx) is imaged through the

system, what is the percentage change in modulation caused by this
system?

3.3 Let H1 and H2 be two 1-D LTI systems whose PSFs are h1(x) and h2(x):

h1(x) = e−x2/5, h1(x) = e−x2/10.

(a) Find the MTF of system H1.
(b) Find the MTF of the cascade system of H1 and H2.

3.4 Show that the MTF of a nonisotropic medical imaging system is given by
Equation (3.9).

3.5 Consider an organ with a tumor is imaged. In the resulting image, the
organ has intensity Io and the tumor has intensity It > Io. Which of the
following methods can improve the local contrast if the organ is treated as
background:

(a) Multiplying the image by a constant α.
(b) Subtracting a constant 0 < Is < Io from the image.

Resolution

3.6 A new imaging system with which you are experimenting has anisotropic
properties. You measure the impulse response function as h(x, y) =
e−π (x2+y2/4). What is the FWHM of the system as a function of polar
angle θ?

3.7 A medical imaging system has the following line spread function, where
α = 2 radians/cm:

l(x) =
{

cos(αx) |αx| ≤ π/2
0 otherwise

.
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(a) Find the FWHM.
(b) Determine the resolution of this imaging system in lines per cm.

3.8 Consider a one-dimensional linear imaging system whose PSF is given by

h(x; ξ ) = e
−(x−ξ )2

2 ,

which represents the response to the shifted impulse δ(x − ξ ).

(a) What is the PSF of a system having the same basic form of PSF as that
above but whose FWHM is one half as large?

(b) Does the resolution of the system improve when you make the above
change in FWHM? Why?

(c) What characteristics should be expected from the MTF in an imaging
system that has high contrast (low blurring)?

3.9 Consider again the LSI medical imaging system of Problem 3.2.

(a) Calculate its line spread function (LSF).
(b) What is the FWHM associated with this system?

3.10 Consider a one-dimensional medical imaging system which is composed
of two subsystems with PSFs given by

h1(x) = e−x2/2 and h2(x) = e−x2/200.

(a) What is the FWHM associated with each subsystem?
(b) What is the FWHM associated with the overall system?
(c) Which subsystem most greatly affects the FWHM of the overall system?

3.11 A bar phantom is imaged by an LSI system, which is modeled as an ideal
moving average system. The PSF of the system is

h(x, y) = rect
( x
�

,
y
�

)
.

(a) If the bar separation of the bar phantom is �, what is the output of
the image system?

(b) If the bar separation is 0.5�, what is the output of the imaging system?
(c) Derive the relation of the contrast of the output image with the bar

separation and draw conclusion on the resolution of the imaging
system.

Random Variables and Noise

3.12 Show that if N is a random variable with mean μN and standard deviation
σN then

M = N − μN

σN

is a random variable with mean μM = 0 and standard deviation σM = 1.
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3.13 Suppose N random variables Xi, i = 1, · · · , N, are independent with mean
μi and variance σ 2

i , i = 1, · · · , N. Show that the mean and the variance of

the random variable X =
N∑

i=1
Xi are given by

μ =
N∑

i=1

μi and σ 2 =
N∑

i=1

σ 2
i .

3.14 In the above problem, if Xi, i = 1, · · · , N, are not independent, will the
equalities for the mean and variance of the sum of the random variables
still hold? Explain.

3.15 Show that the expected value and variance of a uniform random variable
X over the interval (a, b) are given by

μX = a + b
2

and σ 2
X = (b − a)2

12
.

3.16 Consider two medical imaging systems with PSFs h1(x, y) and h2(x, y) and
MTFs MTF1(u, v) and MTF2(u, v), respectively, such that

MTF1(u, v) ≤ MTF2(u, v) .

Show that the system with the larger MTF, and thus with better contrast
and resolution properties, is characterized by a larger output power SNR,
given by (3.63), and is thus better in terms of image quality.

3.17 Consider the system shown in Figure P3.1, in which an image f (x, y)
is corrupted with zero mean white noise n(x, y) with variance σ 2

n . The
corrupted image is input to a system with PSF h(x, y) to get an output
image g(x, y).

(a) What are the mean and variance of the noise in the output g(x, y)?
(b) What are the power SNR for the input and output images of the

system?
(c) If the system does not change f (x, y) in any way, under what condi-

tion(s) will the system improve the SNR?

Figure P3.1
A system with additive
noise.

�
f(x, y) g(x, y)

n(x, y)

h(x, y)

Sampling Theory

3.18 A signal f (t) is defined as

f (t) =
{

sin(2π t/T), 0 ≤ t ≤ T
0, otherwise

.
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We sample the signal with a sampling period of �T = 0.25T.

(a) What is fs(t), and what is fd(m)?
(b) Define a new signal fh(t) as

fh(t) = fd(k), for k�T ≤ t < (k + 1)�T.

Sketch fh(t) and find its Fourier transform.
(c) Repeat the above using a sampling period of �T = 0.5T.

3.19 The Nyquist sampling periods for 1-D band-limited signals f (x) and g(x)
are �f and �g, respectively. Find the Nyquist sampling periods for the
following signals:

(a) f (x − x0), where x0 is a given constant.
(b) f (x) + g(x).
(c) f (x) ∗ f (x).
(d) f (x)g(x).
(e)

∣∣f (x)
∣∣.

3.20 We want to sample the 2-D continuous signal f (x, y) = exp
{−π (x2 + y2)

}
by means of a rectangular sampling scheme to obtain 1.5 samples per
millimeter. Determine the PSF h(x, y) of an ideal low-pass anti-aliasing
filter with the maximum possible frequency content. What percentage of
the spectrum energy (see Problem 2.3) of f (x, y) is preserved by this filter?
In practice, can we sample f (x, y) alias-free without using an anti-aliasing
filter?

3.21 In a medical imaging system, small detectors having width w can be
used individually or be grouped together into larger (2x2) detectors.
Two example groupings are shown in Figure P3.2. Assume that the small
detectors have uniform response over their spatial extent and that the
detector array is stationary.

Figure P3.2
Grouping detectors.

A 2x2 grouping

xx

w

yy

(a) Find the impulse response, the MTF, and the (horizontal) FWHM of
the system when the small detectors are used.

(b) Consider the small detectors, and assume that a sinc function is zero
except for its main lobe. What property of the imaged object guarantees
that no aliasing will occur?
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(c) Describe a sequential imaging process, involving groupings like those
shown in the picture, which would guarantee that no aliasing occurs
for any object.

(d) What is the resolution (FWHM) of the imaging system in part (c)?
(e) Can the sequential grouping you described in part (c) be done after an

image is acquired using the small detectors? Explain.

3.22 Consider the following 1-D imaging systems, system 1 and system 2, with
PSFs given by

h1(x) = rect(2x),

h2(x) = e−πx2
.

(a) Calculate the full width half maximum of each system. Which has
better spatial resolution?

(b) Calculate the MTF of each system.

You wish to image the following signal

f (x) = cos(4πx)

with each system. Let g1(x) be the output of system 1 when f (x) is
the input, and let g2(x) be the output of system 2 when f (x) is the
input.

(c) Calculate g1(x) and g2(x). Which system should you use to image
this signal? Hint: you should not have to calculate any convolution
integrals.

(d) What is the largest sampling interval you can use to sample g1(x) and
g2(x) such that you do not introduce distortion through aliasing?

Artifacts, Distortion, and Accuracy

3.23 Compare artifacts with noise, and state the common properties and
differences between them.

3.24 In projection radiography, size distortion is an artifact that cannot be
ignored. Suppose the x-ray source is a perfect point source located at
origin and the detector plane is the x = d plane. A ball centered on the
x-axis between the source and the detector plane is imaged by the system.
Assuming that the radius of the ball is r < d/2, derive the relation between
the radius R of the image of the ball on the detector plane and the location
of the ball. If the source-detector distance is fixed, what measure(s) can be
taken to reduce the size distortion? What is the smallest ratio R/r that can
be achieved?

3.25 A medical imaging system has a geometric distortion, which is well
modeled as

x = ξ + 1
50

ξη2 ,

y = η ,
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where x and y are the coordinates in the image plane and ξ and η are
coordinates in the physical domain.

(a) If we take measurements on rectangular grids in the image plane, find
a way to correct the geometric distortion.

(b) If we want to take measurements on rectangular grids in the physical
domain, on what points should we take measurements in the image
domain?

3.26 Suppose the pdfs of the test result for patients with and without a disease
are modeled as Gaussian with different mean values and variances, as
shown in Figure 3.18. We design a diagnostic test by selecting a threshold
t0. For a patient whose test value is below t0, we call it normal. If the test
value is above t0, we call is diseased. By selecting different thresholds, we
obtain different diagnostic tests. Denote the means and variances of the
test result of the normal and diseased subjects as μ0, σ 2

0 , and μ1, σ 2
1 . And

assume μ0 < μ1.

(a) Find expressions for the pdfs of the test value for normal and diseased
subjects.

(b) If we choose t0 = (μ0 + μ1)/2, compute the sensitivity and the speci-
ficity.

(c) Derive an expression for the sensitivity as a function of the threshold
value.

(d) Derive an expression for the diagnostic accuracy as a function of the
threshold value.

Applications, Extensions and Advanced Topics

3.27 Show that a medical imaging system composed of several subsystems
will be inferior to each individual subsystem in terms of contrast and
resolution.

3.28 In most modern medical imaging systems, images are measured at discrete
grid points. Interpolation is needed when we want to treat the images
as functions defined on a continuous domain. For 1-D signals, linear
interpolation is one of the simplest. It can easily be extended to bilinear
interpolation in 2-D and trilinear interpolation in 3-D. Linear interpolation
is defined as

f (x) = x1 − x
x1 − x0

f (x0) + x − x0

x1 − x0
f (x1), x0 ≤ x ≤ x1 .

In 2-D, bilinear interpolation for f (p) from f (A), f (B), f (C), and f (D) is
done in the following steps (see Figure P3.3):
• Using linear interpolation to get f (E) from f (A) and f (B).
• Using linear interpolation to get f (F) from f (C) and f (D).
• Using linear interpolation to get f (P) from f (E) and f (F).

(a) Derive an explicit expression for f (P) using f (A), f (B), f (C), and f (D).
(b) Prove that the results are the same whether we get f (P) from f (E) and

f (F), or from f (G) and f (H).
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Figure P3.3
Bilinear interpolation.

E

F

G H

A � (x0, y1) B � (x1, y1)

C � (x0, y0) D � (x1, y0)

P(x, y)

(c) In Problem 3.25, if we take measurements on rectangular grids in the
image plane at (m�x, n�y), with �x = �y = 1 and m, n are integers,
how should we interpolate the value for ξ = 3 and η = 3.5 in the
physical domain?

3.29 As we mentioned in Example 3.14, diagnostic accuracy alone is not enough
to determine whether a test is good. In this problem, we will introduce the
concept of receiver operating characteristic (ROC) curves with a simple
example. Consider the situation described in Problem 3.26; suppose the
mean and variance of the test value for the normal subjects are μ0 = 2 and
σ 2

0 = 1, with arbitrary units. The mean and variance of the test value for
the diseased subjects are μ1 = 8 and σ 2

1 = 4, with arbitrary units.

(a) For threshold value t0 in the interval μ0 ≤ t0 ≤ μ1, plot the curve of
sensitivity (vertical axis) against 1 − specificity (horizontal axis). This
is the ROC curve.

(b) What is the ROC curve for a perfect diagnostic test?
(c) For a given ROC curve, if we define the optimal test to be the one that

is closest to the perfect test, determine the optimal test (threshold) for
the above case.



This page intentionally left blank 



P A R T

II
Radiographic
Imaging

Overview
Ionizing radiation—radiation capable of ejecting electrons from atoms—forms
the basis of a number of important imaging modalities. In some cases, we are
interested in the transmission of ionizing radiation through the body. In other
cases, we are interested in the emission of ionizing radiation from the body.
In this part of the book, we consider the two main imaging modalities that
make use of the transmission of ionizing radiation through the body: projection
radiography and computed tomography.

Projection radiography and computed tomography rely on the transmission
of ionizing radiation through the body. Various tissues and organs within the
body attenuate or decrease the intensity of the beam of ionizing radiation as it
passes through the body. Thus, even if the beam entering the body is of uniform
intensity, the beam exiting the body contains ‘‘shadows’’ of tissues and organs as
a ‘‘latent image’’ of varying beam intensity. Since it is the physical characteristics
of the tissues or organs (e.g., effective atomic number and density) that determine
that tissue’s attenuation abilities, the resulting images depict structures within
the body, and projection radiography and computed tomography are considered
anatomical imaging modalities, since they portray anatomy.

In Figure 1.1(b), we showed the most classic projection radiograph—a
‘‘chest x-ray.’’ In Figure II.1, we show several other transmission images.
Figure II.1(a) is also a projection radiograph—this time, of a hand. Notice
the dominance of bone in this image and the homogeneity of soft tissues. This
is because soft tissues do not attenuate x-rays as well as bone and the difference
in attenuation between different types of soft tissues is very small. Figure II.1(b)
shows a radiograph of the head and neck. Because the shoulders are wide in this
lateral (left-to-right) view and they contain bone, the attenuation there is quite
large, and the image is washed out (white) there. The brain, being all soft tissue,
is virtually devoid of features in this image. This lack of detail in the brain was of
great frustration to radiologists until computed tomography (CT) and magnetic
resonance imaging (MRI) burst onto the scene in the 1970s and 1980s.
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Figure II.1
Representative x-ray
transmission images of
various parts of the body:
(a) hand, (b) head and
neck, (c) knee, (d) chest,
(e) feet, and (f) pelvis. All
images courtesy of GE
Healthcare.

(a)

(b)

(c)
(d)

(e) (f)

It is instructive to look at the bones around the knee in Figure II.1(c). Why
do they appear to have bright outlines? We know that bones are filled with
marrow, which is a soft tissue. Therefore, around the edges, the x-rays have to
travel farther in the bone itself and therefore they experience more attenuation,
yielding a brighter image. If the bones were solid, then they would be brighter
in the middle on a radiograph.

Figure II.1(d) shows a chest x-ray, a staple of modern radiography. In one
single, quick acquisition the physician can examine the lungs, the heart, and
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the diaphragm as well as all the bones in the torso including the spine. Notice
that the entire rib cage appears in this image—displaying the ribs on both the
front and back of the body—revealing very evidently the overlaying structure
that is characteristic of x-ray radiographs. (The posterior ribs are the ones that
are nearly horizontal in the image.)

Figure II.1(e) shows a radiograph of human feet. In this image, we can
recognize a faint outline of the soft tissue—looking like a conventional footprint.
We see the white outlines of bone and also the washed out appearance of many
overlaying bones in the ankle region including the fibula and tibia. This image
also shows the symbols ‘‘L’’ and ‘‘R’’ indicating which foot is the left and which
is the right, respectively. In this case, left is on our left and right is on our right,
as if we were looking down at our own feet. The markers are made from lead
and are placed by the radiographer near the appropriate anatomy. Without these
markers, it is sometimes difficult or impossible to know left from right—and
this can lead to medical errors.

Figure II.1(f) shows a radiograph of the human pelvis. This image shows
bony structures as usual and faint evidence of soft tissues. Bowel gas is fairly

Figure II.2
X-ray images of (a) the
spine shown a surgical
fixation device, (b) the
pelvis showing two
artificial hip joints, and
(c) the knee showing bone
fixation wires. Image (a)
courtesy of Philips
Healthcare. Images (b)
and (c) courtesy of GE
Healthcare.(a)

(b)

(c)
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Figure II.3
Various CT images of the
human body: (a) wrist,
(b) torso and abdomen,
(c) complete spine,
(d) chest, and (e) ankle.
Image (a) courtesy of Dr.
Avneesh Chhabra,
Department of Radiology,
Johns Hopkins Hospital.
Images (b) and (e)
courtesy of GE
Healthcare. Image (c)
courtesy of Philips
Healthcare. Image (d)
courtesy of Osirix.

(a)

(b)

(d)

(c)

(e)

prominent in this image as well as darker regions that are caused by the negligible
x-ray attenuation of air.

Projection radiography and computed tomography both rely on an x-ray
tube to produce the beam of ionizing radiation, and radiation detectors on the
other side of the patient to detect the radiation that is passed through without
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being fully absorbed. In the case of projection radiography, the detector is
sometimes a piece of film, which then also serves as the display device. Increas-
ingly often, the detector is a digital device that is capable of storing a latent
image of the x-rays that hit the detector and either instantly or after a delay
transmitting the latent image to a computer. In the case of computed tomog-
raphy, an x-ray tube with a collection of detectors on the opposite side of the
patient rotate together around the patient, producing x-ray images at a number
of angles. These images, stored in a computer, form the projection data used to
reconstruct cross-sectional or transaxial images through the patient.

Projection radiography is perhaps the most commonly performed medical
imaging approach. It is used any time a physician needs an image of structures
within the body, especially to obtain an overall picture of the torso and to
examine bones. It is also commonly used during and after orthopedic surgery to
verify the placement of artificial joints and various fixation devices, as shown in
Figure II.2.

CT is distinguished from projection radiography in that it removes overlay-
ing structures by reconstructing cross sections of the body rather than imaging
projections. CT also produces images with lower resolution than conventional
radiographs, and typically requires higher x-ray dose to the patient. Figure II.3
shows various CT images of the human body.

Modern CT scanners invariably acquire stacks of two-dimensional cross
sections which can be handled by a computer as a three-dimensional (3-D)
dataset. Because of this capability, CT images can be reformatted by the
computer into arbitrary cross sections that are different than those that are
natively acquired by the scanner. All of the images in Figure II.3 are reformatted
with the exception of II.3(d). For example, in the large sagittal image shown in
Figure II.3(c) the data were acquired axially while sliding the patient on a table
through the axially-oriented CT scanner.

Figure II.3(d) shows a cross section of the chest (including the heart in which
all four chambers can be identified). The fact that the blood appears bright—as
bright as bone—is because a contrast agent has been introduced. Also, it might
be noticed that many of the bones appearing in these images have a bright ring
around them, which appears somewhat similar to that of radiographs. Because
the structures are not superposed in CT, this ring appearance actually reflects
differences in the make-up of the tissues. In this case, cortical bone has a higher
attenuation than cancellous bone and bone marrow, and is therefore brighter
on these images.
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44
Physics of
Radiography

4.1 Introduction
This chapter provides an introduction to the physics behind x-ray imaging
modalities. Broadly speaking, these modalities can be divided into two types,
projection radiography and computed tomography, which we cover in the
next two chapters. These modalities do not involve radioactivity (a common
misconception), so we delay the introduction of radioactivity until Chapter 7,
where it is needed for the presentation of the nuclear medicine modalities in
Chapters 8 and 9.

As we pointed out in Chapter 1, x-rays were discovered in 1895 by Roentgen
while working with a Crooke’s tube (a precursor to the modern x-ray tube).
He noticed that ‘‘rays of mysterious origin,’’ which he named x-rays, caused a
fluorescent plate to glow. Upon investigation, he determined that these rays were
in fact produced by the tube. The first radiograph of a human being—the hand
of Roentgen’s wife—was made by Roentgen within a month of the discovery.
Roentgen’s discovery of x-rays and their immediate application to imaging the
human body truly mark the birth of medical imaging.

Today, we know that x-rays are electromagnetic (EM) waves whose fre-
quencies are much higher than those of visible light. They are only one form
of ionizing radiation—that is, radiation capable of ejecting electrons from
atoms—used in medical imaging, however. Other forms of ionizing radiation
used in medical imaging include particulate radiation and gamma rays. Both
particulate radiation and gamma rays can be products of radioactive decay, and
we will have more to say about this in Chapter 7. It also turns out that an
electron beam, which is a form of particulate radiation, is used in the produc-
tion of x-rays. So, we need to study certain aspects of particulate radiation in
this chapter as well. Furthermore, gamma rays, like x-rays, are high-frequency
EM waves. So, in studying the propagation properties of x-rays, we are also
implicitly studying the same for gamma rays.

This chapter provides a necessary background for all imaging modali-
ties that use ionizing radiation, including projection radiography (Chapter 5),

106
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computed tomography (Chapter 6), planar scintigraphy (Chapter 8), and emis-
sion computed tomography (Chapter 9). We start by describing the basic
physical properties of the atom and the concepts of excitation and ioniza-
tion. We then describe ionizing radiation in a more general context, concluding
with its measurement and interaction with biological tissues.

4.2 Ionization
Ionization is the ejection of an electron from an atom, creating a free electron
and an ion. Radiation that carries enough energy to ionize an atom is called
ionizing radiation. Here, the term radiation covers a broad range of physical
phenomena. For example, visible light, x-rays, gamma rays, and electron beams
are all examples of radiation. High-energy EM waves such as x-rays and gamma
rays are ionizing radiations; light is not. Particulate radiations such as an electron
beam may be ionizing depending on the energy each particle possesses. We now
discuss the structure of atoms and the process of ionization in more detail.

4.2.1 Atomic Structure

Today’s concept of atomic structure is based on a quantum mechanical picture
of the atom (from the 1920s), which in turn arose from the Bohr model of
the hydrogen atom (in 1913). An atom consists of a nucleus of protons and
neutrons, which together are called nucleons, surrounded by orbiting electrons.
A common visualization of atomic structure, sometimes called the planetary
atom, is shown in Figure 4.1. The atomic number Z is equal to the number
of protons in the nucleus and defines the element. Each proton has a positive
charge equal in magnitude and opposite in charge to that of each electron. Since
an atom as a whole is electrically neutral, there are an equal number of electrons
and protons in an atom; hence, Z also represents the number of electrons in the
atom. A short table of the elements is given in Table 4.1.

The mass number A of an atom is equal to the number of nucleons in the
nucleus. The term nuclide refers to any unique combination of protons and
neutrons forming a nucleus. Nuclides are typically denoted by either A

ZX or X-A,
where X is the element symbol. For example, 12

6 C and C-12 are both symbols
for the most abundant carbon atom. Notice that the element symbol and atomic
number are redundant.

As indicated in Table 4.1, the number of neutrons in a given nucleus is
approximately equal to the number of protons; and certain combinations are
stable, while others are unstable. Unstable nuclides are called radionuclides,

Figure 4.1
The planetary atom: a
common (and useful)
visualization of atomic
structure.

Protons

Neutrons

Electrons
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TABLE 4.1

Abbreviated Table of the Elements

Atomic Mass Numbers Mass Numbers
Number of Stable Isotopes of Unstable Isotopes

Element Symbol (Z) (A) (A)

Hydrogen H 1 1, 2 3
Helium He 2 3, 4 5, 6, 8
Lithium Li 3 6, 7 5, 8, 9, 11
Beryllium Be 4 9 6, 7, 8, 10, 11, 12
Boron B 5 10, 11 8, 9, 12, 13
Carbon C 6 12, 13 9, 10, 11, 14, 15, 16
Nitrogen N 7 14, 15 12, 13, 16, 17, 18
Oxygen O 8 16, 17, 18 13, 14, 15, 19, 20

From Johns and Cunningham, 1983.

and their atoms are radioactive. Radionuclides are statistically likely to undergo
radioactive decay, which causes a rearrangement of the nucleus, which in turn
gives off energy and results in a more stable nucleus. For example, 14

6 C or C-14
denotes a radioactive carbon atom; it is statistically likely to decay into 14

7 N,
a stable nitrogen atom, during which a beta particle will be emitted from the
nucleus. We will have a lot more to say about radionuclides and radioactivity in
Chapters 7, 8, and 9.

The electrons orbiting the nucleus are organized into so-called orbits or
shells. The K shell is closest to the nucleus, the L shell is next, then the M shell,
and so on. Electrons are restricted to specific quantum states within each shell.
Only one electron is permitted to be in each state, and this leads to a maximum
number of electrons per shell, given by 2n2, where n is the shell number (K = 1,
L = 2, etc.). For example, only two electrons are permitted in the K shell, 8 in
the L shell, 18 in the M shell, and 32 in the N shell. Each atom has a so-called
ground state configuration for its electrons, which corresponds to the lowest
energy configuration of the atom—nature’s preferred arrangement of electrons
in a given atom. Generally speaking, in the ground state, the electrons will be
in the lowest orbital shells and within the lowest energy quantum states within
each shell. A diagram of the arrangement of electrons in shells for the carbon
atom is shown in Figure 4.2.

Figure 4.2
The arrangement of
electrons into shells for
the carbon atom.

K
L

M
N

Z � 6
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4.2.2 Electron Binding Energy

It is energetically more favorable for an electron to be bound in an atom rather
than to be free. In other words, the total energy of the atom is less than the total
energy of the atom (minus the electron) and the (free) electron. The difference
between these two energies is called the electron binding energy. Binding energy
is usually specified in units of electron volts (eV). Recall that one electron volt
is equal to the kinetic energy gained by an electron when accelerated across
one volt potential. For comparison with more conventional units of energy,
1 eV = 1.6 × 10−12 ergs = 1.6 × 10−19 J.

A given electron’s binding energy depends on the element to which the
electron is bound and the shell within which the given electron resides. For any
given element, electron binding energy decreases with increasing shell number.
The binding energy of the sole electron in a hydrogen atom is 13.6 eV, the
smallest binding energy among all ‘‘lighter’’ atoms (i.e., those having smaller
atomic numbers). There are even smaller electron binding energies in the outer
orbits of the ‘‘heavier elements.’’ For example, some electrons in the O-shell
of mercury atoms have binding energies equal to 7.8 eV. For our purposes,
however, it is sufficient to consider an ‘‘average’’ binding energy of the electrons
in a given atom or even in a given molecule. For example, the average binding
energy for air is about 34 eV. Metals have significantly larger average electron
binding energies. For example, the average binding energy of lead is about 1 keV
and for tungsten it is about 4 keV.

4.2.3 Ionization and Excitation

If radiation (particulate or EM) transfers energy to an orbiting electron (in an
atom of the material the radiation is passing through) which is equal to or
greater than that electron’s binding energy, then the electron is ejected from the
atom. This process, illustrated in Figure 4.3, is called ionization. It yields an
ion (an atom with a +1 charge in this case) and the electron that came from
it, which together are called an ion pair. By convention, radiation with energy
greater than or equal to 13.6 eV is considered ionizing; all other radiations are
considered nonionizing.

It is possible for a single ionizing radiation emission to ionize many atoms
along its path before its energy is exhausted. The ionizing radiation we use in

Figure 4.3
After an ionization event,
the ejected electron plus
the ion have more energy
than the original atom.

Atom Ion

Free electron

Radiation

Bound energy � Unbound energy � Electron energy

�

�
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medical imaging has energies ranging from about 25 keV to 500 keV. Broadly
speaking, the ‘‘easiest’’ atom to ionize is a hydrogen atom, since it has the
smallest average electron binding energy. Tungsten may be about the ‘‘most
difficult’’ to ionize in the substances normally encountered in medical imaging.
Using the range of ionizing radiations energies given above and the binding
energies for these two elements, we can conclude that a single ionizing particle
or ray used in medical imaging is capable of ionizing between 10 and 40,000
atoms before its energy is exhausted.

If an ionizing particle or ray transfers some energy to a bound electron but
less than the electron’s binding energy, then the electron is raised to a higher
energy state—to a more outer orbit—but is not ejected. This process is called
excitation. In both ionization and excitation, an electron shell is left with a
‘‘hole’’ that must be filled in order to return the atom to a lower energy state.
The filling of these open holes comprises an important source of secondary
radiation called characteristic radiation, which we will explore below.

EXAMPLE 4.1
Suppose an electron is accelerated within a vacuum from a heated cathode held at ground
potential to an anode held at 120 kV (DC).

Question If the anode is made of tungsten, what is the maximum number of tungsten
atoms that can be ionized on average?

Answer The electron will have kinetic energy equal to 120 keV upon reaching the
anode (recall the definition of eV). The average binding energy of tungsten is 4 keV.
Therefore, the maximum number of tungsten atoms that can be ionized on average is
120 keV/4 keV = 30.

4.3 Forms of Ionizing Radiation
Ionizing radiation can be divided into two broad categories: particulate and
electromagnetic. We now describe these types of radiation in some detail.

4.3.1 Particulate Radiation

Any subatomic particle (i.e., a proton, neutron, or electron) can be considered
to be ionizing radiation if it possesses enough kinetic energy to ionize an atom.
In calculating the kinetic energy of these particles, relativistic effects cannot be
ignored since the particles often travel at a significant fraction of the speed of
light. As a particle approaches the speed of light, its relativistic mass increases,
which significantly increases its kinetic energy above that which would be
calculated using the usual low-speed approximation.

From Einstein’s theory of relativity, we know that the (relativistic) mass of
a particle is given by

m = m0√
1 − v2/c2

, (4.1)
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where m0 is the rest mass of the particle, v is the speed of the particle, and c
is the speed of light. Einstein’s theory also tells us that there is an equivalence
between the energy E of a particle and its mass, which is given by

E = mc2 . (4.2)

The kinetic energy of a particle is the difference in energy between the moving
particle and the stationary particle:

KE = E − E0

= mc2 − m0c2 . (4.3)

It is straightforward to show (see Problem 4.3) that when v is small relative to
c, the kinetic energy reduces to

KE = 1
2

mv2 , v � c , (4.4)

which is the usual (nonrelativistic) equation for kinetic energy.
In nuclear medicine, we consider modes of radioactive decay that give rise to

different kinds of particulate ionizing radiations (see Chapter 7). In projection
radiography and computed tomography, however, the only particulate radiation
we need to consider is due to electrons that are not bound in an atom and have
gained kinetic energy. As we shall see, these electrons arise from a heated
filament and a potential difference between a cathode and anode within an x-ray
tube. In this case, we know the energies of these particles by the manner in which
they were created. For example, electrons accelerated across an 80 kV potential
will have energies equal to 80 keV. The speed and mass of these particles is
interesting to know but largely irrelevant from an imaging point of view.

EXAMPLE 4.2
Consider an electron that has been accelerated between a cathode and anode held at a
120 kV potential difference. Assume the situation is nonrelativistic.

Question What is the speed of the electron when it ‘‘slams’’ into the anode?

Answer The rest mass of an electron is 9.11 × 10−31 kg. Because it was accelerated
across a 120 kV potential, the electron must have kinetic energy given by KE = 120 keV.
Therefore, assuming nonrelativistic speeds, we must have

KE = 1
2

× 9.11 × 10−31 kg × v2 = 120 keV

Noting that 1 eV = 1.602 177 33 × 10−19 J and recalling that 1 J = 1kg m2
/s2, we find

that

v =
√

2 × 120 × 103 × 1.602 177 33 × 10−19 J
9.11 × 10−31 kg

= 2.054 × 108 m/s .
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This speed is a significant fraction of the speed of light, so our calculations are not
accurate; they must be redone (see Problem 4.2). Looking ahead, this example tells us
that the electrons in a typical x-ray tube are traveling at relativistic speeds by the time
they strike the anode.

4.3.2 Electromagnetic Radiation

Electromagnetic radiation comprises an electric wave and a magnetic wave
traveling together at right angles to each other. Radio waves, microwaves,
infrared light, visible light, ultraviolet light, x-rays, and gamma rays are all
examples of EM radiation. EM radiation has no rest mass and no charge, and
can act like either a particle or a wave. When treated as a ‘‘particle,’’ EM
radiation is conceptualized as ‘‘packets’’ of energy termed photons. The energy
of a photon is given by

E = hν , (4.5)

where h = 6.626 × 10−34 joule-sec is Planck’s constant and ν is the frequency of
the radiation (in Hz). Viewed as a wave, EM radiation has a wavelength given
by

λ = c/ν , (4.6)

where c = 3.0 × 108 meters/sec is the speed of light.
Table 4.2 summarizes the frequencies, wavelengths, and photon energies

of the EM spectrum relevant to medical imaging. Radio waves are very low
frequency, very long wavelength EM radiations; their photon energy ranges
from 10−10 to 10−2 eV. Since the photon energies of radio waves are below
13.6 eV, radio waves are not considered to be ionizing radiation. Visible light is
moderate frequency, long wavelength EM radiation. The photon energy of light
is about 2 eV, which is also not large enough to be considered ionizing. (See
Problem 4.6 for consideration of ultraviolet light.) X-rays and gamma rays, on
the other hand, are higher frequency, shorter wavelength EM radiation, having
energies in the keVs to MeV range. Both x-rays and gamma rays are clearly
ionizing radiations.

TABLE 4.2

The EM Spectrum

Frequency Range Wavelengths Photon Energies Description

1.0 × 105 –3.0 × 1010 Hz 3 km–0.01 m 413 peV–124 μeV Radio waves
3.0 × 1012 –3.0 × 1014 Hz 100–1 μm 12.4 meV–1.24 eV Infrared radiation
4.3 × 1014 –7.5 × 1014 Hz 700–400 nm 1.77–3.1 eV Visible light
7.5 × 1014 –3.0 × 1016 Hz 400–10 nm 3.1–124 eV Ultraviolet light
3.0 × 1016 –3.0 × 1018 Hz 10 nm–100 pm 124 eV–12.4 keV Soft x-rays
3.0 × 1018 –3.0 × 1019 Hz 100–10 pm 12.4–124 keV Diagnostic x-rays
3.0 × 1019 –3.0 × 1020 Hz 10–1 pm 124 keV–1.24 MeV Gamma rays

Adapted from Johns and Cunningham, 1983.
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Although it is suggested by Table 4.2, x-rays and gamma rays are not dis-
tinguished by their frequency or photon energies. Instead, they are distinguished
by their point of origin. In particular, x-rays are created in the electron cloud
of atoms while gamma rays are created in the nuclei of atoms, which in turn
are undergoing reorganization due to radioactive decay. Thus, gamma rays are
associated with radioactivity and x-rays are not. Although gamma rays tend to
have higher frequencies (energies) than x-rays, there is a large overlap in the
frequencies (energies) of x-rays and gamma rays used in medical imaging. Fur-
thermore, once produced, x-rays and gamma rays behave the same in terms of
their propagation properties and interaction with matter. Therefore, our under-
standing of the propagation and detection of EM waves in the x-ray–gamma
ray photon energy range is essential background material for all the medical
imaging modalities using ionizing radiation.

It turns out that both the production and detection of EM radiation over
a large range of frequencies play major roles in medical imaging. Visible
light is used in radiography to improve the efficiency of x-ray detection. The
attenuation of x-rays is the primary mechanism used to create images in
projection radiography and computed tomography. Finally, gamma rays are
detected in order to locate radiotracers in nuclear medicine.

4.4 Nature and Properties of Ionizing
Radiation

Particulate and EM ionizing radiations interact with the materials through
which they are traveling, imparting energy to the material, losing energy from
and redirecting their own radiation, and generating new types of particles and
radiation. Generally speaking, the effects that we care about fall into two broad
categories: (1) those that are used in imaging or that affect the imaging process
and (2) those that are not used in imaging but contribute to dose—that is, have
biological consequences. Specific concepts related to these two broad categories
tend to apply separately to particulate radiation or EM radiation. Table 4.3
lists specific concepts related to ionizing radiation, positioned according to the
categories for which they largely apply. We will now begin to discuss each
of these concepts, starting with those important in forming and analyzing

TABLE 4.3

Radiation Concepts

Imaging Dose

Particulate Bremsstrahlung Linear energy transfer
Characteristic radiation Specific ionization
Positron annihilation∗
Positron range

EM Attenuation Air kerma
Photoelectric effect Dose
Compton scatter Dose equivalent
Characteristic radiation Effective dose
Polyenergetic f-factor

∗Italicized entries are discussed in Chapter 7.
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medical images (column 1) and ending with those important in understanding
the biological effects of radiation (column 2). Concepts that are relevant only in
nuclear medicine are listed in italics and will be discussed in Chapter 7.

4.4.1 Primary Energetic Electron Interactions

The only particles of direct consequence to the formation of medical images are
electrons and positrons.1 Since positrons are used solely in nuclear medicine, we
postpone discussion of the interaction of positrons with matter until Chapter 7.
Here we consider only the interaction of energetic electrons with matter.

Energetic electrons interact and transfer energy to an absorbing medium by
two modes: collisional transfer and radiative transfer. In collisional transfer, by
far the most common type of interaction at the electron energies used in medical
imaging, a (typically small) fraction of the electron’s kinetic energy is transferred
to another electron in the target medium with which it collides. As the affected
atom returns to its original state, infrared radiation is generated, producing
heat in the target medium. As shown in Figure 4.4(a), the incident electron’s
path may be redirected as a result of the collision, and many more interactions,
both collisional and radiative, may subsequently take place, until the incident
electron’s kinetic energy is exhausted. Occasionally, a large amount of energy
may be transferred to a struck electron, creating a new energetic electron, which
forms a new path of ionization, called a delta ray, and a new set of collisional
and radiative energy transfers.

In radiative transfer, the energetic electron’s interaction with an atom
produces x-rays. This can happen in two ways: characteristic radiation or
bremsstrahlung radiation. In the generation of characteristic radiation, as shown
in Figure 4.4(b), the incident electron collides with a K-shell electron, exciting

Figure 4.4
Energetic electrons can
(a) collide with other
electrons until they lose
their energy; (b) eject a
K-shell electron,
generating a characteristic
x-ray; or (c) be ‘‘braked’’
by a nucleus, generating
bremsstrahlung radiation.

Delta ray

Atoms

Ejected electron

Characteristic x-ray

Nucleus

Bremsstrahlung x-ray

(a)

(b)

(c)

1Other particles, most notably alpha particles, are relevant in the production of radiotracers for use
in nuclear medicine (see Chapter 7).
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or ionizing the atom, and temporarily leaving a hole in that shell. (This can also
happen to higher-orbit electrons but is not significant in imaging.) The K-shell
hole is then filled by an electron from the L-shell, M-shell, or N-shell. Since the
electron binding energy of the K-shell is higher than that of the L-, M-, or N-
shell, there is a loss of energy as the electron fills the K-shell hole or vacancy. The
loss of energy experienced by the outer-shell electron creates an EM photon.
The x-ray is called a characteristic x-ray. The energy of the characteristic
x-ray photon is exactly equal to the difference in electron binding energies
between the two shells. In fact, the particular electron ‘‘subshells,’’ which have
slightly different energies according to quantum physics, are distinguished. Since
these electron binding energies are determined by the particular atom and those
transitions allowed by quantum physics, these x-ray energies are ‘‘characteristic’’
of particular atoms, which is the reason for the name characteristic x-rays. A
given atom can be identified by the nature (energies and proportions) of the
characteristic x-rays it generates.

Bremsstrahlung radiation is caused by the interaction of an energetic elec-
tron with the nucleus of an atom, as shown in Figure 4.4(c). As the electron
approaches the nucleus, the positive charge of the nucleus attracts the electron,
causing it to bend, as if to go into orbit around the nucleus. As the electron
decelerates around the nucleus, it loses energy in the form of an EM photon,
which comprises bremsstrahlung radiation (German for ‘‘braking radiation’’).
Unless the electron actually strikes the nucleus, the electron departs the atom
with a kinetic energy reduced by the energy of the emitted photon. In the
rare event of a collision with the nucleus, the electron is annihilated, and the
photon emitted has energy equal to the kinetic energy of the incident electron.
Otherwise, the emitted photon must have energy lower than that of the incident
electron. The intensity of bremsstrahlung radiation increases with the energy of
the incident electron and the atomic number of the atom with which it interacts.

As discussed in Chapter 5, bremsstrahlung radiation is the primary source
of x-rays from an x-ray tube. This is because an x-ray tube works by accelerating
electrons across a voltage potential in a vacuum. When the electrons strike the
target or anode, which is usually tungsten, they lose energy by both collisional
and radiative transfer; so heat, characteristic x-rays, and bremsstrahlung x-
rays are produced. The x-ray energies produced by the characteristic and
bremsstrahlung interactions differ in character, as shown in Figure 4.5. The
bremsstrahlung spectrum, sometimes called the continuous spectrum, has its
highest energy equal to the anode-to-cathode potential. In this figure, different
potentials are considered: 45 kV, 61 kV, 80 kV, 100 kV, and 120 kV. For a
given fixed potential, x-rays at the highest energies are produced only by the rare
direct collisions between energetic electrons and anode nuclei. It is increasingly
more likely for lower energy bremsstrahlung interactions to take place; it is
approximately a linear increase with frequency decreasing from the maximum
energy. At the lower energies, bremsstrahlung radiation is still produced, but is
absorbed by the anode itself, so the spectrum goes to (effectively) zero.

Characteristic x-rays can be generated only if the incident electrons have
sufficient energy to eject inner-shell electrons. For a tungsten anode, the K-shell
binding energy is 69.5 keV, the L-shell binding energy is approximately 12 keV,
and the M-shell binding energy is under 3 keV. Thus, the characteristic x-rays
from tungsten are all under 70 keV, and include energies of approximately
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Figure 4.5
When energetic electrons
bombard a target, two
kinds of x-rays are
produced: characteristic
x-rays and
bremsstrahlung x-rays.
Low-energy x-rays of
both types are absorbed
by the medium.
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58 keV (from an L-shell to K-shell transition), 67 keV (from an M-shell to
K-shell transition), and 69 keV (from a very outer shell to K-shell transition), as
shown in Figure 4.5. (Transitions to the L-shell or M-shell result in such low-
energy characteristic x-rays that they are either absorbed within the tungsten
anode or filtered out by the x-ray tube.)

4.4.2 Primary Electromagnetic Radiation Interactions

EM ionizing radiation interacts with matter through significantly different
mechanisms than particulate ionizing radiation. The three main mechanisms by
which EM ionizing radiation interacts with materials are (1) the photoelectric
effect, (2) Compton scatter, and (3) pair production. Since a photon must have
at least 1.02 MeV of energy for pair production to occur and since the range of
photon energies in medical imaging is about 25–500 keV, we will consider only
the photoelectric effect and Compton scattering here.

In both the photoelectric effect and Compton scattering, an incident x-ray
photon interacts with the electron cloud of an atom. The primary difference
between the two interactions is that in the photoelectric effect the photon is
completely absorbed by the atom, while in Compton scattering the photon is
not absorbed but instead loses energy and changes its direction. Both effects
are important in imaging human tissues. The photoelectric effect is the primary
mechanism that provides contrast between different types of tissues; Compton
scattering is a primary mechanism for limiting the resolution of x-ray images,
both in projection radiography and computed tomography. We now study both
interactions in some detail.

Photoelectric Effect In the photoelectric effect, a photon with energy hν

interacts with the coulomb field of the nucleus of an atom, causing the ejection
of an electron, usually a K-shell electron, from the atom. This process is
illustrated in Figures 4.6(a) and (b). The incident photon is completely absorbed
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Figure 4.6
The photoelectric effect,
shown in (a) and (b), and
Compton scattering,
shown in (c).
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by the atom, and the ejected electron, called a photoelectron, propagates away
with energy

Ee− = hν − EB , (4.7)

where EB is the binding energy of the ejected electron. The remaining atom is now
an ion, having a hole, typically in the K-shell, which must be filled. The hole is
filled by an electron transition from a higher orbit, which produces characteristic
radiation, as discussed above and shown in Figure 4.6(a). Sometimes, the
characteristic x-ray transfers its energy to an outer-orbit electron, called an
Auger electron, which is ejected from the atom, accompanied by a readjustment
of the remaining electron orbits, as shown in Figure 4.6(b). Photoelectrons and
Auger electrons are energetic electrons that are free to interact with matter in
the ways we described in the previous section. We will see below that these
energetic electrons contribute to the detrimental biological effects of ionizing
EM radiation by contributing radiation dose to the patient.

Compton Scattering In Compton scattering, as shown in Figure 4.6(c), a
photon with energy hν ejects a valence (outer-shell) electron, yielding a new
energetic electron called a Compton electron. As a result of this interaction,
the incident photon loses energy (to the Compton electron) and changes its
direction. The energy of the scattered photon, the so-called Compton photon, is
given by

hν ′ = hν

1 + (1 − cos θ )hν/(m0c2)
, (4.8)

where m0c2 = 511 keV is the energy equivalent to the rest mass m0 of an electron,
and θ is the angle through which the photon is scattered [see Figure 4.6(c)]. We
see that the amount of energy remaining with the Compton photon depends on
the scatter angle. The more the photon is deflected, the more energy it loses.
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This implies that the maximum energy loss occurs when the photon is deflected
180◦ back towards the source, that is, a 180◦ backscatter. The kinetic energy of
the Compton electron is given by

Ee− = hν − hν ′ . (4.9)

EXAMPLE 4.3
Compton scattering is usually undesirable in medical imaging. In planar scintigraphy
(Chapter 8), the energy of a photon is used to determine whether it has been scattered
prior to arrival at the detector.

Question Suppose a photon with energy hν = 100 keV is incident to some material
and exits with energy hν ′. A detector decides that the photon has not been scattered if
hν ′ > 98 keV. What is the maximum angle by which the photon is scattered but is still
being treated as a photon traveling along a straight path?

Answer The energy of the photon after Compton scattering is

hν ′ = hν

1 + (1 − cos θ )hν/(m0c2)

= 100 keV
1 + (1 − cos θ )100 keV/(511 keV)

= 98 keV

θ = cos−1
(

1 − 511
100 ∗ 49

)
= 26.4◦

So, a photon scattered by an angle up to 26.4◦ is still considered as traveling along a
straight path by the detector.

Probability of EM Interactions We now consider the factors that make photo-
electric and Compton events more likely to occur. There are many reasons why
this subject is important. For example, the formation of a useful projection radio-
graph depends on the differential attenuation of an x-ray beam passing through
a patient, which is caused by the photoelectric effect and Compton scattering,
as we shall see in the next chapter. As another example, we observed above
that the photoelectric effect causes complete absorption of an incident photon.
Therefore, if we find a way to increase the likelihood of photoelectric events, we
can block or shield objects (or patients, staff, and physicians) from the source of
ionizing EM radiation. We should therefore be able to understand what makes
lead a good x-ray shield while plastic is not; we should also be able to predict
whether lead will shield high-energy photons better than low-energy photons. As
another example, the reason why Compton scattering is detrimental to imaging
is that it causes photons to deviate from straight-line paths. We would like to
know the conditions under which Compton scattering is large so that instru-
mentation can be designed to compensate for its effects. We might choose to use
x-ray energies that minimize the Compton scattering effect to image patients.

Consider a thin ‘‘slab’’ of material having a fixed thickness. Suppose
that an incident photon can either pass through the material or experience a
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photoelectric or Compton event. What are the factors that make a photoelectric
effect more likely? Since a photoelectric event occurs as a result of an interaction
with the coulomb field of the nucleus of an atom and if there are more (positively
charged) protons in the nucleus, the likelihood should increase. The probability
of a photoelectric event is related to the atom’s atomic number Z. In a compound
composed of a variety of different atoms, we define an effective atomic number
Zeff, which characterizes the average atomic number in a certain sense. The
probability of a photoelectric event is (approximately) proportional to Z4

eff.
2

The other factor affecting the probability of a photoelectric event is the
incident photon energy. Intuitively, we might expect that high-energy photons
are more penetrating—that is, they pass farther into an object before being
absorbed. This intuition is correct; in fact, the probability of a photoelectric
event (given all else held constant) is proportional to 1/(hν)3. Putting this
together, we find

Prob[photoelectric event] ∝ Z4
eff

(hν)3 . (4.10)

Finally, we note that when the photon energy rises above the binding energy
of L-shell or K-shell electrons, experiments reveal that the probability of a
photoelectric interaction increases abruptly, then begins to diminish as the
energy is further increased. This sudden increase occurs because a large number
of electrons has suddenly become available to be ejected from their host atoms.
This property will be important in the use of contrast agents in radiography and
computed tomography.

Now we ask another question: What are the factors that make a Compton
scattering event more likely? Since Compton events occur with very loosely
bound (or ‘‘free’’) electrons in the outer shells, what matters is the number
of electrons per kilogram of material—the electron density (ED). The electron
density is given by

ED = NAZ
Wm

, (4.11)

where NA is Avogadro’s number (atoms/mole), Z is the atomic number (elec-
trons/atom), and Wm is the molecular weight of the atom (grams/mole). As
shown in Table 4.4, except for hydrogen, the electron density for various bio-
logical materials is nearly the same, 3 × 1026 electrons/kg (see Problem 4.7).
Therefore, the probability of Compton scattering is nearly independent of the
atomic number (actual or effective).

The other factor that might influence the probability of Compton scatter
is the photon energy. There is a fairly complicated relationship described by
the Klein-Nishina formula, which predicts that the probability of a Compton
event generally decreases with increasing energy. However, this decrease is a
very gradual one, taking place over the very highest energies of interest in
diagnostic imaging. Over the range of energies of importance in x-ray imaging,
the probability is reasonably constant. In summary, we conclude that

Prob[Compton event] ∝ ED . (4.12)

2For high Z materials (as opposed to human tissues), it is more nearly proportional to Z3
eff.
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TABLE 4.4

Physical Properties of Some Materials

Density Electron Density
Material (kg/m3) Zeff (electrons/kg)

Hydrogen 0.0899 1 5.97 × 1026

Carbon 2, 250 6 3.01 × 1026

Air 1.293 7.8 3.01 × 1026

Water 1, 000 7.5 3.34 × 1026

Muscle 1, 040 7.6 3.31 × 1026

Fat 916 6.5 3.34 × 1026

Bone 1, 650 12.3 3.19 × 1026

From A. B. Wolbarst, p. 119, 1993.

TABLE 4.5

Photoelectric Versus Compton Interactions in Water

Photon Energy Percentage of Compton Percentage of Compton
(keV) Interactions Energy

10.0 3.2 0.1
15.0 11.8 0.4
20.0 26.4 1.3
30.0 58.3 6.8
40.0 77.9 19.3
50.0 88.0 37.2
60.0 93.0 55.0
80.0 97.0 78.8

100.0 98.4 89.6
150.0 99.5 97.4

Adapted from Johns and Cunningham, p. 163, 1983.

Since photoelectric and Compton events affect diagnostic images differently,
it is also important to understand the relative frequency of occurrence of these
two events in body tissues. There are two ways to look at this: by a relative
frequency or percentage of occurrence or by the percentage of energy deposited
by a given type of event. Table 4.5 summarizes these two characterizations over
the diagnostic range of energies. We see that the relative frequency of Compton
interactions increases as diagnostic x-ray energy increases, becoming the domi-
nant type of interaction above 30 keV. However, even at 60 keV, when Compton
events occur over 90 percent of the time (whenever either event occurs), these
events account for only 55 percent of the energy deposited in the tissue. This
apparent discrepancy occurs because photoelectric events deposit all of their
incident photon energy, while Compton events deposit only a fraction of their
incident photon energy.

4.5 Attenuation of Electromagnetic Radiation
Attenuation is the process describing the loss of strength of a beam of EM
radiation. Tissue-dependent attenuation is the primary mechanism by which
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contrast is created in radiography modalities. Although this is actually a sta-
tistical process, we study attenuation here as though it were deterministic. In
Chapter 5, we will include the statistical aspects in a very natural way, as we
study noise in projection radiographs.

4.5.1 Measures of X-Ray Beam Strength

In radiography, we are generally concerned with a brief burst of x-rays, also
called an x-ray beam. For many reasons, we are also concerned with the
‘‘strength’’ of the x-ray burst. For example, in the design of x-ray detection
systems used to form images, it is critical to characterize the strength of the
x-ray beam in order to characterize the inherent noise in the system and to adjust
the dynamic range of the detection system. Measures of x-ray beam strength
are also used in estimating the (adverse) biological effects of ionizing radiation.
This is critical because ionizing radiation is potentially harmful. At high doses,
it can cause burns or cataract formation, for example. Even at low doses, it can
increase the risk of cancer. It turns out that there are many ways to define and
measure the strength of x-rays. In this section, we consider several of the most
common and important measures of x-ray beam strength.

The conceptually simplest measure of the strength of an x-ray burst is simply
the number of photons N in the burst. It is also important to consider the area
over which these photons are spread. Accordingly, we define the photon fluence
� as the number of photons N per unit area A,

� = N
A

, (4.13)

where the area is oriented at a right angle to the direction of the radiation beam
propagation. It is sometimes important to account for time, since measurements
may take place over a fixed interval �t. Accordingly, photon fluence rate φ is
defined as

φ = N
A�t

. (4.14)

It may be of interest to know how much energy the burst is carrying and
could deposit into a material if totally absorbed. If each photon in the burst has
the same energy hν—that is, the beam is monoenergetic—then the total energy
of the burst is simply Nhν. We then define the energy fluence � and energy
fluence rate ψ as

� = Nhν

A
, (4.15)

ψ = Nhν

A�t
. (4.16)

The energy fluence rate is also known as the intensity of an x-ray beam, and it
is often given the symbol I. From (4.14) and (4.16), we see that

I = Eφ , (4.17)

where E = hν. Intensity has units of energy per unit area per unit time.
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In x-ray imaging, a photon burst is always polyenergetic, since it arises
mainly from bremsstrahlung. In principle, if only the photon count were impor-
tant, photon fluence rate could still be used as a valid measure of radiation
strength. However, these measures are not very important in practice, since
photons are not counted in x-ray imaging modalities, but instead their total
energy is measured. It is more useful, therefore, to capture the idea of intensity
for polyenergetic sources.

Since each x-ray photon carries its own discrete energy, a plot of N as a
function of E for polyenergetic sources is a line spectrum. Because of the random
nature of bremsstrahlung, the fine details of a line spectrum change with each
photon burst; however, the line density—for example, number of photons per
unit energy as a function of E—remains constant for a given source. The x-ray
spectrum S(E) is this line density per unit area per unit time. Examples of x-ray
spectra were shown in Figure 4.5. The energies at which S(E) is large have larger
numbers of x-ray photons per unit energy.

Since the integral of a line density yields the number of lines, from the
definition of S(E) and (4.14), the integral of the spectrum yields the photon
fluence rate

φ =
∫ ∞

0
S(E′) dE′ , (4.18)

a quantity that does not depend on energy. Furthermore, by analogy to (4.17),
it is natural to define the intensity of a polyenergetic source as

I =
∫ ∞

0
E′S(E′) dE′ . (4.19)

EXAMPLE 4.4
It is often desirable to model a polyenergetic x-ray beam as a monoenergetic source.3

Question What energy would a (hypothetical) monoenergetic source have to be in
order to produce the same intensity as the (true) polyenergetic source using the same
number of photons?

Answer For a given area A and time interval �t, the number of photons in the
polyenergetic source is

Np = A�t
∫ ∞

0
S(E′) dE′ .

The intensity of the polyenergetic source is

Ip =
∫ ∞

0
E′S(E′) dE′ .

The equivalent monoenergetic beam has intensity

Ip = E
Np

A�t
.

3In a monoenergetic beam, all photons have the same energy, hν.
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Therefore, the energy of this equivalent beam must be

E =
∫∞

0 E′S(E′) dE′∫∞
0 S(E′) dE′ .

This expression should look vaguely familiar; it is the expression for center of mass of a
sheetlike object having mass density S(E). Alternatively, the numerator is the expression
for the mean of a random variable if S(E) were its pdf. The denominator normalizes S(E)
so that the ratio effectively does compute the mean. The energy computed this way is
sometimes called the effective energy of a polyenergetic source. We will see an alternate
definition in Chapter 6.

4.5.2 Narrow Beam, Monoenergetic Photons

Consider a beam of N monoenergetic photons incident upon a thin slab of
homogeneous material, as shown in Figure 4.7(a). The depicted geometry is
called narrow beam geometry because the photon beam is no wider than the
detector used to detect or count the photons. In this case, if the slab were not
present (and ignoring statistical effects and problems of detector efficiency),
the detector would record N photons. With the slab present, however, some
photons will be absorbed within the slab by the photoelectric effect, and other
photons will be deflected away from the detector by Compton events. Overall,
the detector count N′ will be smaller than N, which is the primary characteristic
of attenuation, which we now explore in more detail.

Suppose n photons are ‘‘lost’’ in the above experiment. Provided that
�x is small, we would expect that doubling �x should double n, and dou-
bling N should also double n. In other words, n is proportional to both N
and �x, or

n = μN�x , (4.20)

Figure 4.7
Two geometries by which
to study attenuation:
(a) narrow beam
geometry and (b) broad
beam geometry.
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where μ is a constant of proportionality called the linear attenuation coefficient.
Rearranging (4.20) yields a definition of the linear attenuation coefficient,

μ = n/N
�x

, (4.21)

which can be interpreted as the fraction of photons that are lost per unit length.
The change in the number of photons upon interaction with the slab is

�N = N′ − N

= −n

= −μN�x . (4.22)

Letting the slab become incrementally thin and treating N as a continuous
quantity leads to the differential equation

dN
N

= −μ dx , (4.23)

which can be integrated (see Problem 4.9) to yield

N = N0e−μ�x , (4.24)

where N0 is the number of photons at x = 0. This equation can be called the
fundamental photon attenuation law; it is of central importance throughout all
of x-ray radiography. It should be noted that in the monoenergetic case, this
law can also be written in terms of intensity as

I = I0e−μ�x , (4.25)

where I0 is the intensity of the incident beam.
Using (4.24), we can compute the fraction of (monoenergetic) photons that

will be stopped or transmitted by a noninfinitesimal layer of homogeneous
material. One question can be asked: What thickness of a given material will
attenuate half of the incident photons? This thickness, called the half value layer
(HVL), satisfies

N
N0

= 1
2

= e−μHVL . (4.26)

A simple series of manipulations of (4.26) yields

HVL = ln 2
μ

= 0.693
μ

. (4.27)

EXAMPLE 4.5
We will see in Chapter 7 that 140 keV gamma rays are generated by the radioactive
decay of technetium-99m, and that sodium iodide crystals are used to detect such
gamma rays. Assume that the HVL of sodium iodide at 140 keV is 0.3 cm.
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Question What percentage of gamma rays will pass right through a 1.2 cm sodium
iodide crystal?

Answer We need to determine

Percent transmitted = 100% × N
N0

= 100% × e−μ1.2 cm .

Since μ = ln 2/HVL, we have

Percent transmitted = 100% × e− ln 2(1.2 cm)/(0.3 cm)

= 100% × e−4 ln 2

= 6.25% .

Suppose the slab is not homogeneous. In this case, the linear attenuation
coefficient depends on the position x, and we are faced with solving

dN
N

= −μ(x) dx . (4.28)

Straightforward integration yields the number of photons at position x,

N(x) = N0 exp
{
−
∫ x

0
μ(x′) dx′

}
, (4.29)

where x′ is a dummy variable for integration. The analogous relationship holds
for intensity as well,

I(x) = I0 exp
{
−
∫ x

0
μ(x′) dx′

}
. (4.30)

This form can be thought of as the integral form of the fundamental x-
ray attenuation law. This equation is the most important physical model for
projection radiography and computed tomography. It is also a valid model for
the attenuation of gamma rays in nuclear medicine modalities.

4.5.3 Narrow Beam, Polyenergetic Photons

In the narrow beam case, photons (of any energy) are either completely absorbed
or scattered away from the detector. Therefore, we can consider the attenuation
principles in the narrow beam, polyenergetic case to be the same as in the
monoenergetic case, except that they take place at each energy independently.

In general, the linear attenuation coefficient is different for different mate-
rials, and it also varies as a function of energy for the same material. A plot
showing these relationships for bone, muscle, and fat is given in Figure 4.8.
This plot shows that bone is more attenuating than muscle, which is in turn
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Figure 4.8
Linear attenuation
coefficient for bone,
muscle, and fat as a
function of incident x-ray
photon energy.
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more attenuating than fat. This plot shows as well that x-rays experience less
attenuation at higher energies—that is, they are more penetrating at higher
energies. For a polyenergetic x-ray beam, we must treat the linear attenuation
coefficient of a given material as a function of E—that is, μ(E).

Consider a homogeneous slab of material of thickness �x with an incident
x-ray beam having spectrum S0(E). The spectrum leaving the slab is attenuated
in a fashion identical with that of the monoenergetic case [see (4.25)], except
that the linear attenuation coefficient depends on E,

S(E) = S0(E)e−μ(E)�x . (4.31)

For a heterogeneous slab, the linear attenuation coefficient is dependent on
both position along the line and energy. In this case, the integral form of the
attenuation law obeys

S(x; E) = S0(E) exp
{
−
∫ x

0
μ(x′; E) dx′

}
. (4.32)

If the overall intensity of the beam is of interest, then we can use (4.19)
together with (4.31) and (4.32) to yield

I =
∫ ∞

0
S0(E′)E′ exp

{−μ(E′)�x
}

dE′ (4.33)

and

I(x) =
∫ ∞

0
S0(E′)E′ exp

{
−
∫ x

0
μ(x′; E′) dx′

}
dE′ . (4.34)

Although (4.34) is a valid model for heterogeneous materials, including the body,
we will not find it useful in developing imaging equations for x-ray modalities.
The energy dependence of μ, while useful in helping to understanding the basic
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imaging properties, is intractable from a mathematical standpoint. The concept
of effective energy (see Example 4.4) is more useful, as we shall see.

4.5.4 Broad Beam Case

Now consider the broad beam geometry in Figure 4.7(b), which should be
compared with the narrow beam geometry in Figure 4.7(a). In (b), the x-ray
beam is seven times wider and has 7N as many photons (the number 7 being
used here for illustration purposes). When the slab is removed, the detector,
having the same width as in (a), will detect only N photons, since the remaining
photons miss the detector. When the slab is in place, photons previously directed
at the detector might be absorbed by photoelectric interactions or scattered by
Compton events—just as they are in the narrow beam case. However, there is
an additional possibility here: photons from outside the detector’s line-of-sight
geometry might get scattered toward the detector by Compton interactions.

Thus, in the broad beam case, more photons are generally detected than is
predicted by a monoenergetic, narrow beam analysis. The general attenuation
law [(4.24) and (4.25)] does not hold in this case, and the assumption of straight
propagation of x-rays is also violated. Furthermore, the photons that comprise
the detected burst are no longer monoenergetic, since the Compton scattering
process reduces photon energy. In such a situation, the average or effective
energy of the x-ray beam is reduced, a process called beam softening.

Fortunately, most x-ray imaging modalities use detector collimation, which
reduces the number of x-rays from nonnormal directions that can hit the
detectors. Therefore, from an imaging standpoint, the narrow beam geometry
assumption can be viewed as fairly accurate. We make the assumption of narrow
beam geometry throughout this book. From the point of view of calculating
the dose to the patient or determining how much lead is needed to shield a
radiologist or technician, however, broad beam geometry must be considered.
After all, there is no detector collimation on the ‘‘human detectors’’ involved in
the imaging process.

4.6 Radiation Dosimetry
There are many ways to report the presence and amount of radiation. We have
already described the ideas related to photon and energy flow via fluence and
intensity concepts. We did so with a focus on the production of medical images.
However, radiation also produces adverse biological effects. Here, we are now
more concerned with what EM radiation does than what it is. That is the essence
of the concept of dose.

4.6.1 Exposure

By definition, ionizing radiation is capable of ionizing the hydrogen atom.
Therefore, it is capable of producing ions in air. It is straightforward to build
and calibrate an ionization chamber that measures the current produced between
two plates held at a fixed potential due to radiation producing ions in the air
between the two plates.
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The term exposure, which is given the symbol X, refers to the number of ion
pairs produced in a specific volume of air by EM radiation. The International
System unit for exposure is coulombs per kilogram of air (C/kg); however,
a more useful unit in medical imaging is the roentgen (R), which equals
2.58 × 10−4 C/kg. The conversion between the two is 1 C/kg = 3,876 R.

EXAMPLE 4.6
For a point source of radiation, the exposure at a distance d from the source follows an
inverse square law.

Question If the exposure at d = 30 cm from a point source is 1 R, what is the exposure
at d = 5 cm from the source?

Answer The exposure at d = 5 cm is 36 ((30/5)2 = 36) times that at d = 30 cm. So
the exposure at d = 5 cm is X5 = 36X30 = 36 R.

4.6.2 Dose and Kerma

As ionizing EM radiation passes through a material, it deposits energy into
the material by both the photoelectric effect and Compton scattering. This is
the concept of dose. The unit of absorbed dose is the rad, which is defined as the
absorption of 100 ergs per gram of material. It is given the symbol D. Notice
that this unit refers to an energy-deposition concentration rather than a total
amount of energy. The SI unit for absorbed dose is the gray (Gy); 1 Gy = 1 J/kg
= 100 rads. For the degree of accuracy required in biomedical dosimetry, one
roentgen of exposure yields one rad of absorbed dose in soft tissue.

There is a another quantity closely related to dose, called kerma, which is
given the symbol K. Kerma is defined as the amount of energy per unit mass
imparted directly to the electrons in a given material. It is also measured in units
of gray (Gy). As a practical matter, at diagnostic x-ray energies, kerma and
dose are essentially equivalent. When kerma is being used in air for calibration
purposes, it is referred to as air kerma and is given the symbol Kair.

4.6.3 Linear Energy Transfer (LET)

The linear energy transfer is a measure of the energy transferred by radiation
to the material through which it is passing per unit length; higher LET radiation
tends to produce greater adverse biological consequences. Specific ionization
(SI) is the number of ion pairs formed per unit length. LET and SI are related
to each other by the average amount of energy required to form one ion pair
(often referred to as W), which is a characteristic of the material.

4.6.4 The f -Factor

It is often useful to be able to measure exposure but to express the results as
dose to an individual in that radiation field. Because of the way in which the
roentgen and rad are defined, a relationship between exposure in air and dose
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in air may be easily derived: 1 R = 0.87 rad. To compute the dose to a material
other than air, the f -factor is used as a conversion,

D = fX . (4.35)

The f -factor is defined as

f = 0.87
(μ/ρ)material

(μ/ρ)air
, (4.36)

where μ is the linear attenuation coefficient and ρ is the mass density of the
material (numerator) and air (denominator). The quantity (μ/ρ) is called the
mass attenuation coefficient.

4.6.5 Dose Equivalent

We are all exposed to ionizing radiation, from cosmic rays, radioactivity in
building materials and soil, and even from radioactivity in our bodies. Although
dose itself is a well-defined quantity, different types of radiation, when delivering
the same dose, can actually have different effects on the body. In order to
account for this, the concept of dose equivalent, given the symbol H, is used.
Dose equivalent is defined as

H = DQ , (4.37)

where Q is the so-called quality factor, a property of the type of radiation
used. For example, the quality factor of x-rays, gamma rays, electrons, and beta
particles is Q ≈ 1, whereas that for neutrons and protons is Q ≈ 10, and for
alpha particles is Q ≈ 20.

Since Q ≈ 1 for radiation used in medical imaging, dose equivalent is equal
to dose. When D is measured in rads H is considered to have the units rems. In
SI units, the dose is measured in grays. For a dose of 1 gray and Q = 1 the dose
equivalent H is 1 sievert (Sv).

EXAMPLE 4.7
Consider a chest x-ray at an energy of 20 keV. For simplicity ignore all tissues except
the lung.

Question If we want to keep the absorbed dose below 10 mrads (i.e., 0.01 rads), what
should be the limit on the exposure?

Answer From Table 4.6, we find that at 20 keV,

(μ/ρ)air = 0.78 cm2/g ,

and
(μ/ρ)lung = 0.83 cm2/g .
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TABLE 4.6

X-Ray Mass Attenuation Coefficients for Some Materi-
als

Material 20 keV 100 keV
(cm2/g) (cm2/g)

Air 0.7779 0.1541
Water 0.8096 0.1707
Bone 0.4001 0.1855
Muscle 0.8205 0.1693
Lung 0.8316 0.1695
Brain 0.8281 0.1701

Source: Hubbell and Seltzer, NIST online tables.

So the f -factor is

f = 0.87
(μ/ρ)lung

(μ/ρ)air
= 0.93 .

The absorbed dose is related to the exposure by (4.35). If we want to limit the dose to be
under 10 mrads, the exposure must be under 10/0.93 = 10.8 mR.

4.6.6 Effective Dose

For the purpose of relating dose of ionizing radiation to risk, an extension of the
dose equivalent is used to express dose as that which would have been received
if the whole body had been irradiated uniformly. The effective dose is obtained
as the sum of dose equivalents to different organs or body tissues weighted in
such a fashion as to provide a value proportional to radiation-induced somatic
and genetic risk even when the body is not uniformly irradiated. This can be
expressed as

Deffective =
∑

organs

Hjwj (4.38)

where Deffective is effective dose, Hj is the dose equivalent for organ j, and wj is
the weighting factor for organ j. The sum is over all organs; note that∑

organs

wj = 1. (4.39)

In this fashion, risks may be compared for different radiations and different
target tissues.

On average our annual individual effective dose (exclusive of medical
imaging procedures) is about 300 mrem. Medical imaging procedures produce
doses over a wide range, depending on the specific procedure. At the low end,
a typical chest x-ray might result in a dose of 3–4 mrem; at the high end, a
fluoroscopic study might yield several rem.

The main risk from ionizing radiation at the doses involved in medical
imaging is cancer production (radiogenic carcinogenesis). In practice, we assume
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that any dose of radiation increases the risk of getting cancer, with larger
doses proportionately increasing risk. Of importance, the physician and patient
together usually make the decision that the medical benefits of the imaging
procedure outweigh any potential risks.

4.7 Summary and Key Concepts
Ionizing radiation is used in several imaging modalities, including projection
radiography and CT. The interaction of particulate radiation creates x-rays
used in these modalities; the interaction of the x-rays in the patient creates the
radiograph. In this chapter, we presented the following key concepts that you
should now understand:

1. Ionization is the ejection of an orbiting electron from an atom; ionizing
radiation has sufficient energy to produce ionization.

2. Ionizing radiation may be particulate or electromagnetic; the main ionizing
radiations of interest in medical imaging are x-rays, gamma rays, energetic
electrons, and positrons.

3. Particulate ionizing radiation transfers energy via collisional transfer and
radiative transfer (which results in bremsstrahlung x-rays).

4. The probability of radiative transfer increases with increasing effective
atomic number of the material through which the particulate radiation
passes.

5. EM ionizing radiation transfers energy in medical imaging applications via
the photoelectric effect or Compton scattering.

6. The probability of electromagnetic interactions depends on the photon’s
energy and the effective atomic number, density, and molecular weight of
the material through which the EM radiation passes.

7. Attenuation of the intensity of a beam of EM radiation by some material is
described by a monoexponential relation and is a function of the thickness
of the material and the linear attenuation coefficient, which itself depends
on characteristics of the material and photon energy.

8. Radiation dose to tissues is characterized by effective dose, which itself
includes considerations of deposited energy, the biological effectiveness of a
given ionizing radiation, and the relative radiosensitivity of different tissues.
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Problems
Physics of Atoms

4.1 The rest masses of a proton, neutron, and electron are 1.67262171 ×
10−27kg, 1.67492728 × 10−27kg, and 9.1093826 × 10−31kg, respectively.

(a) The atomic mass unit (amu) is defined as one twelfth of the actual mass
of a carbon-12 atom (as a neutral atom in its nuclear and electronic
ground state). The mass of a carbon-12 atom is less than the sum of the
masses of its constituents; the difference is the mass defect. Calculate
the mass defect (in kg or amu).

(b) The binding energy is the energy equivalent to the mass defect. What
is the binding energy of carbon-12?

4.2 (a) Calculate the mass-equivalent energy of an electron at rest.
(b) Determine the voltage potential difference between a cathode and

anode in which electrons accelerated between the two will obtain
speeds equal to 1/10 the speed of light.

(c) Using relativistic equations, determine the speed of an electron that is
accelerated across a 120 kV potential.

4.3 Show that when a particle’s speed v is much smaller than the speed of
light, its kinetic energy can be computed using the formula KE = mv2/2.

Ionizing Radiation

4.4 Compare characteristic radiation and bremsstrahlung radiation.
4.5 (a) Explain why radiation with energy smaller than 13.6 eV is not consid-

ered ionizing.
(b) What are the differences between ionization and excitation?

4.6 Ultraviolet light is defined as EM waves having wavelengths in the range
4–400 nanometers.

(a) Determine the frequency range of ultraviolet light.
(b) Determine the photon energy range of ultraviolet light.
(c) Determine whether ultraviolet light is ionizing radiation or not.

4.7 (a) Explain why the electron density of hydrogen is very nearly 6 × 1026

electrons/kg.
(b) Explain why the electron density of all other low atomic number

materials is nearly 3 × 1026 electrons/kg.
(c) Speculate why the electron density of materials might differ slightly

from 3 × 1026 electrons/kg.

http://physics.nist.gov/xaamdi
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Attenuation of EM Radiation

4.8 (a) Calculate the thickness of shielding material needed to block out
99.5% of incident radiation for a material with linear attenuation
coefficient μ.

(b) Range is defined as the reciprocal of μ, the linear attenuation coeffi-
cient. It represents the distance at which the intensity of a beam has
been reduced to 1/e of its original value. What approximate order of
magnitude would you want the range of an ionizing beam in tissue to
be? Microns? Millimeters? Centimeters? Meters? Kilometers? Why?

4.9 Prove Equation (4.24).
4.10 A bar phantom of thickness 0.4 cm is uniformly irradiated by monoener-

getic x-ray photons, and a screen is placed behind the phantom to detect
the x-ray photons. The bars of the phantom are made from a material that
has an HVL of 0.1 cm. In the space between the bars, x-ray photons pass
without attenuation. Assuming the intensity of the image is proportional
to the x-ray photons that hit the screen in a unit area, what is the contrast
of the resulting image?

4.11 Compton scattering of photons causes image blurring since the secondary
x-ray photon diverges from the primary beam. You are designing an x-ray
detector system and wish to eliminate all photons that have scattered more
than 25 degrees in an attempt to improve the resulting image quality. You
are using a mono-energetic x-ray source that emits photons with wave-
length 8.9 × 10−2 angstroms. Your detector is capable of discriminating
the energy of the incoming photon by examining the pulse height. What
range of photon energies will your system accept?

4.12 Suppose photons with energy hν = 100 keV are incident upon some mate-
rial and some are scattered.

(a) A detector decides that a photon has not been scattered if its energy
satisfies hν ′ > 99 keV. What is the maximum scattering angle such that
a photon is still treated as traveling along a straight path?

(b) You are designing a detector system to eliminate all photons that have
been scattered more than 25◦. What range of photon energies will your
system accept?

4.13 Sodium iodide (NaI) crystals can be used to detect x-rays. Suppose the
linear attenuation coefficient of an NaI crystal is 2.31 cm−1 at 140 keV.

(a) What is the HVL of this NaI crystal at 140 keV?
(b) Suppose an x-ray photon with energy E = 140 keV hits the NaI

crystal and scatters by 90◦. What is the energy E′ of the scattered x-ray
photon?

(c) Is the scattered photon more or less likely to be absorbed than the
incident photon? Explain. (Note that iodine has a single K-edge at
33 keV.)

4.14 To block out 90% of the incident radiation, a 1.5 cm thickness of a
particular shielding material is needed.

(a) What is the HVL of this material?
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(b) Suppose a photon with energy E = 102.2 keV is scattered by 90◦
within the shielding material. What is the energy E′ of the scattered
photon?

4.15 Consider a narrow beam geometry. X-rays with intensity I0 are incident
upon a 1 cm thick material for which μ = 0.3 cm−1.

(a) What intensity will be detected?
(b) What thickness of the same material will block 1/2 of the incident

x-rays?
(c) If the broad beam geometry is used instead, will the detected intensity

be larger or smaller? Explain.

Radiation Dosimetry

4.16 Consider a chest x-ray given by a point source operating at an energy of
20 keV. The exposure at d = 1 cm is 10 R. If we want to keep the dose
equivalent to be under 10 mrems, how far should the patient be away
from the x-ray source? (Ignore the tissues other than the lung, and ignore
the size of the lung.)

4.17 Consider the case of hand x-ray imaging. For simplicity, assume that the
hand consists of only bone and muscle, and the weighting factors for the
bone and the muscle in the hand are wbone = wmuscle = 0.002. What is
the effective dose for an exposure of X = 1 R for x-rays at 20 keV?
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5.1 Introduction
Projection radiography, sometimes called conventional radiography, refers to the
most commonly used method of medical imaging utilizing x-rays. A conventional
radiograph represents a projection of the three-dimensional volume of the body
onto a two-dimensional imaging surface. The term projection will be defined
more rigorously shortly, but conceptually, the projection radiograph represents
the transmission of the x-ray beam through the patient, weighted by the
integrated loss of beam energy due to scattering and absorption in the body. The
primary radiographic image is a two-dimensional display of these transmitted
intensities. It is useful to think of a projection radiograph as a shadow cast by a
semitransparent body illuminated by x-rays.

There are many types of projection radiography systems in common use.
While their overall system designs have common elements, there are different
clinical requirements, which make the details differ. Three examples, represen-
tative of the breadth of possibilities required by different clinical requirements,
are shown in Figure 5.1.

Overall, the advantages of projection radiographic systems include short
exposure time (0.1 second), the production of a large area image (e.g., 14 × 17 in),
low cost, low radiation exposure (3–4 mR for a chest radiograph, roughly equiva-
lent to about one-hundredth of the annual background dose exclusive of medical
imaging procedures), and excellent contrast and spatial resolution. Projection
radiography is used to screen for pneumonia, heart disease, lung disease, bone
fractures, cancer, and vascular disease. Typically, the chest x-ray is the most
common imaging examination performed in a hospital. Its major limitation is
the lack of depth resolution—superimpositions of shadows from overlying and
underlying tissues sometimes ‘‘hide’’ important details and limit contrast.

In this chapter, we describe the components of standard projection radiog-
raphy systems, develop mathematical models to characterize image formation,
describe the factors affecting image quality, and look at several applications and
special techniques for projection radiography systems.

135
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Figure 5.1
(a) A general projection
radiography system; (b) a
fluoroscopy system; and
(c) a mammography
system. Courtesy of GE
Healthcare. (a) (b) (c)

5.2 Instrumentation
A diagram of a conventional projection radiographic system is shown in
Figure 5.2. The x-ray tube generates a short pulse of x-rays as a beam that
travels through the patient. X-ray photons that are not absorbed within the
patient or scattered outside the region of the detector impinge upon the large
area detector, ultimately creating an image on a sheet of film or electronic
detector. We now examine each element of this imaging system in detail.

5.2.1 X-Ray Tubes

X-rays are used in projection radiography and computed tomography because
they penetrate the body well and their wavelengths are small enough for high-
resolution imaging. X-rays are generated using an x-ray tube, as shown in
Figure 5.3. The operation of an x-ray tube is shown schematically in Figure 5.4.
A current, typically 3–5 amperes at 6–12 volts, is passed through a thin
thoriated tungsten wire, called the filament, contained within the cathode
assembly. Electrical resistance causes the filament to heat up and discharge
electrons in a cloud around the filament through a process called thermionic
emission. These electrons are now available to flow (i.e., be accelerated) toward
the anode when the anode voltage is applied, producing the tube current, which
is referred to as the mA. The filament current directly controls the tube current

Figure 5.2
A conventional projection
radiographic system.
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Figure 5.3
An x-ray tube.
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Figure 5.4
Schematic diagram of an
x-ray tube.
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because the current controls filament heat, which in turn determines the number
of discharged electrons. The x-ray control console is calibrated according to the
tube current, which typically ranges between 50 and 1,200 mA.

Once the filament current is applied, the x-ray tube is primed to produce
x-rays. This is accomplished by applying a high voltage, the tube voltage or
kVp, between the anode and cathode for a brief period of time. The tube voltage
is typically generated by transforming the alternating current line voltage to a
higher voltage and then rectifying this voltage. The abbreviation kVp refers to
the peak kilovoltage applied to the anode; the voltage ripple (temporal variation)
below the peak value depends on the specific type of high-voltage generator in
use. Typical values for the tube voltage lie in the range 30–150 kVp.

While the tube voltage is being applied, electrons within or near the cathode
are accelerated toward the anode. The focusing cup, a small depression in the
cathode containing the filament, is shaped to help focus the electron beam
toward a particular spot on the anode. This target, or focal point, of the electron
beam is a beveled edge of the anode disk, which is coated with a rhenium-alloyed
tungsten. The anode disk itself is made from molybdenum, and in the case of
x-ray tubes used in mammography, molybdenum is used in the target area as
well. These energetic electrons bombard the target transferring energy by both
collisional and radiative transfer. As discussed in Chapter 4, this results in both
characteristic and bremsstrahlung x-rays. As can be seen in Figure 5.5, the vast
majority of the x-rays produced by an x-ray tube are from bremsstrahlung.
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Figure 5.5
X-ray spectra leaving the
tube, the filter, and the
body.
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Besides x-rays, heat is also produced at the anode by the bombardment of
electrons. In fact, only about 1 percent of the energy deposited by the electron
beam is turned into x-rays; the remaining 99 percent turns into heat. So, at
the same time the filament current is applied, the anode is set into rotation
by applying alternating current to the stator electromagnets located outside
the tube’s glass housing. The rotors of this induction motor are connected to
the anode inside the glass housing and arranged around bearings so that the
anode can rotate freely. Anode rotation is necessary for nearly all diagnostic
radiography equipment in order to avoid melting the anode target area because
of high-energy transfer from the accelerated electrons to the target. In most
x-ray tubes, the anode rotates at 3,200–3,600 revolutions per minute (rpm),
but higher rpm tubes are also available for even better heat dissipation.

In order to maintain a constant tube current (mA) while the tube voltage
(kVp) is being applied, the filament circuit is very carefully controlled to keep
a consistent electron cloud around the filament (i.e., a consistent amount of
thermionic emission). The overall exposure is then determined by the duration
of the applied kVp, which is controlled by either a fixed timer circuit or an
automatic exposure control (AEC) timer. A fixed timer is generally a silicon-
controlled rectifier (SCR) switch timed by a microprocessor. Timing accuracy
for these circuits is approximately 0.001 seconds. AEC timers have 5-mm-thick
parallel-plate ionization chambers placed between the patient table and the film-
screen cassette (see Figure 5.2). An ionization chamber is a radiation detector
that generates a current when air molecules are ionized by x-rays passing through
the chamber and the free electrons and ions are attracted to anode and cathode
plates, respectively, which are held at a constant voltage. The voltage achieved
across the plates is used to trigger the SCR, which shuts off the tube voltage and
terminates the exposure.

The product of the tube current and the exposure time yields the milliampere-
second (mAs) value for the exposure. When a fixed timer is used, the radiologist
controls both the mA and the exposure time directly and thereby determines
the mAs for the exposure. In AEC timers, the mAs is set by the radiologist
and the exposure time is determined automatically by the AEC circuitry. A
maximum time is set to prevent accidental overdose in the event the AEC circuit
malfunctions or the ionization chamber is missing or incorrectly positioned.
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5.2.2 Filtration and Restriction

The bremsstrahlung x-rays that are generated within the anode do not all enter
the patient, and not all that enter the patient end up leaving the patient. In this
section, we discuss modifications to the x-ray beam that take place before the
x-rays enter the body. Filtration is the process of absorbing low-energy x-ray
photons before they enter the patient. Restriction is the process of absorbing
the x-rays outside a certain field of view. We now discuss these processes
in detail.

Filtration The maximum energy of the emitted x-ray photons is determined
by the tube voltage. For example, if the tube voltage is 100 kVp, then the
maximum photon energy is 100 keV (recall the definition of eV). However, there
is a spectrum of lower energy x-ray photons that represent bremsstrahlung, as
shown in Figure 5.5. The top line depicts the theoretical spectral distribution of
bremsstrahlung radiation (normalized to 0.5 at 50 keV). The intensity ‘‘spikes’’
also shown in Figure 5.5 are characteristic radiations, and they are due to
electrons making transitions between specific electron shells in the anode atoms
(as discussed in Chapter 4). Because the x-ray photons emitted from an x-ray
tube have a distribution of energies, the x-ray sources used in medical imaging
systems are polyenergetic.

In practice, it is very undesirable for low-energy photons to enter the body,
as these photons are almost entirely absorbed within the body, thus contributing
to patient radiation dose but not to the image. There are three important filtering
processes in a projection x-ray machine that reduce the number of low-energy
x-ray photons that enter the body (see Figure 5.5). First, the tungsten anode
itself absorbs a large fraction of low-energy x-ray photons before they even
leave the anode. Second, the glass housing of the x-ray tube and the dielectric
oil that surrounds it filter out more low-energy photons. This effect might be
accentuated over time since aging x-ray tubes tend to accumulate a tungsten film
on the inside of the housing due to vaporization of the filament during repeated
heating. These first two processes are referred to as inherent filtering since they
are caused by the x-ray tube itself.

The third x-ray filtering process is called added filtering, since it arises
from metal placed in the x-ray beam outside of the tube. The most common
material used to filter x-rays is aluminum (1–3 mm thick), which is considered
the standard x-ray filter material. Other filter materials are often rated in
terms of the equivalent aluminum (Al/Eq) that would have to be used to
achieve the same attenuation. For higher energy systems, copper might be
used because it yields more attenuation for an equivalent actual thickness of
aluminum. Note that copper must be followed by aluminum in order to attenuate
the 8 keV characteristic x-ray photons created within the copper. Another
filtering effect comes from the silvered mirror placed within the collimator (as
discussed in the next section). This might provide an additional 1.0 mm Al/Eq of
filtering.

Figure 5.5 shows a progressive shift in the position of the spectrum ‘‘to the
right’’ (i.e., to higher average energies) as the beam passes through successive
materials. This increase in the beam’s ‘‘effective energy’’ (see Example 4.4) is
called beam hardening. Beam hardening is caused by the preferential absorption
of lower energy photons, for which the attenuation is higher in most materials
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(see Figure 4.8). These materials include the filters discussed here, as well as the
tissues of the body, which further ‘‘harden’’ the beam.

EXAMPLE 5.1
For radiography systems operating above 70 kVp, the National Council on Radia-
tion Protection and Measurements (NCRP) recommends a minimum total filtration of
2.5 mm Al/Eq at the exit port of the x-ray tube. Although such filtration reduces high-
energy as well as low-energy x-rays, thus requiring longer exposure times to properly
expose the x-ray detector, the overall dose to the patient is reduced because of the
reduction in low-energy x-rays that are absorbed almost entirely by the patient.

Question At 80 kVp, what thickness of copper would provide 2.5 mm Al/Eq of
filtration?

Answer The mass attenuation coefficient of aluminum at 80 kVp is μ/ρ =
0.02015 m2/kg. The density of aluminum is ρ = 2, 699 kg/m3. Therefore,

μ(Al) = 0.02015 m2/kg × 2, 699 kg/m3

= 54.38 m−1 .

For copper at 80 kVp: μ/ρ = 0.07519 m2/kg, ρ = 8, 960 kg/m3. So,

μ(Cu) = 0.07519 m2/kg × 8, 960 kg/m3

= 673.7 m−1 .

Since attenuation is determined by the exponential e−μ�x, the x-ray attenuation is equal
if the exponents are equal. Hence, the following relation must be satisfied:

μ(Al)x(Al) = μ(Cu)x(Cu).

The copper thickness equivalent to 2.5 mm of aluminum at 80 kVp is therefore given by

x(Cu) = 54.38 m−1 × 2.5 mm
673.7 m−1

= 0.2 mm.

(Remember that, as stated above, copper must be followed by a thin layer of alu-
minum (typically 1 mm thick) to stop the 8 keV characteristic photons generated by the
copper.)

Restriction Beam X-ray tubes generate x-rays in all directions. Many photons
are absorbed by the anode, others by the x-ray tube housing itself. By design,
the x-rays that exit through the tube window form a cone that is ordinarily
much larger than the desired body region to be imaged. The exiting beam must
be further restricted both to avoid exposing parts of the patient that need not
be imaged and to help reduce the deleterious effects of Compton scatter (see
below). Beam restriction is used for this purpose.

There are three basic kinds of beam restrictors: diaphragms, cones or
cylinders, and collimators. Diaphragms are flat pieces of lead with holes cut
into them, centered on the x-ray beam, and usually placed close to the tube
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Figure 5.6
Different beam restrictors.
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window, as shown in Figure 5.6(a). They are simple and inexpensive but result
in a fixed geometry that can usually be used only in dedicated systems that have
only one purpose (such as chest radiography). Cones or cylinders, as shown
in Figure 5.6(b), are fixed in their geometry but can have somewhat better
performance. Collimators are more expensive but are so much more flexible
and better performing that they are used nearly all the time in projection x-
ray systems. As shown in Figure 5.6(c), collimators have variable diaphragms
comprising movable pieces of lead. Most often, there are two collimators, one
near the tube and one farther away from the tube. Typically, there is a scored
mirror in between these two collimators so that a light coming from the side
will shine through the second collimator, illuminating the field of view with an
alignment grid.

5.2.3 Compensation Filters and Contrast Agents

Attenuation is the process by which x-rays are absorbed or redirected (scattered)
within the body or other objects in the field of view. Body tissues attenuate x-rays
in different amounts depending on their linear attenuation coefficients and the
x-ray energies. It is this differential attenuation that gives rise to contrast—and
therefore the ability to differentiate tissues—in an x-ray image. In certain
circumstances, we may want to artificially change the natural attenuation of the
body prior to detecting the x-rays. We now discuss compensation filters and
contrast agents, both used for this purpose.

Compensation Filters Thick body parts or dense materials (such as metal
or bone) stop more x-rays than thinner body parts and normal soft tissues.
For example, the torso attenuates more x-rays in the middle than at its edges,
simply because it is thicker in the middle. Imaging both locations—that is, a
location having large numbers of transmitted photons and a location having
low numbers of photons—within the same exposure is difficult because of the
limited dynamic range of x-ray detectors. One region would be overexposed
while the other is underexposed and neither would yield a usable diagnostic
image.

In these cases, a compensation filter, comprising a specially shaped aluminum
or a leaded plastic object, can be placed between the x-ray source and the
patient or in some cases between the patient and the detector. Several types
of compensation filters are shown in Figure 5.7. Notice that the compensation
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Figure 5.7
Various compensation
filters. (Adapted from
Carlton and Adler, 2001,
and Wolbarst, 1993.)
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filter is thicker where the body part is thinner and vice versa so that the x-ray
detector requires a smaller dynamic range.

Contrast Agents Differential attenuation in the body gives rise to contrast
in the x-ray image. Put another way, in order to see the difference between
anatomical structures on a radiograph, these structures must have different
x-ray attenuations. Often, however, different soft tissue structures are difficult
to visualize because of insufficient intrinsic contrast. This situation can be
improved by using contrast agents—chemical compounds that are introduced
into the body in order to increase x-ray absorption within the anatomical regions
into which they are introduced, thereby enhancing x-ray contrast (compared
with neighboring regions without such agents).

The two most common contrast agents used in x-ray diagnosis are iodine
(Z = 53) and barium (Z = 56). In addition to their relatively high atomic
numbers, iodine and barium also have K-shell electrons whose binding energy
falls within the diagnostic x-ray energy range; Ek = 33.2 keV for iodine and
Ek = 37.4 keV for barium. As we have already discussed, when the energy of
x-ray photons slightly exceeds the K-shell binding energy of a material, the
probability of photoelectric interaction significantly rises. Such a photoelectric
interaction will cause electrons from the K-shell to be ejected, and the x-
ray photons will be completely absorbed. This effect, called K-edge absorption,
significantly increases the attenuation coefficient of the material in x-ray energies
slightly higher than the K-shell energy. The linear attenuation coefficients of
bone, muscle, fat, and two contrast agents, one made using iodine and one
using barium, are shown in Figure 5.8. This stepwise increase in attenuation
apparent in these plots is called the K absorption edge; the location of these
edges on the energy scale is directly related to the energies of the characteristic
radiations of the contrast agents themselves. There is a dramatically higher
absorption of x-rays that are slightly above the K-edge, leading to a very
high differential absorption between the contrast agent and the surrounding
tissues. These physical properties make iodine and barium radiologically ideal
compounds for enhancing contrast.

Because iodine is naturally abundant in the thyroid gland, the thyroid itself is
readily imaged in x-ray studies. Fortunately, iodine can also be synthesized into
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Figure 5.8
Linear attenuation
coefficients of bone,
muscle, fat, and two
contrast agents. (Adapted
from Johns and
Cunningham, 1983.)
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soluble compounds that are safely introduced into the body through intravascu-
lar injection or ingestion. Iodinated contrast compounds are used for enhancing
the appearance of blood vessels, heart chambers, tumors, infections, and other
abnormalities on x-ray images (projection radiography as well as computed
tomography (CT) scans). Because these iodine compounds are concentrated
by the kidney and excreted into the urine, they are also used for diagnosing
problems of the kidneys and bladder using x-ray imaging.

Barium is used exclusively to enhance contrast within the gastrointestinal
tract. It is typically administered as a chalky ‘‘milkshake,’’ which passes through
the gastrointestinal tract without being absorbed or altering the basic function of
the stomach and bowel. Barium is the standard agent for enhancing the contrast
of the stomach and small and large bowel in conjunction with projection
radiography studies.

Air itself can also be used as a contrast agent. Because it does not readily
absorb x-rays, it is used as an ‘‘opposite’’ type of contrast to that of iodine and
barium. For example, by inflating the lungs, air provides contrast for the lung
tissue. Air is also used with barium to provide a double contrast between regions
of the bowel containing barium and those containing air.

5.2.4 Grids, Airgaps, and Scanning Slits

X-ray photons that are not absorbed or scattered arrive at the detector from
along a line segment originating at the x-ray source (anode of the x-ray tube).
However, if an x-ray photon is scattered and still manages to hit the detector,
its point of origin will not intersect the x-ray source (unless a highly unlikely
multiple scattering sequence occurs). Since scattering is a random phenomenon,
this process will cause a random ‘‘fog’’ throughout the image if left uncorrected,
thereby reducing the contrast of the direct image (see Section 5.4.3).
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Figure 5.9
A typical x-ray grid.
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In nuclear medicine, where inherently monoenergetic radiation is used,
energy-sensitive detectors can be used to discriminate between the primary
radiation and the scattered radiation, which has lower energy photons. However,
this concept cannot be employed in conventional radiography because the
radiation that emerges from an x-ray tube is inherently polyenergetic and because
an integrated measurement of beam intensity is made. Instead, there are three
other methods used in conventional radiography to reduce the effects of scatter:
(1) grids, (2) airgaps, and (3) scanning slits. We now describe these in detail.

Grids Scatter-reducing grids use thin strips of lead alternating with highly
transmissive interspace material, typically aluminum and sometimes plastic. A
typical x-ray grid is shown in Figure 5.9. This linear, focused grid has lead
strips that are arranged in lines and angled toward the x-ray tube. By careful
placement of the grid, photons that travel from the source to the detector pass
through the interspace material and are not severely attenuated by the grid.
Photons that arise from Compton scattering within the patient, however, travel
off-axis, intercept the lead strips, and are absorbed in the grid.

Other combinations of grid geometries are sometimes used as well. For
example, ‘‘crosshatch’’ grids have lead strips arranged in an actual grid pattern
(as in the original design of Gustav Bucky), and ‘‘parallel’’ grids have lead strips
that are parallel to each other (so that the focal radius is infinite). Linear grids,
however, have the advantage that the x-ray beam can be angulated along the
grid line direction, allowing adjustments of the viewing angle. Furthermore,
focused grids have the advantage that very few x-rays are actually blocked by
the geometry of the grid.

The effectiveness of the grid for reducing scatter is a function of the grid
ratio, defined as

grid ratio = h
b

, (5.1)

where h is the height of the lead strips and b is the spacing between the lead
strips (see Figure 5.9). This fraction is generally reported as a normalized ratio
in which the denominator is unity. Grid ratios ranging from 6:1 to 16:1 are used
in conventional radiographic systems and can be as low as 2:1 in mammography
systems. Grid spacing is generally reported using its reciprocal, which is known
as grid frequency, which ranges from 60 cm−1 for conventional radiographic
systems to as much as 80 cm−1 for mammography systems.
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Grids that have tall lead strips or fine lead strip spacing—that is, higher
grid ratios—are more capable of stopping off-axis radiation. However, there is
a price to be paid for using grids. As the lead strips become wider or are packed
more closely together in an effort to stop more scattered photons from reaching
the detector, they will also stop some photons in the primary beam. This loss of
beam intensity can increase image noise. To maintain a high-quality image, it
then becomes necessary to increase the amount of radiation arriving at the grid,
which increases the radiation dose to the patient. The grid conversion factor
(GCF) characterizes the amount of additional exposure required for a particular
grid. GCF is defined as

GCF = mAs with the grid
mAs without the grid

. (5.2)

Typical GCF values range from 3 to 8.
Having GCFs in the range 3–8 implies that some grids can absorb a large

fraction of the incident radiation, so the impact of a grid should not be ignored.
Since Compton scattering events are more isotropic at lower energies, it may
not be necessary to use a grid at lower energies. A rule of thumb in projection
radiography is to use a grid when the tube voltage is above 60 kVp. Compton
scattering also increases with the thickness of the body part. Another rule of
thumb in projection radiography is to use a grid when imaging a body part
thicker than 10 cm.

Grids can be mounted as stationary grids or used with a Potter-Bucky
diaphragm, which moves the grid during exposure. The reason that Potter-
Bucky grids are desirable is that stationary grids—especially those with low grid
frequency—can introduce visible artifacts—lines or grid lines—into the image.
The Potter-Bucky diaphragm causes the grid to move 2–3 cm during exposure
in a linear or circular path. Since the lead strips within the grid move during
exposure, their x-ray shadow also moves across the image plane, and its image
is blurred out while the image of the patient is not blurred at all.

Grids are used for nearly all x-ray examinations. The type of grid used varies
with the examination. For example, thin body parts (e.g., extremities) generate
less scatter than thick body parts (e.g., abdomen or chest), so a lower grid ratio
might be employed for extremity exams than for abdominal exams.

Airgaps Physical separation of the detector and the object—that is, leaving an
airgap between the patient and the detector—is an effective means of scatter
rejection. Because the scattered photons diverge radially from their point of
origin inside the object, while the primary beam photons diverge from the
source, separating the source and detector reduces the percentage of scattered
photons that reach the plane of the detector. This can be demonstrated by simple
geometry. The price that is paid for this airgap method of scatter reduction is
increased geometric magnification and increased blurring or unsharpness due to
x-ray focal spot size effects (see Section 5.4).

Scanning Slits The use of mechanical lead slits that are placed in front of
and/or in back of the patient has been evaluated and are used in some systems.
These slits are moved together during the x-ray exposure, effectively providing
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a linear ‘‘scan’’ of the patient. Because the x-ray beam is collimated to a thin
line, the amount of scatter generated is small, and because the detector is also
collimated to a thin line, the amount of scatter accepted is small. Hence, these
systems can provide greater than 95% scatter reduction, at the expense of a
more complex and costly system and longer exposure times.

5.2.5 Film-Screen Detectors

In 1895, Roentgen discovered x-rays and made the first radiograph by allowing
the x-rays to directly expose a photographic plate. X-rays can directly expose
today’s modern photographic film, but this is a very inefficient way to create
a radiograph. In fact, only about 1–2 percent of the x-rays are stopped by the
film, so creating radiographs by direct film exposure requires an unnecessarily
large x-ray dose to the patient.

To greatly improve their efficiency, film-based diagnostic x-ray units always
have intensifying screens on both sides of the radiographic film. The intensifying
screens stop most of the x-rays and convert them to light, which then exposes
the film. This is a very efficient process, and the screens cause only a small
amount of additional image blurring.

In this section, we first describe the process of luminescence, and the
composition and dimensions of modern intensifying screens. We then describe
the optical properties of radiographic film. Finally, we conclude with a discussion
of the radiographic cassette, which holds the intensifying screens and the film.

Intensifying Screens A cross section of a typical radiographic intensifying
screen is shown in Figure 5.10. Since screens are used on both the front and
back of the radiographic film, all parts of the screen except the phosphor must
be uniformly radiolucent. The phosphor is the active part of an intensifying
screen; its purpose is to transform x-ray photons into light photons. The light
photons then travel into the film, causing it to be exposed and to form a latent
image. The latent image is the ‘‘virtual’’ image resident in the film, but it is not
yet viewable by an observer.

The base of the screen is provided for mechanical stability, but it must be
somewhat flexible so that it can be pushed tightly against the film. It is typically
made of polyester plastic. The reflective layer is provided so that light from the
phosphor is reflected back into the film rather than getting lost in the base. It is
typically about 25 μm thick and made of magnesium oxide or titanium dioxide.
A plastic protective coating is applied to the film side of the screen to protect it
from repeated film loading and unloading.

Phosphors are examples of materials that are luminescent; that is, they
convert one form of energy, in this case x-rays, into light. Two types of
luminescence are distinguished: fluorescence, in which the emission of light takes

Figure 5.10
Geometry of an
intensifying screen.
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place entirely within 1 × 10−8 second of the excitation, and phosphorescence,
in which light emission can be delayed and extended over a longer period of
time. For screens, it is desirable to use a luminescent material that is much
more fluorescent than phosphorescent. This way, there is little chance of an
afterglow that might spoil the exposure by either motion after exposure or by
light from a previous exposure.

Among the many luminescent materials, good intensifying screen phosphors
should also be highly x-ray attenuating and should emit many light photons for
every x-ray photon that is stopped. Thus, the best phosphors have high atomic
numbers (so the linear attenuation coefficient is large) and high conversion
efficiencies. The conversion efficiency is a measure of the number of light photons
emitted per incident x-ray photon. Typical conversion efficiencies are between
5 and 20 percent depending on the type of phosphor used and its thickness.

A typical conversion efficiency for modern screens yields 1 × 103 light
photons per incident 50 keV x-ray photon. This number depends on the energy
of the incident x-ray photon as well since the conversion of a higher energy x-ray
photon will produce more light. Total light output depends on the combination
of attenuation of the material at a given x-ray energy and the conversion
efficiency at that energy. The speed of a screen is really just a measure of its
conversion efficiency. If the conversion efficiency is higher, then the screen is
‘‘faster,’’ because the larger numbers of light photons emitted by the phosphor
will expose the film faster.

Thomas Edison explored many phosphors in the early 1900s for their
possible use in radiography. He discovered that calcium tungstate (CaWO4) is
an excellent fluorescent phosphor for radiological applications. Until relatively
recently, nearly all intensifying screens were made from calcium tungstate. In
the late 1970s, rare earth phosphors were introduced and are more commonly
used today because they have higher conversion efficiencies.

Radiographic Film After Roentgen discovered x-rays by observation of a
mysteriously glowing phosphor, he quickly learned that x-rays could also
expose a photographic emulsion. Although digital detectors (see Section 5.2.7)
are undergoing rapid development and widespread adoption, film is still very
commonly used in radiography both as an x-ray receptor and as an archival
storage mechanism for radiographic images (even for those acquired digitally).
Because of the nearly exclusive use of scintillation screens, radiographic film
is really just optical film, designed to capture the optical image created within
the screens that sandwich the film. Common sizes in the United States include
14 × 17, 14 × 14, 11 × 14, 10 × 12, 8 × 10, and 7 × 17 inches.

Many different film speeds are available, depending on the application. The
detailed optical properties of film greatly influence the resultant quality of the
developed image. Also, the precise details of chemical development play a large
role in the final appearance of the film as well. We will only consider these issues
from the highest level, in enough detail so that we can understand the broad
issues relating x-ray exposure to film appearance (see Section 5.3.4).

Radiographic Cassette A radiographic cassette is really just a holder for two
intensifying screens and the film ‘‘sandwiched’’ between. One side of the cassette
is radiolucent, while the other usually includes a sheet of lead foil. Therefore,
the cassette can be loaded only one way into the x-ray machine. At least one side
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of the interior of the cassette contains a spongy, foam material that applies a
uniform pressure against the screen so that a uniform contact is created between
the film and all parts of each of the screens. Optical mirrors are located outside
the screens, pointed inward so that nearly all the light produced in the screens
ends up exposing the film. Some systems, particularly those with high resolution
such as mammography systems, contain only one screen, but the principle of
holding the film tightly against the single screen within the cassette still applies.

Film must be loaded in a darkroom in order to avoid premature exposure.
The cassette is opened like a suitcase or briefcase only as much as is required
to slip in the radiographic film. This minimizes the amount of dust and other
contaminants that might end up inside the cassette. When the cassette is closed,
pressure is applied so that the foam inside compresses, creating a uniform
contact between the screens and the film. Cassettes and screens must be cleaned
regularly in order to avoid contaminants that might appear in the images.

5.2.6 X-Ray Image Intensifiers

X-ray image intensifiers (XRIIs) are used in fluoroscopy, where low-dose, real-
time projection radiography is required, whereas a conventional x-ray system
might use a filament current of 50–1,200 mA, a fluoroscopy unit would typically
use only 0.5–5.0 mA so that the x-ray tube can operate continuously. The light
levels produced by these low-intensity x-rays striking a conventional phosphor
are too low for human vision in room lighting, so the XRII was developed to
amplify the light. A diagram depicting an XRII is given in Figure 5.11.

X-rays pass through an input window made of aluminum or titanium, with
a thickness ranging between 0.25 and 0.5 mm. This type of material creates
minimal loss of x-ray photons, yet it is capable of holding a vacuum. The
x-rays then strike a 0.5-mm-thick input phosphor [typically CsI(Na)], which
is circular with a diameter ranging between 15 and 40 cm. The x-ray photons
that are absorbed in the input phosphor generate flashes of light that are
channeled toward the photocathode. Photons that travel backward toward the
input window are reflected by a 0.5-mm-thick aluminum sheet that supports the
input phosphor.

Figure 5.11
Block diagram of an x-ray
image intensifier (XRII).
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The remainder of the XRII resembles a standard image intensifier, such
as that found in night vision devices. The light photons generated in the input
phosphor strike a photocathode, which in turn generates free electrons within the
vacuum tube. The electrons are accelerated through a series of electrodes (called
dynodes) toward the anode, which is kept at a voltage of 25–35 kV relative to
the cathode. The free electrons do not strike the dynodes as in photomultiplier
tubes (see Chapter 8). Instead, the electrons are shaped by the dynodes into an
(inverted) electron intensity image that represents the intensity of x-rays entering
the XRII. The voltage profile of the dynodes can be altered—continuously in
some systems and in discrete steps in other systems—to provide variable image
magnification. For example, a 40-cm XRII could be used to image a 20 cm field
of view.

The electrons accelerate through the XRII until they are absorbed by either
the anode or the output phosphor screen. The output phosphor is a P20-type
phosphor deposited on the output window, typically a 15-mm piece of glass
25–35 mm in diameter. A thin aluminum film placed on the inner side of
the phosphor acts as the anode and a reflector, keeping light from passing
back into the XRII, which might otherwise cause secondary excitation of the
photocathode. The light passing through the output window typically encounters
a lens, which magnifies the image.

The magnified light image leaving the XRII can be used in several ways,
three of which are depicted in Figure 5.11. First, a light sensor can be put into
the field to provide an automatic gain control—that is, feedback to the x-ray
tube current—to provide a relatively constant image brightness throughout an
exam. Second, the main function of a fluoroscope is achieved by feeding the
light image into a TV camera, which provides real-time viewing capability by
sending the camera’s signal into a standard TV monitor. Finally, using a splitter,
the image can also be fed into a film camera, which can capture selected still
images onto film.

5.2.7 Digital Radiography

Digital radiographic systems are rapidly replacing film-screen combinations.
Although the first version of such systems was introduced in the 1980s, it
took over twenty years for the cost to be driven down and for the quality to
improve sufficiently for these systems (and subsequent versions of these systems)
to compete successfully with film-based systems. There are four types of digital
systems, which we describe next, all of which are in clinical use today.

Computed Radiography Systems Computed radiography (CR) systems store
latent images in photostimulable imaging plates (PSPs), which are removed from
the x-ray system and scanned using a special laser scanner to form a digital
image. The PSP is a phosphor typically made from barium fluorohalide bromides
and iodides with europium activators. Detected x-ray photons are absorbed in
the phospor by the photoelectric effect, which causes electrons to be ejected
from atoms in the detector. About half of these electrons will recombine with
the resulting ions causing light to be emitted (as in a typical image intensifying
screen). The remaining electrons will be temporarily trapped in the fluorohalides,
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leaving ‘‘holes’’ in the europium; it is these holes that represent the latent image
that is stored in the PSP. Latent images last for hours, but as electrons find
ways to recombine with the holes, they will be unrecoverable after a few days
of storage.

PSPs must be processed in order to recover the latent image. From the
viewpoint of work flow in a radiology clinic, this aspect of CR bears great
similarity to that of film-based radiography, which is one reason (once price
dropped and quality improved) why CR became a natural way to transition to
digital radiography from film-based systems. To make it even easier to transition,
the CR cassette, as shown in Figure 5.12, can often be used directly in place of the
film-screen cassette in existing systems. But unlike film, there are no chemicals
involved in recovering the radiographic image in CR. Instead, reading a PSP
involves use of a focused laser, which stimulates the trapped electrons so that
they will recombine with the holes and produce light. To do this, a mechanical
device, much like the paper roller in a laser printer, is used to slide the PSP to a
position where a focused laser is scanned across a row of the PSP; the PSP is then
slid to a new position and a new row is scanned, and so on. At each position
of the laser, which is approximately 700 nm in wavelength and therefore red in
color, blue light is emitted from the PSP in proportion to the number of trapped
electrons that are liberated by the laser excitation. This emitted light is directed
by mirrors toward a photodetector that is sensitive only to blue light, and the
resultant electrical signal is digitized using an analog to digital converter (ADC).
This produces a digital value—a pixel value—that is proportional to the x-ray
intensity at the spot on the PSP being probed by the laser.

Since the PSP is by design ‘‘raster scanned’’ row-by-row, the resulting
data comprise rectilinear samples of a digital image, which can be directly
manipulated and stored on a computer and displayed on a digital display. The
density of spatial samples during scanning affects the resolution of the system,
and the number of bits per pixel in the ADC affects the overall dynamic range of
the system. For example, high-resolution systems might sample at 10 pixels/mm
and each pixel value might be represented by a 16-bit digital word. The dynamic

Figure 5.12
A computed radiography
(CR) cassette. Image
courtesy of GE
Healthcare.
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ranges of digital image created by scanning a PSP can be dramatically different
depending on the anatomy being imaged as well as the kVp and mAs selected
by the operator.

Unlike film, which saturates at high x-ray exposures, PSPs can store perfectly
viable latent images over a wide range of incident x-ray exposures. This means
that fewer images are ‘‘spoiled’’ by having poor latent images through improper
x-ray tube parameter selection, but the downside is that very different dynamic
ranges must be anticipated. Most systems use an air ionization photocell to
perform AEC, as previously described for film-based radiography. The technician
must specify an appropriate exposure based on the patient size and anatomy
being imaged. Many systems also permit some preprocessing of the scanned
images prior to finalizing them for the patient record, which permits additional
specification of the image values in accordance with expected norms. Another
somewhat unfortunate downside of the fact that few images are spoiled in CR
acquisition is that, since lower exposures cause the usual quantum noise and
higher exposures simply improve signal-to-noise ratio (SNR), there is a natural
tendency to use higher x-ray exposures in CR. It is important to gaurd against
this tendency since higher exposures yield higher doses to the patients.

It turns out that the process of reading a PSP does not liberate all the
electrons that are stored in the plate; in fact, a PSP can be scanned more than
once without much degradation. In order to reuse the plate—that is, to create a
new x-ray image—it must first be erased, which is accomplished very simply by
exposing it to very bright light. Usually this is done in the same mechanical unit
that reads the plate.

CCD-Based Digital Radiography Systems Charge coupled device (CCD) detec-
tors combine a collection of light-sensitive capacitors, which store charge in
proportion to incident light, with a CCD, which uses a linear charge transfer
to permit a high-fidelity readout of the stored charges. Two-dimensional CCD
detector arrays capture 2-D light images and are used in high-quality photo-
graphic equipment today. Their use in x-ray imaging is made possible simply
by using a scintillator, typically Tl-doped CsI, to convert the x-rays to visible
light.

The main obstacle to the use of CCD detectors in projection radiography is
that they are small devices, while the field of view of most x-ray examinations is
large. The most straightforward approach to solve this problem is the use of a
lens to demagnify the scintillator image so that it fits within the optical window
of the CCD array. With a typical field-of-view and typical CCD detector size,
demagnification by a factor of roughly 10:1 is necessary. For example, to match
a 44 cm × 44 cm field of view (FOV) to a 4 cm × 4 cm CCD with 3,000 ×
3,000 pixels, each 0.013 mm × 0.013 mm, a demagnification factor of just over
11 is required. However, it turns out that there is a significant loss of light—as
much as 99%—with such demagnification, and this yields significantly higher
quantum noise in the resultant images. Use of higher x-ray doses can compensate
for this loss, and because of the very low cost of CCD detectors, this is one
approach that has been used to produce very low-cost digital x-ray systems.

Another way to use CCD detectors is in a so-called slot-scan geometry. In
this geometry, multiple CCD detector arrays are positioned in a line, long enough
to cover the entire field of view (or a significant fraction of the FOV) in one
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dimension (termed horizontal)—for example, the expected maximum width of
a human chest. If demagnification is required, it is relatively small (on the order
of 2:1 or 3:1), and it is carried out using fiber optic ‘‘light pipes’’ so that only
a small proportion of light photons are lost. For example, a typical complete-
coverage geometry would use eight detector arrays, each 5.5 cm by 1.1 cm, tiled
together to yield a single linear detector of dimension 44 cm by 1.1 cm. The CCD
detector might have 342 elements in the horizontal direction and 68 elements
in the vertical direction. The x-rays are then collimated into a fan beam and
directed at the linear CCD detector, which can collect data simultaneously for
a small collection of horizontal rows—for example, 68 rows—of the digital
image in parallel. To collect additional rows, either the entire apparatus—x-ray
source, collimator, and detector—are translated (vertically) together or just the
source collimator and detector are translated (vertically) together. Translation
can be carried out, depending on the field of view, over a time period between 8
and 15 seconds. Patients having a chest x-ray using this type of system would be
required to hold their breath for the duration of the scan in order to minimize
motion artifacts due to breathing.

Thin-Film-Transistor-Based Digital Radiography Systems CCD detectors have
pixel sizes that are inherently small and cannot be scaled up due to noise
that is added in the charge transfer mechanism with larger detector areas.
Therefore, although constructing large CCD detectors—for example, large
enough to be full-field detectors such as that achieved by film and PSPs—is
technically possible, cost, sensitivity to x-ray damage, complexity, low-speed,
and calibration issues currently make this impractical. However, the advantage
of having a direct digital read-out afforded in CCD cameras is clear, and
thin-film-transistor-based digital radiography systems provide that capability.

Thin film transistors (TFTs) are made by depositing thin films of a semi-
conductor material, a dielectric, and metal conductors onto glass. In flat panel
displays, which are familiar to us because they are used in modern LCD and LED
television systems, the transistors are laid out in a 2-D grid so that each pixel can
be activated by addressing a horizontal and vertical wire simultaneously—this
is the so-called active matrix technology. In x-ray flat panel detectors, the TFT
active matrix design is used to read out a charge that has accumulated at each
pixel due to x-ray flux.

To completely specify the TFT-based flat panel detector, we must specify
how the x-rays will be detected and charge will be accumulated. There are two
methods, so-called indirect and direct, both of which lead to charge stored on
a capacitor associated with each image pixel. Indirect detection is very familiar
to us: A scintillator, typically CsI:Tl, is placed between the x-ray source and the
TFT matrix, which causes detected x-rays to generate light photons. Amorphous
silicon (a-Si) is then used as a photodiode to convert the light emitted from the
scintillator to charge on the storage capacitors. Direct detection, on the other
hand, uses amorphous selenium (a-Se) to directly convert x-rays to electrons,
which are then moved directly to the storage capacitors using an applied voltage
across the selenium plate. Currently, flat panel detectors based on the indirect
detection method are more common, in part because these detectors are faster
(i.e., high light output and shorter afterglow, which is important in temporal
acquisitions such as fluoroscopy) and they have lower noise. However, direct
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detection has the potential for higher spatial resolution and are being rapidly
improved in materials that will offer lower noise designs.

CMOS-Based Digital Radiography Systems Complementary metal oxide semi-
conductor (CMOS) active-pixel sensor (APS) imagers are the most common
optical sensor for consumer cameras. Their use in x-ray detection is relatively
new and the advantages and disadvantages are still being discovered even as
the technology continues to improve. Current technology allows for pixels in
CMOS sensors to be made larger than CCD elements, they have low cost and
low power consumption, they are tolerant to x-ray irradiation, and they have
fast pixel readout capability.

Each pixel in a CMOS APS comprises a photodiode and three or more
MOSFET transistors. Because light is used as an input, these detectors are
indirect and must be coupled to a scintillator as in a-Si TFT detectors. Like
TFTs, the pixels within a CMOS APS are accessed by activating an access
enable conductor, which identifies the row and then reads a particular output
conductor, which identifies the column. As opposed to the CMOS passive-pixel
sensor (an earlier design that has only has one transister per pixel), the CMOS
APS uses extra transistors to amplify the signal (accumulated charge) prior to
readout, yielding much lower noise and faster readouts.

The pixel size in CMOS sensors can be much larger than that of CCD
detectors, which is an advantage. A typical pixel size is 0.075 mm × 0.075 mm,
and they can be grouped together to make larger ‘‘superpixels’’—for example,
up to 4 × 4 to make pixels of size 0.3 mm × 0.3 mm—which enables faster
readout rates for real-time applications. Like CCD imaging arrays, CMOS
imaging arrays must be manufactured on a single semiconductor substrate and
this is a limiting factor in comparison to TFT-based detectors. Second generation
sizes support up to 5 cm × 10 cm substrates and these can be tiled (with greater
ease than tiling CCD arrays) to make up larger panels, currently up to 290 mm ×
230 mm, which is suitable for mammography applications.

Wireless and Rechargable DR Detectors In addition to its capability for high
resolution, convenience of workflow is a key reason that CR got an early
headstart in the digital x-ray area. In particular, existing x-ray systems could
be retrofitted to support the CR cartridge instead of film screen cartridges,
and only a separate processing unit needed to be purchased to replace the
chemical film developers. Early DR systems were sold to replace existing x-ray
systems—not just their detectors—and therefore represented a considerable
capital investment.

Newer DR detectors are completely portable plates or cartridges that have
their own rechargable battery power sources and wireless ethernet connectivity.
They are completely encased in plastic so that they can be easily cleaned and will
survive minor bumps in the course of normal use. These detectors can be shared
between multiple rooms or x-ray systems and can be retrofit into existing table
and wall-mounted systems. Data from these detectors can be transmitted directly
to a viewing station or departmental picture archiving and communication
system. Because of these conveniences, the improving resolution and SNR, and
the lack of a requirement for separate reading and erasing hardware, DR systems
are beginning to overtake CR in modern radiology departments.
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5.2.8 Mammography

Mammography is a sufficiently specialized and widely used modality within
projection radiography that we consider it separately here. Mammography is
used for the early detection of breast cancer either by direct detection of tumors
in the images or by detection of microcalcifications (tiny deposits of calcium) that
sometimes indicate the presence of breast cancer. A conventional mammography
unit is based on a traditional projection radiography system, whose size is
optimized for the breast. Low-energy x-rays (around 30 kVp) are typically
used. A significant feature of such systems is the integration of compression
via a paddle to produce a reduced and more uniform (and somewhat more
standardized across patients) thickness organ for imaging. In this approach,
the breast is compressed between the paddle and the detector; compression
thus also reduces motion during imaging. Another important feature of most
conventional mammography systems is an automated intensity control system
that optimizes detector exposure.

With the advent of full field digital mammography, more than half of
all mammography systems are now direct digital radiography systems. Early
digital systems had 70 micron pixels, leading to spatial resolution around
3.5 line pairs/mm (compared with 12 or so line pairs/mm to as much as 20 line
pairs/mm for film-screen-based systems); current systems have resolution around
6–8 line pairs/mm. However, digital systems have much greater dynamic range
than film, avoiding problems of under- or over-exposure. The digital display
of images provides control over brightness and contrast. Furthermore, digital
systems have advanced processing algorithms for contrast enhancement and
small-structure enhancement, as well as computed-aided detection and diagnosis
(CAD) algorithms that help the radiologist to interpret the images.

The most advanced mammography systems use tomosynthesis or stereo
digital mammography. In the latter, two mammograms shifted by 5–10 degrees
are captured and digitally fused and displayed. In the former, multiple (typically,
7–12) angular views are captured over a 50-degree arc, and then digitally
reconstructed to yield a volumetric dataset, from which individual tomographic
slices can be extracted and displayed. Most tomosynthesis systems are based
on the concept of linear tomography and are only implemented in state-of-
the-art full-field digital mammography systems. Now that the technology is
becoming more widely accepted, more mammography systems can be equipped
for tomosynthesis, and some have iterative reconstruction methods that permit
dose reduction and improved visualization of microcalcifications.

5.3 Image Formation
5.3.1 Basic Imaging Equation

The x-ray tube emits a burst of x-rays that, after filtration and restriction, are
incident upon the patient. These x-rays are then attenuated as they pass through
the body in a spatial pattern that depends on the linear attenuation coefficient
distribution in the body. Consider a particular line segment through the object
starting at the x-ray origin and ending on the detector plane at point (x, y), as
shown in Figure 5.13. The linear attenuation is a function of x, y, and z, in
general; on the line, it can be considered to be a function of its distance s from
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Figure 5.13
The geometry of a
conventional projection
radiographic system.
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the origin. Suppose that the length of the line segment is r = r(x, y), where it is
made explicit that the length of the line depends on the position (x, y). Then,
referring to (4.34), the intensity of x-rays incident on the detector at (x, y) is
given by

I(x, y) =
∫ Emax

0
S0(E′)E′ exp

{
−
∫ r(x,y)

0
μ(s; E′, x, y)ds

}
dE′ , (5.3)

where S0(E) is the spectrum of the incident x-rays. Given a different line, the
linear attenuation function is usually different since it passes through different
materials; that is why μ is made explicitly dependent on x and y here. Therefore,
if we were to actually evaluate this double integral, we would have to first
determine the function μ(s; E, x, y) for the particular line of interest and then
proceed with the integration. Any photon ‘‘surviving’’ its passage through the
body then hits the detector apparatus (radiographic cassette or digital detector),
and is either absorbed by the detector itself, is absorbed by the detector packaging
including its lead backing, is scattered in an abitrary direction, or exits out the
back of the detector.

5.3.2 Geometric Effects

X-ray images are created from a diverging beam of x-rays (see again Figure 5.13);
this divergence produces a number of undesirable effects that arise from
geometric considerations. These effects are multiplicative; we now study them
in sequence.

Inverse Square Law The inverse square law states that the net flux of photons
(i.e., photons per unit area) decreases as 1/r2, where r is the distance from the
x-ray origin. Assume that the beam intensity integrated over a small sphere
surrounding the source is given by IS. Let the source-to-detector distance be d,
as shown in Figure 5.13. Let the detector origin (x = 0 and y = 0) be defined
by the point on the detector whose normal direction passes through the x-ray
source. Then, assuming there is no object causing beam attenuation between the
source and detector, the intensity at the origin of the detector

I0 = IS

4πd2 . (5.4)
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The intensity at an arbitrary point (x, y) on the detector is smaller than that at
the detector origin simply because it is farther away from the x-ray source. Let
r = r(x, y) be the distance between the x-ray origin and the detector point (x, y).
Then the intensity at (x, y) is

Ir = IS

4πr2 , (5.5)

where, again, we have assumed that there is no object attenuation. These
relations, and the fact that cos θ = d/r (see Figure 5.13), yield

Ir = I0
d2

r2 = I0 cos2 θ . (5.6)

Thus, the inverse square law causes a cos2 θ drop-off of x-ray intensity away from
the detector origin, even without object attenuation. Without compensation,
this effect could be falsely interpreted as object attenuation in a circular pattern
around the detector origin.

EXAMPLE 5.2
The inverse square law has a very practical use in radiography. Suppose an acceptable
chest radiograph was taken using 30 mAs at 80 kVp from 1 m. Suppose that it was now
requested that one be taken at 1.5 m at 80 kVp.

Question What mAs setting should be used to yield the same exposure?

Answer The intensity at the detector should remain constant in order to have the same
exposure. We determine that

Iold = IS(old)

4πd2
old

= Inew = IS(new)
4πd2

new

or

IS(new) = IS(old)
d2

new

d2
old

,

where IS refers to the intensity at the x-ray source. X-ray intensity at the source is directly
proportional to mAs, the product of the tube current and the exposure time. Therefore,

mAs(new) = mAs(old)
d2

new

d2
old

(5.7)

= 30 mAs × (1.5 m)2

1 m2

= 67.5 mAs .

Equation (5.7) is called the density maintenance formula; it is of significant practical
utility in maintaining equivalent x-ray exposures while varying patient distance.
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Figure 5.14
The effect of obliquity on
spot size.
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Obliquity Obliquity is a second factor that acts to decrease the beam intensity
away from the detector origin. The obliquity effect is caused by the detector
surface not being orthogonal to the direction of x-ray propagation (except at the
detector origin). As shown in Figure 5.14, this fact implies that x-rays passing
through a unit area orthogonal to the direction of x-ray propagation actually
pass through a larger area on the detector. Thus, the x-ray flux is lower, which
directly results in a lower measured x-ray intensity on the detector surface.

Given an area A orthogonal to the direction of x-ray propagation, the
projected area on the detector is Ad = A/ cos θ . Therefore, the measured intensity
due to obliquity alone is

Id = I0 cos θ , (5.8)

where we have again assumed that there is no object attenuation.

Beam Divergence and Flat Detector The effects of beam divergence and the
flat detector act together to reduce intensity at the detector plane in two ways:
(1) reduction in beam intensity due to the inverse square law effect [(5.6)] and
(2) reduction in beam intensity due to obliquity [(5.8)]. The combination of
these two effects is multiplicative. So, the overall beam intensity relative to the
intensity I0 at the detector origin, assuming no object attenuation, is given by

Id(x, y) = I0 cos3 θ . (5.9)

If θ is small, then cos3 θ ≈ 1, and both effects can be ignored. This is a good
approximation for most projection radiography systems, where either the tube
is very far away from the detector or the detector is small enough that θ is small
even at the edges of the detector.

EXAMPLE 5.3
Suppose a chest x-ray is taken at 2 yards using 14 inch by 17 inch film.

Question What will be the smallest ratio Id/I0 across the film (assuming no object
attenuation)?
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Answer The corner of the film is distance rd away from the detector origin, where

rd =
√

72 + 8.52 = 11.0 in.

The cosine of the largest angle θ made by the beam is therefore

cos θ = d√
d2 + r2

d

= 72√
722 + 112

= 0.989 .

The smallest intensity ratio is therefore

Id

I0
= cos3 θ = 0.966 ,

which represents about a 3 percent variation. Given the other effects we will be
exploring—anode heel effect, path length, depth-dependent magnification, noise, and
scattering—this effect is a negligible intensity perturbation across the film.

Anode Heel Effect We have heretofore modeled the beam coming from an
x-ray tube as having uniform intensity within a cone. The anode heel effect,
however, predicts a stronger intensity beam in the cathode direction and no
variation orthogonal to the cathode–anode direction. The reason for this effect
is due to the geometry of the anode, as shown in Figure 5.4. Although the
generation of x-rays within the anode is essentially isotropic at the atomic
level, those x-rays traveling out of the anode in the forward (cathode-to-anode)
direction have more anode material through which to propagate before leaving
the anode itself than those leaving the anode in the backward direction. Thus,
the beam intensity is higher in the cathode direction; the variation can be as
much as 45 percent intensity variation in the cathode to anode direction. Thus,
the anode heel effect far outweighs the effects of obliquity and inverse square
law in its overall effect on the uniformity of intensity across the detector surface.

The anode heel effect can be compensated by using an x-ray filter that is
thicker in the cathode direction than in the anode direction. If it is not compen-
sated by filtration, then it must be recognized when positioning patients relative
to the x-ray tube. In particular, the anode heel effect should be used as a kind of
inherent compensation for natural gradients in the body’s x-ray attenuation pro-
file. For example, when imaging the foot, the toes should be positioned toward
the anode since that part of the foot is thinner; the cathode end will have more
x-rays to penetrate the thicker (proximal) part of the foot. This principle can be
applied throughout the body. In our development of x-ray imaging equations,
we will assume that the anode heel effect is compensated by filtration.

Path Length Consider imaging a slab of material with a constant linear
attenuation coefficient μ and thickness L arranged parallel to the plane of the
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Figure 5.15
Imaging a uniform slab.
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detector, as shown in Figure 5.15. Assume a monoenergetic x-ray spectrum for
the present analysis. The central ray of the x-ray beam—that is, the ray that
goes through the center of the object and hits the detector origin—encounters a
net path length L through the object. Thus, the x-ray intensity at (x, y) = (0, 0)
will be I0 exp(−μL), where I0 is the intensity of the beam that would be present
at the detector origin if the slab were not present.

The x-rays propagating toward the detector point (x, y), however, experience
a different path length through the slab. The path length through the slab along
the line between the x-ray source and (x, y) is given by

L′ = L
cos θ

. (5.10)

Since L′ > L, more x-rays will be attenuated along this line than along the
central path, and the x-ray intensity at the detector will be smaller. Ignoring the
inverse square law, obliquity, and the anode heel effect, the intensity is given by

Id(x, y) = I0e−μL/ cos θ . (5.11)

If the inverse square law and obliquity are included, then the intensity is given by

Id(x, y) = I0 cos3 θ e−μL/ cos θ . (5.12)

If the anode heel effect is compensated by filtration, then (5.12) represents a
valid imaging equation for a homogeneous slab parallel to the image plane
within the field of view.

The interpretation of radiographs, both visually and through automatic
image analysis techniques, should be informed by (5.12) and by the anode heel
effect (if not compensated). Since materials with larger attenuation are brighter
when viewed on a light box (or a computer screen if digitally displayed), these
effects will cause a shading artifact within a homogeneous object. This could be
interpreted as representing a different attenuation within the object or different
object thickness. It is truly an ambiguous situation. Radiologists are trained
to study radiographic intensities locally, and to not compare absolute image
values across the field of view. This is not a desirable situation for automatic
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(computer-based) image analysis methods, in general, which requires such
methods to be more complicated than would otherwise be the case.

Depth-Dependent Magnification Another consequence of divergent x-rays is
object magnification, which is specifically called depth-dependent magnification
in radiography. Consider the ‘‘stick’’ object of height w shown in Figure 5.16.
It is clear from the geometry that the object will always appear larger on the
detector than it is in reality. Furthermore, the height of the object on the detector
is different depending on the position of the object in the field-of-view.

Using the concept of similar triangles, it is easy to show that when the object
is at position z, its height wz on the detector will be

wz = w
d
z

. (5.13)

From this, we see that the magnification M(z) is given by

M(z) = d
z

. (5.14)

The magnification is a function of z, which is why this magnification is referred
to as depth-dependent.

There are three important consequences of depth-dependent magnification.
First, two objects within the body of the same size may appear to have different
sizes on the radiograph. Thus, judgments about relative sizes of anatomical
features must be made with caution and knowledge. Second, anatomical features
studied longitudinally—that is, using radiographs of the same patient taken over
several months or years—can only be compared in size if the same radiographic
conditions and patient positioning is used. A change in the patient’s weight, for
example, may position a physiological landmark differently relative to the x-ray
source causing an apparent change in size which could be falsely associated
with the progression of disease. Third, the boundaries of a single object can
be blurred simply because the ‘‘front’’ of the object is closer to the radiograph
than its ‘‘back.’’ This effect, which might be called depth-dependent blurring, is
studied in the following example.

Figure 5.16
Depth-dependent
magnification of a ‘‘stick’’
object.
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Figure 5.17
Imaging a rectangular
prism.
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EXAMPLE 5.4
Consider imaging the rectangular prism shown in Figure 5.17, defined by

μ(x, y, z) = μa rect(y/W) rect(x/W) rect([z − z0]/L) , (5.15)

where [see (2.16)]

rect(x) =
{

1 |x| ≤ 1/2
0 otherwise

.

Question How is this rectangular prism portrayed in a radiograph?

Answer In the center of the figure, the appearance of the image is governed by the
inverse square law, obliquity, and path length variations, so (5.12) applies,

Id(x, y) = I0 cos3 θ e−μaL/ cos θ .

However, when the x-rays are passing through the edges of the object, there is a loss
of object path length and corresponding reduction in attenuation. Suppose a ray passes
through the edge of the prism at range z′. Then, using simple trigonometry, we find that
the path length through the prism is [z′ − (z0 − L/2)]/ cos θ . (Notice that if z′ = z0 + L/2,
this yields the path length L/ cos θ , as above.) In this case,

Id(x, y) = I0 cos3 θ e−μa(z′−(z0−L/2))/ cos θ .

The third possibility is that the ray misses the prism entirely. In this case,

Id(x, y) = I0 cos3 θ .

Given (x, y) on the detector, what is required to complete this analysis is to determine
which of the three ranges apply and if at the edge, the value of z′. This analysis is left as
an exercise for the reader in Problem 5.9(a).

This example shows that divergent rays lead to edge blurring, an additional
distortion to understand when viewing radiographs. This effect can be reduced
by keeping the x-ray source as far from the detector plane as possible and
keeping the object (the patient) as close to the detector as possible. For example,
for routine chest radiography, the distance between the x-ray source and the
detector (film) is typically six feet. However, for other examinations (such as
imaging extremities), the source-to-detector distance may be much smaller.
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Imaging Equation with Geometric Effects It is useful to develop an imaging
equation that incorporates the geometric effects we have presented in this
section. To do this, we utilize an idealized object tz(x, y) that is infinitesimally
thin and located in a single plane given by the coordinate z and is capable of
differentially attenuating x-rays as a function of x and y. This object can be
thought of as a sheet of paper impregnated with a distribution of lead; a pictorial
representation is given in Figure 5.13.

We should think of tz(x, y) as a transmittivity, rather than an attenuation;
it replaces the entire exponential factor, rather than μ itself. Accordingly, if the
object is located at the detector face—so that there is no magnification—the
recorded intensity would be

Id(x, y) = I0 cos3 θ td(x, y) , (5.16)

where

cos θ = d√
d2 + x2 + y2

. (5.17)

In general, when the object is located at arbitrary z, where 0 < z ≤ d, the
magnification must be taken into account. This effect is just a scaling of the size
of the object, and it is

Id(x, y) = I0 cos3 θ tz(x/M(z), y/M(z)) . (5.18)

Putting (5.18) together with (5.14) and (5.17) yields

Id(x, y) = I0

(
d√

d2 + x2 + y2

)3

tz(xz/d, yz/d) . (5.19)

This equation is a reasonable approximation for relatively thin objects that have
nearly the same magnification and no variation in their attenuation in the z
direction. This equation does not take into account the effect of integration
along ray paths through thick objects (such as the human body).

5.3.3 Blurring Effects

It was shown above that divergent rays will blur edges of objects that are thick
in the range direction. There are two effects, however, that will blur objects even
if they do not have a z extent: extended sources and the detector thickness—that
is, the intensifying screen in film-based systems, the PSP phosphor in CR systems,
and the scintillator or s-Se plate in CCD, TFT, and CMOS digital radiography
systems. Both of these processes can be modeled as convolutional effects that
degrade image resolution. They are not present in (5.18) and (5.19) because in
these equations there is only magnification and intensity changes made to the
infinitesimally thin object tz(x, y). We now explore these two effects in detail.

Extended Sources Another characteristic of projection radiographs is blurri-
ness arising from the nonzero extent of the x-ray source—the spot size of the
site of x-ray emissions from the anode. As shown in Figure 5.18, this blurring
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Figure 5.18
Effects of extended
source. (a) Ideal field of
view and object
projection (with
magnification). (b)
Penumbra at edges of field
of view due to extended
source. (c) Blurred object
edges due to extended
source.
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contributes to both a fuzziness at the edge of the field-of-view and a fuzziness of
an object boundary. Here, we care about the blurring caused to the object. We
will show that the extended source effect is a convolution of the source shape
with the object shape (with magnification effects also included). Because of this,
extended sources produce a significant loss of resolution of x-ray images. (This
problem cannot be solved by shrinking the spot size on the anode because of
heat dissipation requirements in the anode material.)

The physical extent of blurring caused by an extended source depends on
the size of the source spot and the location of the object. Consider, for example,
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Figure 5.19
Principle of source
magnification.
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the image of the point hole shown in Figure 5.19. From the geometry, if the
source has diameter D, then the image of the point hole located at range z will
have diameter D′, given by

D′ = d − z
z

D . (5.20)

The factor multiplying D in (5.20) is the absolute value of the source magnifica-
tion m(z), which is given by

m(z) = −d − z
z

. (5.21)

The source magnification is negative because it inverts the image of the source,
as can be appreciated by studying Figure 5.19. From (5.14), it can be seen that
the depth-dependent (object) magnification and the source magnification are
related as

m(z) = 1 − M(z) . (5.22)

To develop an imaging equation incorporating source magnification, con-
sider the image of the point hole on the z-axis, as shown in Figure 5.19. Let the
x-ray tube source spot be represented by the source intensity distribution s(x, y),
which we can think of as a disk emanating x-rays from all points within the disk.
Ignoring geometric effects, the image will be an inverted and spatially scaled
version of the source intensity distribution. In fact, the intensity distribution is

Id(x, y) = ks(x/m, y/m) , (5.23)

where m is the source magnification for a point at range z, as given by (5.21). In
particular, since m is negative, Id will be the symmetric image of s.

The amplitude scaling term k in (5.23) must be found. It is determined using
the fact that the integrated intensity on the detector plane must remain constant
regardless of the position of the point hole on the z-axis. In other words,∫∫

ks(x/m(z), y/m(z)) dx dy = constant , (5.24)
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regardless of z, but k might depend on z. Using the Fourier transform,

km2(z)S(0, 0) = constant , (5.25)

which implies that

k ∝ 1
m2(z)

. (5.26)

This implies that the amplitude of the blurring caused by the extended source
depends on the location of the object relative to the detector plane. In particular,
if the object approaches the detector, then m(z) → 0, and

s(x/m, y/m)
m2 → S(0, 0)δ(x, y) . (5.27)

In this case, there is no loss of resolution or amplitude; the image of the extended
source is actually perfect.

The above analysis holds for a point hole located anywhere in the same
z-plane. We can then use superposition [see (2.33)] to understand the behavior
of a spatial distribution of attenuating objects within a given z plane, such as the
transmittivity function tz(x, y) used before in describing imaging under object
magnification [see (5.19)]. This analysis leads to an imaging equation that is the
convolution of the magnified object by the magnified and scaled source function,

Id(x, y) = cos3 θ

4πd2m2 s(x/m, y/m) ∗ tz(x/M, y/M) . (5.28)

Notice that the term 4πd2 is included to account for the fact that there is loss of
source intensity due to the inverse square law. For objects close to the detector,
M ≈ 1 and m ≈ 0; the object will have unity magnification and will not be
blurred by the source focal spot, regardless of the size of that focal spot. This is
just one more motivation for putting the patient directly against the detector.

Film-Screen and Digital Detector Blurring The detailed geometry of a film-
screen detector is shown in Figure 5.20. The film is sandwiched between two

Figure 5.20
A film-screen detector.
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Figure 5.21
A typical MTF for a
film-screen detector.
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phosphors—that is, the active parts of intensifying screens. For each x-ray
photon that is absorbed by a phosphor (by photoelectric absorption), a large
number of lower-energy light photons are produced. Unlike x-ray photons,
these light photons are efficiently detected by film emulsions (see Section 5.2.5).
The light photons travel (approximately) isotropically from the point where the
x-ray was absorbed, as shown in Figure 5.20. They can then be absorbed in the
film at locations far from the x-ray’s path. The union of detected light photons
form a ‘‘spot’’ on the film, which is effectively an impulse response to the x-ray
‘‘impulse.’’ Using superposition, an imaging equation incorporating film-screen
blurring is readily derived. To good approximation, it is simply (5.28) with an
additional convolution with the film-screen impulse response function h(x, y),

Id(x, y) = cos3 θ

4πd2m2 s(x/m, y/m) ∗ tz(x/M, y/M) ∗ h(x, y) . (5.29)

Typically, the impulse response of a film-screen detector system is circularly
symmetric. The modulation transfer function (MTF) of a typical film-screen
detector is shown in Figure 5.21.

Use of a thinner phosphor yields less film-screen blurring. However, thin
screens do not stop as many x-rays, reducing the efficiency of the detector
system. Detector efficiency η is defined as the fraction of photons captured by
the detector on average. Calcium tungstate is often used for intensifying screens
because it has reasonably good efficiency for stopping x-ray photons (η ≈ 0.30).
In general, the thicker the screen, the higher the efficiency and the worse the
resolution. We will see in Section 5.4.1 that maintaining high efficiency is key
to keeping image noise low. Thus, while thinner screens are desirable for good
resolution, there is a tradeoff below which the improvements in resolution will
be offset by increased noise.

Digital detectors have different mechanisms that produce blurring at the
detector. Like film-screen blurring, there are effects derived from the thickness
of the scintillators (when used). In addition, there is the effect in some systems
of discrete detector ‘‘bins’’ that accumulate charge over specific regions within
the detector. To a first approximation, all digital systems can be modeled by the
convolution model in (5.29) but each having their own unique PSF h(x, y).

5.3.4 Film Characteristics

As noted in Section 5.2.7, computed radiography and digital radiography sys-
tems are replacing conventional film-screen approaches. Even so, it is important
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to understand the basic terminology and characteristics of film, as similar
concepts can be applied to CR and DR.

The intrinsic spatial resolution of film is generally significantly better than
that of the intensifying screen; so, for most situations, we can ignore the
spatial frequency characteristics of the film. If necessary or desirable, the spatial
resolution of film can be modeled by a point spread function analogous to
that of the detector blur above; the overall performance would be a cascade
of subsystems, as depicted in (2.46), (3.29), and (3.30). Rather than a film’s
spatial resolution properties, it is its intensity transformation properties that are
of primary interest here.

Because film is a very poor direct detector of x-rays, we will ignore the image
created directly on the film by the x-rays themselves and only consider the image
created by the light produced in the phosphors adjacent to the film. The
parameters of interest are the contrast or gamma of the film, and its dynamic
range or latitude; we will define these terms in a moment. We use many different
types of film with varying contrast and latitude depending upon the type of
x-ray examination desired. Those of you who are amateur photographers may
have a practical appreciation of these film characteristics.

We consider the relationship between the amount of light that is incident
upon the film and the final image that is viewed when the film is exposed, devel-
oped, and placed on a light source (‘‘light box’’). The light photons that are
captured by the film produce a latent image (i.e., it is not visible). When the film
is developed, that latent image produces a blackening of the film. We therefore
characterize film as a transformation between exposure to light and the degree of
blackening of the film, which is characterized by the optical density of the film.

When a developed film is viewed on a light box, the blacker parts of the
film absorb more of the light coming from the box, creating the impression of a
gray level image when viewed by the eye. The optical transmissivity is defined
as the fraction of light transmitted through the exposed film or

T = It

Ii
, (5.30)

where Ii is the irradiance of the incident light and It is the irradiance of the
transmitted light, both in units of energy per unit area per second. For example,
the darker parts of the film might have a transmissivity of 0.1, while the more
transparent parts might have a transmissivity of 0.9. The optical opacity is the
inverse of the transmissivity, and the optical density is defined to be the common
logarithm of the optical opacity,

D = log10
Ii

It
. (5.31)

We see that the optical density characterizes how black the film is on a
logarithmic scale. Optical densities in the range of 0.25–2.25 are usable, but the
human eye discriminates shades of gray best when 1.0 < D < 1.5.

We now appreciate that the appearance of the x-ray film after exposure
and development is determined by the spatial distribution of optical density,
D(x, y). How does x-ray exposure relate to optical density? We first recall from
Chapter 4 that x-ray exposure X is measured in units of roentgens (R); in
particular, 3,876 R of exposure is equivalent to 1 C of charge per kilogram of
air; the charge comes from the ions produced by the x-ray interactions. For
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Figure 5.22
An H&D curve.
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direct exposure (no screens) and D < 2, D is directly proportional to X. When
screens are used and D > 2, however, the relationship between X and D is
nonlinear, and it is given by the classic H&D curve (named after Hurter and
Driffield, who first described this function), as shown in Figure 5.22. A typical
H&D curve is S-shaped, with a low exposure–low D toe, a linear portion, and
a high exposure–high D shoulder. Notice that D never goes to zero; there is
always a base fog optical density, even in the absence of exposure.

In the linear region of an H&D curve, the response between the common
logarithm of exposure and optical density is approximately linear,

D = � log10(X/X0) , (5.32)

where � is the slope of the H&D curve in the linear region and X0 is the
exposure at which the linear region would hit the horizontal axis (D = 0) of the
H&D curve.

The quantity � is called the film gamma. It is unique to a particular film and
a particular method of developing that film (that is, it is a function of the devel-
oping chemicals, temperature, time of development, etc.), and it is typically in the
range of 0.5–3. Increasing the gamma of the film increases contrast but reduces
the range of exposures over which the optical density response is linear. Correct
exposure of a film occurs only in the linear range of its H&D curve. The latitude
of a film is the range of exposures over which the H&D curve is linear. The speed
of a film is the inverse of the exposure at which D = 1 + fog level. Consider the
radiographic films shown in Figure 5.22. Clearly, the film/screen combination
(a) is the fastest film. The direct x-ray exposure film (b) is next fastest and
has the largest gamma and lowest latitude. Finally, standard high-speed optical
film (c) without screens is the slowest; it would require the largest x-ray expo-
sure of all three films in order to achieve optical densities in the typical range
of 1–1.5.
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5.4 Noise and Scattering
Until now, we have only considered the effects of the x-ray source and the
composition of the object. We have implicitly assumed that the intensity of the
x-ray beam at the detector plane is faithfully reproduced by the detector. In
reality, of course, the detector does not faithfully reproduce the incident intensity
distribution. Furthermore, x-rays arrive in discrete packets of energy (quanta or
photons, as discussed in Section 4.3.2). The discrete nature of their arrival can
lead to fluctuations in the image. In the following sections, we discuss some of
the additional factors introduced by x-ray physics and the image recorder.

5.4.1 Signal-to-Noise Ratio

Assuming unity magnification and infinitesimal source size, a rectangular object,
like that depicted in Figure 5.17, will cast a rectangular shadow on the detector
with dimensions equal to the object dimensions. A 1-D slice through the
intensities on the detector will look like a rect function, as defined by (2.19)
and shown in Figure 5.23. Let Ib be the background intensity and It be the
object (target) intensity on the detector plane, with It > Ib in this example. As
discussed in Section 3.2, the local contrast of this object is given by

C = It − Ib

Ib
. (5.33)

Because the x-rays arrive in discrete quanta (photons), there will be random
fluctuations in the number of photons arriving in each small area of the detector,
leading to noise, as discussed in Section 3.4. This effect is called quantum
mottle, and it is responsible for the imprecision of detector measurements of
x-ray intensity.

We can quantify the effect of noise on image formation using the concept
of SNR, as presented in Section 3.5. The higher the SNR, the less evident will
be the granularity in the image resulting from this quantum effect. In this
scenario, the ‘‘signal’’ is It − Ib, the difference between the target intensity and
the background intensity. The noise is caused by quantum-related fluctuations
in the background, and it can be characterized by a standard deviation σb.
Therefore, the basic SNR in this scenario is given by

SNR = It − Ib

σb
= CIb

σb
. (5.34)

Figure 5.23
Detector intensities from
a rectangular object.
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Suppose that all photons arriving at the detector have the same energy, hν,
which might be called the effective energy in the actual case of a polyenergetic
x-ray beam (see Example 4.4). In this case [combining (4.14) and (4.17)], the
intensity is related to the number of photons by

I = Nhν

A�t
, (5.35)

where A is a small area on the detector—for example, a pixel—and �t is the
duration of the x-ray burst. The number of photons N is a Poisson random
variable, and in the background, we can denote the average number of photons
per burst per area A as Nb. Then, the average background intensity is given by

Ib = Nbhν

A�t
. (5.36)

Also, the variance of the number of photons per burst per area A in the
background is given by

σ 2
b = Nb

(
hν

A�t

)2

. (5.37)

From (5.34), (5.35), (5.36), and (5.37), the local SNR is given by

SNR = C
√

Nb . (5.38)

Equation (5.38) reveals a fundamental tradeoff in x-ray imaging. In order to
improve the visibility of a particular structure in a radiograph, it is necessary to
either increase the contrast of the structure or to increase the number of photons
used in the visualization or analysis (or both). The contrast of the structure
might be improved by changing the energy of the x-rays or by using a contrast
agent or dual-energy techniques. (See Problem 5.20.) The number of photons
might be increased by several methods: by increasing the filament current, the
duration of the x-ray pulse, or the energy of the x-rays (which would then
penetrate the body better), or by using larger area elements (pixels) or a more
efficient detector.

Recall that the x-ray tube provides a spectrum of x-ray energies ranging from
low energies to the maximum energy determined by the peak kilovoltage applied
to the x-ray tube anode. By changing the kVp, we modify the x-ray energy.
Contrast, SNR, and patient radiation exposure (dose) are markedly affected by
changes in the kVp. For example, at low kVp and therefore low x-ray energies,
image contrast is high because the difference between the attenuation of different
body tissues increases as energy decreases. However, the body is less transparent
to x-rays at lower energies, so that fewer x-ray photons penetrate the body.
Hence, although C is high, N is low, and it turns out that SNR is low. Because
the body is highly absorbent to these low energy x-ray photons, the patient
radiation dose is high.

At high energies, on the other hand, contrast is low, as the attenuation
coefficients for different types of body tissues become similar. While the body is
highly transparent at high energies, the number of x-ray photons per Roentgen
decreases, and therefore for a given radiation exposure, the SNR will be low
at very high energies. Between high and low x-ray energies, the SNR achieves a
maximum at a point where there is reasonably good tissue contrast, the body is
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still relatively transparent to x-rays, and the number of photons per Roentgen
is high.

We can express the SNR in more detail by adding several additional
concepts. Since we indicated above that SNR is proportional to the number of
photons per unit area of detector, if we increase the unit area we also increase
the number of photons. Therefore, a detailed expression for SNR is given by

SNR = C
√

�ARtη , (5.39)

where � is the number of photons per Roentgen per cm2, A is the unit area,
R is the body’s radiation exposure in Roentgens, t is the fraction of photons
transmitted through the body, and η is the detector efficiency.

EXAMPLE 5.5
Consider the following parameters, which are from a typical chest x-ray:

� = 637 × 106 photons R−1 cm−2

R = 50 mR

t = 0.05

η = 0.25 (25% efficiency)

A = 1 mm2

Question What is the SNR of a lesion having 10% contrast, that is, C = 0.1?

Answer Using (5.39), we compute that SNR = 16 dB.

5.4.2 Quantum Efficiency and Detective Quantum Efficiency

In projection radiography, x-rays that are not stopped by the body should
be detected. Ideally, all photons incident upon a detector would be detected
and characterized by their location, energy, and time-of-arrival. However, no
detector can achieve these ideals. Instead, detector designs must emphasize
certain performance measures at the expense of others, and these tradeoffs
influence the quality of the measured radiographs. In this section, we develop
the concept of detective quantum efficiency (DQE), which represents one way
to characterize the performance of a detector that has a direct relation to the
SNR of the images it produces.

Quantum Efficiency Ideally, all photons incident upon a detector should be
detected. What does this really mean? In order to be ‘‘detected,’’ an incident
photon must interact with the detector—for example, it must be stopped by a
photoelectric interaction—and that interaction must produce some measurable
output—for example, a flash of light, a collection of ionized atoms, or an
electrical current. Quantum efficiency (QE) is the probability that a single
photon incident upon the detector will be detected; it is a basic property of any
x-ray detector.

A detector with a higher QE does not necessarily mean that the detector
or the image it produces is better, however. Consider two detectors having the



172 Chapter 5 Projection Radiography

same thickness and linear attenuation coefficients. They are capable of stopping
the same fraction of incident photons; their basic ‘‘stopping power’’ is the same.
Suppose that the output of a detected event is highly predictable in the first
detector and highly variable in the second. We intuitively understand that the
first detector is better. In order to more accurately characterize the quality of a
detector, we must account for these variations in detector output given a single
event. That is the goal of the parameter DQE.

Detective Quantum Efficiency To better characterize detector performance,
detective quantum efficiency (DQE) considers the transformation of SNR from
a detector’s input to its output. In this way, DQE moves away from simply
counting photons as in QE. The detective quantum efficiency is defined as

DQE =
(

SNRout

SNRin

)2

, (5.40)

where SNRin is the intrinsic SNR of the incident radiation and SNRout is the
SNR of the measured quantity—for example, flash of light, detector voltage,
film density, etc. DQE can be viewed as a measure of the degradation in the SNR
due to the detection process. It can also be viewed as the fraction of photons
that are detected ‘‘correctly.’’ In general DQE ≤ QE ≤ 1.

EXAMPLE 5.6
Consider a hypothetical detector having QE = 0.5 and the ability to perfectly localize
every photon that is stopped by the detector.

Question What is the DQE of this detector?

Answer Suppose a photon burst with an average of N is incident upon the detector.
The SNR of the input is just the intrinsic SNR of the photon burst, which is given by

SNRin =
√

N .

Since QE = 0.5, we know that 0.5 × N photons (on average) are stopped by the detector.
These photons are perfectly localized, meaning that the detector produces an accurate
count of the number and position of all detected photons no matter what pixel resolution
is desired. Therefore, the output SNR is

SNRout =
√

0.5N ,

and the DQE is

DQE =
(

SNRout

SNRin

)2

=
(√

0.5N√
N

)2

= 0.5 .

In this case, DQE = QE, which occurs because of the hypothetical perfect localization of
all detected photons.
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EXAMPLE 5.7
Suppose that an x-ray tube is set up to fire n 10,000-photon bursts at a detector and the
detector’s output x is recorded as xi, i = 1, . . . , n. Suppose that the mean and variance of
{xi} is found to be x = 8, 000 and σ 2

x = 40, 000, respectively.

Question What is the DQE of this detector?

Answer Think of x = 8, 000 as an estimate of the average number of photons in the
output of the detector. If the detector were simply counting photons, then the variance
should also be 8,000, since photon count is a Poisson random variable. Yet, the measured
variance is 40,000, five times the Poisson variance. This is conclusive evidence that there
is variation in the detector’s response to detected photons. The SNR of the input is simply
the intrinsic SNR of the photon burst,

SNRin = 10,000√
10,000

= 100 .

The SNR of the output is

SNRout = 8,000√
40,000

= 40 .

Therefore, the DQE for this detector is

DQE =
(

40
100

)2

= 0.16 .

Only about 16 percent of the incident photons are detected ‘‘correctly.’’

5.4.3 Compton Scattering

Earlier, we noted that Compton scattering degrades image quality. The reason
for this is that Compton photons are deflected from their ideal straight-line
path, and some are detected in locations away from the correct, straight-line
location. This produces two unwanted results: a decrease in image contrast and
a decrease in SNR.

Effect on Image Contrast Compton scatter has an negative effect on image
contrast. Consider a target with local contrast [see (3.12)] given by

C = It − Ib

Ib
.

Compton scatter adds a constant intensity Is to both target and background
intensity, yielding a new contrast of

C′ = (It + Is) − (Ib + Is)
Ib + Is

= C
Ib

Ib + Is

= C
1 + Is/Ib

. (5.41)
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Therefore, the effect of scatter is to reduce contrast by the factor 1/(1 + Is/Ib).
The ratio Is/Ib is called scatter-to-primary ratio; clearly, it should be kept as
small as possible in order to preserve contrast.

Signal-to-Noise Ratio with Scatter The derivation of SNR in the presence of
Compton scattering follows the Compton-free derivation very closely:

SNR′ = It − Ib

σb

= C
Ib

σb

= C
Nb√

Nb + Ns

= C
√

Nb√
1 + Ns/Nb

. (5.42)

Here, the symbol Ns stands for the number of Compton scattered photons per
burst per area A on the detector, and the symbol C is the underlying contrast
(not the Compton scatter-reduced contrast).

Equation (5.42) shows the reduction of SNR due to Compton scattering.
The SNR with Compton scattering is related to the SNR without Compton
scattering by

SNR′ = SNR
1√

1 + Is/Ib

(5.43)

Thus, in addition to the loss in contrast, there is an additional loss of
1/
√

1 + Is/Ib in SNR due to the effects of Compton scattering.

EXAMPLE 5.8
Suppose 20 percent of the incident x-ray photons have been scattered in a certain material
before they arrive at detectors.

Question What is the scatter-to-primary ratio? By what factor is the SNR degraded?

Answer The x-ray photons that contribute to the background intensity are those that
hit the detectors without Compton scattering. The number of these photons is 0.8N,
where N is the number of incident x-ray photons. The number of scattered photons
is 0.2N. Because the intensity of the image is proportional to the number of photons
detected, we have

Ib ∝ 0.8N, Is ∝ 0.2N .

The scatter-to-primary ratio is

Is

Ib
= 0.2N

0.8N
= 1

4
.

From (5.42), we can see that the loss of SNR is 1 − 1/
√

1 + Is/Ib = 0.11. So the Compton
scattering introduces 11 percent loss of SNR.
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5.5 Summary and Key Concepts
Projection radiography is the oldest and most fundamental medical imaging
modality. This modality uses x-ray tubes and either film or digital detectors
to record images of the ‘‘shadow’’ created by body tissues. In this chapter, we
presented the following key concepts that you should now understand:

1. Projection radiography produces radiographs, which are 2-D projections of
3-D objects.

2. A projection radiography system consists of an x-ray tube, devices for beam
filtration and restriction, compensation filters, grids, and a film-screen or
digital detector.

3. The basic imaging equation describes the energy- and material-dependent
attenuation of the x-ray beam produced by the system as it passes through
the patient.

4. The basic imaging equation must be modified by several geometric effects,
including the inverse square law, obliquity, beam divergence, anode heel
effect, path length, and depth-dependent magnification.

5. The film-screen detector produces an optical image on film; the degree of film
blackening—the optical density—depends on film exposure in a nonlinear
way characterized by the H&D curve.

6. Digital detectors convert x-rays by direct or indirect means to electronic
signals that can be read directly into a computer and viewed on a computer
display.

7. Noise arising from the random nature of x-ray production and transmission
reduces an image’s SNR, and thus the detective quantum efficiency of the
system.

8. Acceptance of Compton scattered photons reduces both image contrast and
SNR.

Further Reading

Bushberg, J.T., Seibert, J.A., Leidholdt, E.M., and
Boone, J.M. The Essential Physics of Medical
Imaging, 3rd ed. Philadelphia, PA: Lippincott
Williams and Wilkins, 2012.

Carlton, R.R. and Adler, A.M. Principles of Radio-
graphic Imaging: An Art and a Science, 5th ed.
Clifton Park, NY: Delmar Cengage Learning,
2012.

Johns, E.J. and Cunningham, J.R. The Physics of
Radiology, 4th ed. Springfield, IL: Charles C
Thomas Publisher, 1983.

Macovski, A. Medical Imaging Systems, Englewood
Cliffs, NJ: Prentice Hall, 1983.

Webster, J.G. Medical Instrumentation: Applica-
tion and Design, 4th ed. New York, NY: Wiley,
2009.

Wolbarst, A.B. Physics of Radiology, 2nd ed. Nor-
walk, CT: Appleton and Lange, 2005.



176 Chapter 5 Projection Radiography

Problems
Instrumentation

5.1 Examine the projection radiography system in Figure 5.13. Is this system
linear? Is it shift invariant?

5.2 (a) What determines the highest energy of x-ray photons emitted from
an x-ray tube? What determines the energy spectrum of the x-ray
photons?

(b) In radiographic imaging, why are low-energy photons undesired?
What measures can be taken to reduce the number of the low-energy
photons entering the human body?

(c) What is beam hardening? What are the causes of beam hardening?
5.3 We are designing an x-ray tube and want to use a lighter filter. Suppose we

have, in addition to copper, a new material with a density of 5,000 kg/m3

and a mass attenuation coefficient of 0.08 m2/kg at 80 kVp. In order
to satisfy the NCRP recommendation of 2.5 mm Al/Eq at 80kVp, what
should we use, copper or the new material? Explain.

5.4 (a) Why are iodine and barium commonly used as contrast agents?
(b) Explain with a diagram why an airgap can be used to reject scattered

photons. What is the main problem with airgaps?
5.5 (a) Why is Compton scattering bad for the images produced using projec-

tion radiography?
(b) For a film with a given H&D curve, why is it better to have a range of

x-ray exposures that are in the linear region of the curve?
(c) Why do we have to filter x-rays from the x-ray source?
(d) Lead strips can be used (e.g., in a grid) to reduce scatter in radiography

systems. If the height of the grid is eight times its width, what is the
maximum scatter angle of the photon after which the photon cannot
pass through the grid? (Assume an orientation that is orthogonal to
the grid lines.)

Image Formation

5.6 Suppose a chest x-ray imaging system with a perfect point source can
provide images with acceptable quality when the intensity variation is
smaller than 5% when imaging a slab of material with uniform attenuation
coefficient. Suppose the source-to-detector distance is 2 m, what is the
maximal size of the image?

5.7 (a) Derive a simple expression for the magnification of a thin object on a
projection radiograph. Assume x-ray source-to-object and source-to-
detector distances.

(b) In practice, what simple strategies can an x-ray technician use to reduce
the magnification and distortion effects of the projection radiography
system?

5.8 You are designing a digital x-ray detector panel with an array of discrete
detectors. You decide that you are able to compensate for the beam
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divergence effect by weighting the outputs of your detectors appropriately.
This way, the effective beam intensity should be uniform throughout the
entire image.

(a) Assume your detectors are very small and very close together and that
the detector panel is a distance d away from the x-ray source. Find an
appropriate weighting (as a function of rd) that will compensate for
the beam divergence variation.

(b) Do these adjustments improve the image quality? Explain.

5.9 Consider the radiographic image of the prism, as developed in
Example 5.4.

(a) Determine an expression for the intensity image Id(x, y) of the prism.
(b) Plot the intensity profile along the line y = 0 on the detector plane.
(c) Write an expression for the image on the developed radiographic film

of the prism.

5.10 Derive (5.28) from first principles.

Image Quality

5.11 Assume that each photon incident upon an x-ray image intensifier is
detected with probability (QE) p, independently from other photons. If the
number N(t) of photons that arrive at the detector within the time interval
[0, t) follows a Poisson distribution with mean μt, find the probability
mass function (PMF) of the number D(t) of photons detected in the time
interval [0, t).

5.12 Consider two 1-D functions

h1(x) = e−x2/5 and h1(x) = e−x2/10.

(a) Suppose h1(x) is the PSF of the extended source in a projection
radiography system for an object at range z = 3d/4, where d is the
source-to-detector distance. What is the PSF of the extended source as
a function of z?

(b) In this same projection radiography system, the intensifier screen
causes a blurring that can be modeled as h2(x). Find the MTF of the
overall blurring as a function of source magnification, m.

(c) What is the FWHM of the system as a function of m?

5.13 We examine the effect on the SNR of an increase in the recorded scatter
fraction from 0.35 to 0.8. Suppose that a 1 mm-thick bone presents a
scatter-free subject contrast of 0.08, and suppose that 1,000 photons/mm2

were collected. What would happen if the detector absorption efficiency
were halved?

5.14 Show that the quantum efficiency QE of a detector is at least as large as
its DQE; that is,

DQE ≤ QE .
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5.15 Suppose that an x-ray tube fires, on average, 10,000 photons per second
at an x-ray image intensifier. If the detector provides an average count
of 10,000 photons per second, calculate and plot the variance of the
detector’s output as a function of DQE. What DQE value is required for
an output variance of 2,000?

5.16 Calculate the DQE as a function of (u, v) for a nonideal detector with PSF

h(x, y) = 1
2π

e−(x2+y2)/2 ,

by assuming that the input to the detector is white Poisson noise.
5.17 Figure P5.1 shows a projection radiograph of an off-axis, hollow, plastic

cylinder. Make a simple sketch of the cylinder’s position and orientation
relative to the source and detector, and explain the distortion in the image.

Figure P5.1
A projection radiograph
of a plastic cylinder.
(From A. Macovski,
Medical Imaging Systems,
1983.)

5.18 Consider the projection radiography system depicted in Figure P5.2.
Express the magnification ratio m12 = s1/s2 of the projections of the two
objects O1 and O2 in terms of s, φ, d, d1, and d2. If s = 5 cm, φ = 45o,
d = 120 cm, d1 = 40 cm, and d2 = 80 cm, what is the value of m12?

Figure P5.2
An illustration of
depth-dependent
magnification.

5.19 Consider the x-ray projection radiography system shown in Figure P5.3.
The linear attenuation coefficients are μA and μB for A and B, respectively.
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The detector is large enough to image object A and B. Suppose the
geometric effects can be ignored and the x-rays are parallel and horizontal
and are wide enough to image the objects.

(a) Assume the intensity of the incoming x-ray beam is Ip. Give the
intensity distribution I(d, y) on the detector for |y| ≤ a.

(b) What is the local contrast of object B on the detector? (Use the
intensity at y = 0 as the target intensity.)

(c) Under what condition is the local contrast of object B positive?

Now let us consider the geometric effects. A point x-ray source lies at the
origin (0, 0).

(d) Consider the inverse square law, obliquity, and path length. Ignore
scattering. Suppose without object A and B, at the center of the
detector (on the x-axis), the intensity is I0. Give the intensity at
(d, r√

z2+2rz
d) on the detector.

(e) For a point on the detector (d, y0), what point y on the centerline (i.e.,
x = z + r) of object A and B, contributes to the intensity I(d, y0)?

Figure P5.3
System geometry for
Problem 5.19.

y

x

z

dX- ray source

A

A a

a

r
B

Applications

5.20 Interesting properties of tissues can sometimes be revealed by imaging them
at two x-ray energies. Suppose you are going to use your conventional
chest x-ray setup to make two films, one where the highest x-ray energies
are at 30 keV and the other where the highest energies are at 100 keV.

(a) In order to make these two images, what physical parameter will you
change and to what values will you set it?

(b) Assuming nothing else changes, which film would you expect to be
more exposed than the other? Explain.

(c) At which energy is Compton scattering more of a problem? Describe
how it will affect that image.

(d) At which energy is the absorbed dose to the patient higher?
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(e) Suppose you took the two exposed films and subtracted their optical
densities, creating a third image: D(x, y) = D(x, y; Eh) − D(x, y; El).
Describe in mathematical terms what D(x, y) measures.

5.21 Suppose you have a 20-cm-thick slab of material. You measure the fraction
t(E) of x-rays that get through this material (on average) over the energy
band 50–150 keV, and discover that it is well modeled by the relation

log10 t(E) = − (E[keV] − 150)2

5,000
.

(a) Find an expression for the linear attenuation coefficient of this
material as a function of x-ray energy E.

Suppose a 5-cm cube of a second material replaced a 5-cm cube of original
material from the center of the slab and suppose this second material has
linear attenuation coefficient of 0.15 cm−2 at 75 keV.

(b) What is the intrinsic contrast of this new material relative to the
slab at 75 keV? (Intrinsic contrast is defined by the linear attenuation
coefficients alone, as if you could image them directly.)

(c) What is the contrast of this new material if imaged through a standard
radiographic system at 75 keV? (Ignore photon noise, detector
efficiency, beam divergence, scatter, and magnification effects.)

5.22 A hypothetical x-ray tube has been designed. An x-ray burst from this
tube yields exactly 104 x-ray photons at energy E1 = 60 keV and 105

x-ray photons at energy E2 = 65 keV.

(a) Draw the energy spectrum associated with this x-ray pulse. Explain
why the units associated with the numbers 104 and 105 in the
spectrum must be photons-keV.

In the following parts of this question, assume that the above x-ray tube
is used as a source in an imaging system to image a phantom, as shown
in Figure P5.4. In addition, make the following simplifying assumptions:
• Assume a parallel beam of x-rays that are uniformly distributed over

an extended source.
• Assume that the x-rays passing through the phantom undergo the

photoelectric effect only; that is, neglect the effect of Compton scatter.

Figure P5.4
A phantom being imaged
by an x-ray system. See
Problem 5.22.
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The phantom consists of three areas A1, A2, and A3, as labeled. The linear
attenuation coefficients μ1, μ2, μ3 (units of cm−1) of these three areas at
the energy levels present in the x-ray beam are given in the table below.
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TABLE P5.1

E1 E2

μ1 0.2 0.4
μ2 0.3 0.1
μ3 0.5 0.4

(b) Draw the total number of x-ray photons per cm that hit the detector
as a function of position x.

(c) Assume the x-ray intensity is proportional to the number of photons.
Calculate the contrast of the image observed at the detector as a func-
tion of position x assuming that A is the target and B is the background.

(d) Make a rough sketch of the profile of optical density as a function of
position x assuming x-ray film is used as the detector. Which part of
the film is more transparent?

5.23 An x-ray imaging system is set up as shown in Figure P5.5. All length
units in the figure and in equations below are in cm. The overall system
response can be modeled as

Id(xd, yd) = Ks(xd/m, yd/m) ∗ t(xd/M, yd/M) ,

where xd, yd denote coordinates in the detector plane and m and M
are the source and object magnification respectively. K is a constant,
s(x, y) denotes the x-ray source distribution, and t(x, y) is the spatial
transmission function of the object (whose thickness is ignored). Assume
the x-ray source can be modeled as a 1-D Gaussian distribution as

s(x, y) = S0e−x2
δ(y) ,

where S0 is a constant.

Figure P5.5
Diagram for
Problem 5.23.
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(a) Compute the object magnification M.
(b) Compute the source magnification m.

An ideal line phantom is to be imaged by the system, whose transmission
function is given by

t(x, y) = δ(x − w
2

) + δ(x + w
2

) .
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(c) Determine the image of the phantom on the detector plane.
(d) Determine the minimal value of w such that the images of the two

lines on the detector plane can be distinguished from each other.

5.24 A slab of soft tissue with one blood vessel running in the middle is imaged
using an x-ray imaging system, as shown in Figure P5.6. For ease of
computation, assume the tissue and the vessel both have square-shaped
cross sections; the dimensions are shown in the figure. Assume that the
x-ray source produces Ni = 4 × 106 photons at either 15 keV or 40 keV,
and the photons are uniformly shed upon the side of the tissue.

Figure P5.6
Figure for Problem 5.24.

0.5 cm

2.0 cm

NtNi

The linear attenuation coefficients μ of the soft tissue, blood, and a radio-
graphic contrast agent at two energy levels are given in the table below.

Linear Attenuation Coefficient (cm−1)

Energy(keV) Soft Tissue Blood Contrast Agent

15 4.0 3.0 5.0

40 0.4 0.2 20

Ignoring photon noise, detector efficiency, beam divergence, scattering,
path length, and magnification effects:

(a) Determine the total number of exiting photons at the two energy
levels respectively. At which energy level are more photons absorbed?

(b) Calculate the local contrast of the blood vessel (target) at each energy
level. At which energy level is the local contrast of the blood vessel
better?

(c) Suppose the contrast agent whose linear attenuation coefficient is
given in the table were injected into the blood vessel. Would you
expect there to be much difference in the local contrast at 15 keV
after injection? How about at 40 keV? (No calculations are needed;
just use mathematical reasoning.)

(d) Explain why it is expected that the linear attenuation coefficient of
the contrast agent is much larger at 40 keV than at 15 keV?

5.25 An x-ray imaging system is shown in Figure P5.7 to image a bar phantom.
The detector is placed on the z = 0 plane. The bar phantom with two
dark bars is placed on the z = z0 plane, and the x-ray source is placed
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on the z = 3z0 plane. The two dark bars on the phantom have widths w
and are separated by a distance w. The x-ray source fires monochromatic
x-ray beams that are uniformly shed upon the phantom.

Figure P5.7
A medical imaging system
and a bar phantom. See
Problem 5.25.
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Suppose the dark bars on the phantom absorb 75% of the photons passing
through the phantom, and the white bars let all photons go through.
Ignore scattering, the inverse square law, obliquity, and image noise.

(a) Assume an ideal point source and ignore the thickness of the phantom.
Sketch the intensity profile on the detector as a function of position
x for y = 0. Assume the intensity is 1 at x = 0, y = 0. Carefully label
the axes.

(b) What is the contrast of the image on the detector? Assume the dark
bars are the targets.

(c) The image on the detector will be digitized. Suppose the film/screen
combination blurs the image by the following point spread function
prior to point sampling

h(x, y) = sinc(αx) sinc(βy), α > 0, β > 0 .

What are the largest sampling periods (in x and y directions) that will
give an aliasing-free sampling?

(d) Now assume the phantom is a slab of a certain thickness. The dark
bars attenuate the x-ray photons by the following linear attenuation
coefficient

μ(E) = ln
(

640 keV
E

)
cm−1, 100 keV ≤ E ≤ 160 keV ,

which is a function of energy, E. The x-ray source fires N photons at
E = 160 keV per unit area during a burst of a unit time. How thick is
the phantom such that the dark bars attenuate 75% of the photons?

5.26 Consider an x-ray imaging system using a film-screen detector. Due to
the limited dynamic range of film, an essentially constant x-ray intensity
is required for the film to be properly exposed. Assume for simplicity that
this means that a constant number of photons per unit area is incident on
the image detector.
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(a) Assuming all other factors are constant, if the x-ray tube kilovolts were
increased and the exposure time was appropriately adjusted to produce
an optimal film exposure, what would be the effect on SNR? Explain.

(b) Assuming the same conditions as in (a), what would be the effect on
the patient dose? Explain.

(c) For each of the following changes, indicate the effect on the subject
contrast using this notation: I=increase, D=decrease, N=no effect:

• Increase in patient thickness
• Reduction in kilovoltage
• Increase in detector efficiency
• Reduction in the x-ray field size
• Use of a high atomic number contrast media

(d) Under what conditions is an airgap (space between the patient and
the image detector) most effective in reducing the scatter fraction?

(e) What ultimately limits the contrast sensitivity of an x-ray imaging
system: geometric unsharpness, the display gamma, the image noise,
or the scatter fraction?

(f) The attenuation of a polychromatic x-ray spectrum can be approxi-
mately determined using its average photon energy. For a given tube,
the average photon energy is mainly determined by: the beam current,
the Fourier transform of the x-ray spectrum, the material in the beam
path, or the scatter fraction?

5.27 Consider the x-ray projection radiography system shown in Figure P5.8.
Relevant dimensions in the figure are L = 1 m, D = 4 m, w = 1 cm,
h = 3 cm, R = 0.1 cm, and Dtd = 10 cm.

Figure P5.8
An x-ray projection
radiography system to
image a tumor.
(Figure is not to scale.)
See Problem 5.27.

X-ray source

D
et

ec
to

r

T
is

su
e

Dtd

D

h/2

L/2

L/2

h/2

w

Tumor

R

R



Problems 185

A contrast agent is used to enhance the image of the tumor. Assume a
35 keV (monochromatic) x-ray source and linear attenuation coefficients
given in the table below.

Linear Attenuation Coefficient (cm−1)

Energy(keV) Tissue Tumor Tumor with contrast agent

35 1 0.75 10

(a) The K-shell energies of iodine and barium are 33.2 keV and 37.4 keV,
respectively. Assuming that either agent could be made into a
compound that would go to the tumor, what would be the best agent
to use and why?

(b) Let the local contrast of the tumor be defined as C = (It − Ib)/Ib,
where It is the intensity at the center of the tumor and Ib is the
intensity just outside the edge of the tumor. Neglecting Compton
scatter, find both the local contrast C1 of the tumor before contrast is
applied and the local contrast C2 of the tumor after contrast is applied.

In the next parts, assume that Compton scattering events are taking place
throughout the tissue and, for simplicity, assume that w ≈ 0.

(c) Make a sketch of the photon path that yields a photon hitting
the detector with the lowest possible energy. (Assume that only
single-scatter Compton events can occur.)

(d) Find the energy of the Compton scattered photon in part (c) (that has
the lowest possible energy to be detected given the assumed imaging
geometry).
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Computed
Tomography

6.1 Introduction
A tomogram is an image of a plane or slice within the body. A conventional
radiograph is 2-D, but it is not a tomogram because its data do not arise from
a single plane. X-ray computed tomography (CT) is extremely popular because
it generates images of slices of the body, thereby eliminating the artifacts of
overlaying structures that dominate conventional radiographs. A typical CT
scanner is shown in Figure 6.1. One way to think about the basic mechanism of
CT is to imagine taking a series of conventional chest x-rays, where the patient
is rotated slightly around an axis running from head to foot between each
exposure. Each developed film contains a 2-D projection of the 3-D body, but
because they are each exposed at a different angle, there is different information
in each one. In fact, each horizontal line within a film gives a 1-D projection of a
2-D axial cross section of the body at that angle. Thus, a collection of horizontal
lines, one from each film at the same height, contains information about only
one axial cross section. These projection data are then used to reconstruct
cross-sectional images—tomograms.

What can we say about the tissues in an axial cross section from a collection
of 1-D projections taken at different angles? Fortunately, we can say a great deal,
and this is the basic premise of CT. The transformation that takes 1-D projections
of a 2-D object over many angles is called the 2-D Radon transform, and it has
a mathematical inverse. That is, given a collection of projections we can, in the-
ory, reconstruct the axial cross section exactly. Practical implementation of the
inverse 2-D Radon transform is accomplished in every CT scanner in one fashion
or another. Therefore, after studying how a CT scanner acquires these projec-
tions (after all, taking a collection of chest x-rays is hardly practical), we will
study in detail the 2-D Radon transform and its theoretical and practical inverse.

The advent of x-ray CT in the mid-1960s and its development all the way
up to the present day has produced a profound change in the role of diagnostic
imaging in medicine. A wide variety of medical conditions is visible in CT images
that are not visible in conventional radiographs. Thus, diagnosis and monitoring

186
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Figure 6.1
A typical CT scanner.
(Courtesy of GE
Healthcare.)

of many diseases are possible through CT alone; this has reduced the amount
of exploratory surgery previously required for these diseases. As a measuring
device, the x-ray CT scanner has also come a long way since its origins. Now,
through standard calibration procedures, CT scanners measure CT numbers
in Hounsfield units, which are constant from scan-to-scan and across different
scanners. Therefore, quantitative analysis is possible and is in common practice
today.

Because of the growing importance of CT during the early years, manu-
facturers put considerable effort toward lowering both the scanning and image
reconstruction times. Accordingly, the time required to scan a patient and gener-
ate an image has dropped from several hours with the earliest clinical machines
to under 100 milliseconds for some current machines. Multiple cross sections
can now be collected rapidly using helical CT and multiple-row detector CT
(MDCT); hence, 3-D data sets are readily available. A very important area
of current research and development in both academic and industrial arenas
involves the display and analysis of 3-D CT data sets.

In this chapter, we present the fundamentals of x-ray CT imaging. Since
the properties of x-rays—their generation, detection, and interaction with the
human body—have been discussed in Chapter 5, the focus of this chapter is on
the various geometries of CT scanners and on a mathematical description of
the algorithms necessary to reconstruct images. The mathematical abstraction



188 Chapter 6 Computed Tomography

is necessary since it leads to the actual methods, implemented in software and
hardware, used in modern-day clinical scanners. As well, the same mathematics
and methods can be used in single photon emission computed tomography
(SPECT), positron emission tomography (PET), and magnetic resonance imag-
ing (MRI).

6.2 CT Instrumentation
The fundamental measurement required by a CT scanner is the measurement of
x-ray attenuation along a line between an x-ray source and an x-ray detector.
In order to reconstruct an image of a 2-D cross section, a collection of such
measurements are required along all lines within the cross section. Seven
generations of basic CT designs have been developed to obtain these fundamental
data. Roughly speaking, the seven generations were developed in sequence to
improve overall performance, mostly toward faster acquisition of both cross-
sectional and volumetric data. Although first- and second-generation scanners
are no longer used in medical imaging, it is still important to understand their
geometry. In particular, the parallel ray geometry of first-generation scanners is
used to explain the reconstruction formulas that underlie all CT scanners. As
we describe the CT generations, it may be helpful to refer to Table 6.1, which
compares various properties of CT scanners across the generations.

6.2.1 CT Generations

First-generation (1G) scanners are no longer manufactured for medical imaging,
but their geometry is still used to explain the theoretical ideas underlying image
reconstruction. The geometry of a 1G scanner is shown in Figure 6.2. It consists
of a single source, collimated (meaning that its beam is restricted) to a thin line,
and a single detector that move in unison along a linear path tangent to a circle
that contains the patient. After making a linear scan, the source and detector
apparatus are rotated so that a linear scan at a different angle can be made, and so
on. The 1G geometry has the advantage that an arbitrary number of rays—that
is, paths between source and detector—can be measured within a given projec-
tion, and an arbitrary number of angular projections may be measured. It has
the further advantage that scattered radiation goes mostly undetected (because
it misses the detector), and therefore, the measured attenuation of the beam
is almost certainly due to tissues along the ray.

A second-generation (2G) scanner, as illustrated in Figure 6.3, has additional
detectors, forming a detector array, arranged along a line or a circle. As in the
1G scanner, the source and detector array move linearly in unison to cover
the field of view (FOV). However, unlike the 1G scanner, the source in a 2G
scanner is collimated as a fan beam so that energy is kept within the slice but
spread over the detector array. Therefore, while the source and central detector
scan the same projection as the 1-D projection, the additional detectors are
simultaneously obtaining additional projections from different angles.

With the 2G scanner geometry, we can make a larger rotation after each
linear scan and thereby complete a full scan in less time, making the 2G
scanner faster. Scattering effects must be considered, however, in the design of



TABLE 6.1
Comparison of CT Generations

Source Detector Source–Detector
Generation Source Collimation Detector Collimation Movement Advantages Disadvantages

1G Single x-ray
tube

Pencil beam Single None Move linearly
and rotate in
unison

Scattered energy
is undetected

Slow

2G Single x-ray
tube

Fan beam, not
enough to
cover FOV

Multiple Collimated
to source
direction

Move linearly
and rotate in
unison

Faster than 1G Lower efficiency
and larger noise
because of the
collimation in
detectors

3G Single x-ray
tube

Fan beam,
enough to
cover FOV

Many Collimated
to source
direction

Rotate in
synchrony

Faster than 2G,
continuous
rotation using a
slip ring

More expensive
than 2G, low
efficiency

4G Single x-ray
tube

Fan beam
covers the
FOV

Stationary ring
of detectors

Cannot
collimate
detectors

Detectors are
fixed, source
rotates

Higher efficiency
than 3G

High scattering
since detectors
are not
collimated

5G (EBCT) Many tungsten
anodes in single
large tube

Fan beam Stationary ring
of detectors

Cannot
collimate
detectors

No moving parts Extremely fast,
capable of
stop-action
imaging of
beating heart

High cost,
difficult to
calibrate

6G (Helical CT) 3G/4G 3G/4G 3G/4G 3G/4G 3G/4G plus
linear patient
table motion

Fast 3D images A bit more
expensive

7G
(Multiple-row
detector CT)

Single x-ray
tube

Cone beam Multiple arrays
of detectors

Collimated
to source
direction

3G/4G/6G
motion

Fast 3D images Expensive

1
8
9
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Figure 6.2
The geometry of a
first-generation (1G)
CT scanner.

Figure 6.3
The geometry of a
second-generation (2G)
CT scanner.

a 2G scanner, since radiation scattered from one ray could end up in another
detector. Because of this phenomenon, the detectors in a 2G scanner are usually
collimated so that they can receive radiation only from the correct direction.
Collimation on detection, however, reduces efficiency and increases noise for a
given dose. Hence, for a given dose and with an identical number of projections
and measurements per projection, the 1G scanner will produce a better image.
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Still, the payoff in scan time is so great that slightly increasing the dose to
counter the deleterious effects from collimation is worth it.

EXAMPLE 6.1
Consider a 1G or 2G scanner whose source–detector apparatus can move linearly at
a speed of 1.0 m/s and that the FOV has a diameter of 0.5 m. Suppose further that
360 projections over 180◦ are required and that it takes 0.5 s for the source–detector
apparatus to rotate one angular increment, regardless of the angle.

Question What is the scan time for a 1G scanner? What is the scan time for a 2G
scanner having nine detectors spaced 0.5◦ apart?

Answer It takes 0.5/1.0 = 0.5 s to measure one projection. So the time used for
making measurements is 360 × 0.5 s = 180 s, and 360 rotations are needed, which take
360 × 0.5 s = 180 s. So the total scan time is 180 + 180 = 360 s, or 6 minutes.

For the 2G scanner, nine projections are acquired simultaneously. (The required angular
increment is 180◦/360 = 0.5◦, which agrees with the detector separation.) Therefore,
only 360/9 = 40 rotations are required, which takes 40 × 0.5 s = 20 s. Ignoring the
small amount of overscanning required to cover the fan angle itself, the time for each
linear scan is still 0.5 s. Therefore, the total scan time is 40 × 0.5 + 20 = 40 s.

The geometry of a third-generation (3G) scanner, as shown in Figure 6.4,
has a fan-beam that covers the image region with the source held in a single
position. Therefore, the source and detector array need not perform a linear
scan; instead they simply rotate in synchrony. To obtain a sufficient number of
samples per (fan-beam) projection, there must be a large number of detectors
and this pushes the cost of a 3G scanner beyond that of a 2G scanner. The simple

Figure 6.4
The geometry of a
third-generation (3G)
CT scanner.
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Figure 6.5
The geometry of a
fourth-generation (4G)
CT scanner.

rotational motion and highly parallel detection capability, however, allows for
a dramatic decrease in scan time. A typical scanner acquires 1,000 projections
with a fan-beam angle of 30–60 degrees incident upon 500–700 detectors and
does this in 1–20 seconds. As in 2G systems, the detectors of a 3G system
are collimated to reduce scattering artifacts, so there is some loss of detector
collection efficiency. Furthermore, since the detectors must be very small, they
cannot be as efficient as those in 1G and 2G systems. Therefore, once again, to
obtain the same image quality with a 3G scanner as that obtainable in 1G and
2G systems, the dose must be slightly greater.

A fourth-generation (4G) scanner, as shown in Figure 6.5, has a single
rotating source with a larger ring of stationary detectors. A variation on this
theme has the source outside the detectors with slight gaps between the detectors
through which the x-rays can be fired. Collimation cannot be used in this
geometry since a detector must receive energy from a source that moves through
many positions. Because the detectors are not collimated and because they can
be physically large since they lie on a large ring, the detection efficiency of a
4G scanner is higher than that of a 3G scanner. However, because the detectors
cannot be collimated, they are also highly susceptible to scattering. This factor
is so significant that the image quality in 4G systems is only comparable to that
of 3G systems, not better.

One major design feature shared by the first four generations of CT scanners
is the presence of only one x-ray tube. This feature is primarily due to the fact that
x-ray tubes are expensive and bulky and that they must be constantly calibrated.
The need to rotate a bulky object—x-ray tube and/or detectors—limits the
overall imaging speed of the scanner. Fifth-generation (5G) scanners are designed
to solve this problem. Fifth-generation CT scanners, also known as electron beam
computed tomography (EBCT) scanners, are commercially available at this time
but are not in widespread clinical use because of their high cost. EBCT uses
a flying electron beam, steered electromagnetically, to hit one of four tungsten
anode strips that encircle the patient. X-rays are generated when the electron
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beam strikes the tungsten anode; the resultant radiation is collimated into a fan-
beam, which passes through the patient and is detected on the other side by a
stationary ring of detectors, as in 4G CT systems. Since the anodes and detectors
are stationary, no moving parts are required, and this allows a full set of fan-beam
projection data to be acquired in about 50 milliseconds. EBCT is an expensive
design, but because of the extremely small scan-time it is the only commercially
available CT method that can capture stop-action images of a beating heart
without electrocardiographic (ECG) gating.

Sometimes considered the sixth-generation (6G) scanner, the helical CT
was developed in the late 1980s to address the need for rapid volumetric data
acquisition. Today, most of the CT scanners in the United States are capable of
helical CT. The reason is simple: With helical CT, a full 60-cm torso scan can
be obtained in about 30 seconds, a full 24-cm lung study in 12 seconds, and a
detailed 15-cm angiography study in 30 seconds. With these kinds of speeds,
motion artifacts can be reduced or eliminated (using breath-holds), and critically
ill patients can be scanned quickly. For entry-level scanners, the equipment may
cost about US$500,000 for a helical CT unit versus about US$350,000 for
a conventional CT unit. A top-of-the-line helical CT unit may reach the US
$1 million mark.

A helical CT scanner consists of a conventional arrangement of the x-ray
source and detectors (as in 3G and 4G systems) which can continuously rotate.
While the tube is rotating and acquiring projection data, the patient table is
set into motion, sliding the patient through the source–detector plane. It is
easy to see that with this geometry and movement, the position of the source
carves out a helix with respect to the patient. Continuous rotation of the
large mass comprising the x-ray source and detectors requires what is called
slip ring technology in order to communicate with the controlling stationary
hardware. In particular, power is provided using rings and brushes, while data
are passed using optical links. Rotation periods are typically 0.3 to 0.5 seconds
per revolution in modern scanners.

A seventh-generation (7G) scanner has emerged with the advent of multiple-
row detector CT (MDCT) scanners. In these scanners, a ‘‘thick’’ fan-beam is
used, and multiple (axial) parallel rows of detectors are used to collect the x-rays
within this thick fan. (Some scanners have fan beams that are so thick they can
be thought of as cone beams.) Essentially, multiple (up to 320) 1-D projections
are collected at the same time using this geometry. This leads to more economical
use of the x-ray tube since less of the generated beam must be absorbed by lead
at the source. Also, provided that the x-ray tube and detectors are far enough
apart, the simultaneous data that are collected from the parallel rows of detectors
correspond approximately to parallel planes. This means that a ‘‘slab’’ of cross-
sectional images can be imaged simultaneously. When a multiple detector array
is combined with a helical scanner, the pitch of the helix can be larger, and full
3-D scans can be even faster.

The advent of helical and MDCT has made the requirement for new develop-
ments in data processing even more critical. In particular, while a conventional
CT might have reconstructed 40 slices over a region of interest, with helical CT
and MDCT a clinician might acquire 80–120 slices over the same region in less
time. Some extensive studies may comprise 500 slices—for example, a 50 cm
scan at 1 mm intervals might be used for imaging the colon. The burden is now
to medically interpret or ‘‘read’’ these slices, which takes time. A study was
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conducted in which helical CT images were used to detect liver lesions. In this
study, it was found that reviewers could detect 86–92% of the lesions using all
the data, but only 82–85% of the lesions using every other slice. Most clinicians
are looking to image processing and computer vision techniques—for example,
virtual reality—to reduce the amount of time it takes to read this enormous
volume of data. At the same time, it is believed that considerably improved
diagnostic accuracy can be achieved.

6.2.2 X-Ray Source and Collimation

Most commercial medical CT scanners use just one x-ray source due to the initial
cost and maintenance costs associated with x-ray tubes. In most respects, the
x-ray tubes in CT scanners are just like those in projection radiography systems.
All use the rotating anode design and are oil-cooled to reduce heat damage to
the anode. Some CT scanners operate in pulse mode but most continuously
excite the x-ray tube during data acquisition. In most cases, cool-down periods
are required between scans to avoid heat damage to the x-ray tube. Even so,
with 20 to 30 exposures per examination and 20–30 examinations per day, the
x-ray tubes in CT scanners often wear out in less than one year. Maintaining
the x-ray tubes through regular calibration and replacing them quite often adds
considerably to the cost of operating a CT scanner.

The x-rays generated by a CT x-ray tube require collimation and filtration
that is somewhat different than that in projection radiography systems. For one,
CT typically requires a fan-beam geometry rather than the cone-beam geometry
used in projection radiography. Collimation into a fan, typically between 30
and 60 degrees in fan angle, is accomplished using two pieces of lead that form
a slit between them. This collimator is placed as close to the patient as possible,
just outside a protective plexiglass tube so that the geometry of the fan has the
most constant thickness possible through the patient. A motor controls how
wide the slit is so that the fan thickness (or height)—typically 1–10 mm—can
be selected by the operator. In MDCT systems, the thickness of the fan is
typically larger than in single-slice systems in order to cover the width (perhaps
4–16 cm) of the multiple detector rows, but otherwise the principle is the same.
The x-rays pass through a mirror, which can be optically illuminated from
below in order to create lines on the patient showing the position and thickness
of the x-ray collimation to be used during the scan.

As we will see in Section 6.3, CT image formation requires the x-ray source
to be approximated as a monoenergetic source. In order to make the actual
CT x-ray source more monoenergetic in practice, more filtering is employed
than is typical in projection radiography systems. Generally, copper followed
by aluminum is used to narrow the energy spectrum (‘‘harden the beam’’) of the
x-rays entering the patient. Such filtration was discussed in Section 5.2.2.

6.2.3 Dual-Energy CT

Dual-energy imaging is a way to gather more information about tissue char-
acteristics since the linear attenuation of all tissues is a function of energy.
This strategy is used in dual-energy x-ray absorptiometry projection scanning to
determine bone mineral density in the diagnosis of osteoporosis and is now being
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introduced in CT for a variety of clinical applications. In the past, dual-energy
CT data would be acquired by either scanning the subject twice using different
kVp’s—for example, 80 kVp and 140 kVp—or by using a pulsed mode that
excites the tube at alternating kVp’s during a single scan. Despite the clinical
utility, these approaches were not very popular due to the increased scan time
and other technical challenges.

With the recent introduction of dual source CT (i.e., scanners with two
x-ray tubes), the situation has changed, and many scanners that are capable of
both rapid scanning at a single-energy and simultaneous dual-energy acquisition
are being introduced into routine clinical use. Since two separate images are
acquired, clinicians are able to study the images separately as in a dual-modality
study like PET/CT or combine them into single image or collection of images that
reveal different underlying tissue properties based on their linear attenuation
coefficients at the two effective energies.

6.2.4 CT Detectors

Most modern scanners use solid-state detectors, as shown in Figure 6.6(a). These
detectors contain a scintillation crystal in the first stage, typically a cadmium
tungstate, sodium iodide, bismuth germanate, yttrium-based, or cesium iodide
crystal. X-rays interact with the crystal mainly by photoelectric effect, producing
photoelectrons, similar to what happens to the phosphor in an intensifying
screen. These electrons are excited and emit visible light when they spontaneously
de-excite.

This scintillation process results in a burst of light. The light is then converted
to electric current using a solid-state photodiode that is attached tightly to the
scintillator. (Some 4G and 5G scanners use photomultiplier tubes to convert
light to electricity; see Section 8.2.3 for a description of such tubes.) For 1G,
2G, and 3G systems, which use line collimators in front of the detectors, the
efficiency of each detector may be increased by using thick crystals. However,
thinner crystals must be used in 4G systems to allow the detectors to detect off-
axis incident photons (as is required by the scanner geometry); unfortunately,
thinner crystals have lower efficiency.

In 3G scanners, very small and highly directional detectors are required.
Either solid-state detectors, as described above, or xenon gas detectors, as
shown in Figure 6.6(b), can be designed to satisfy these requirements. Xenon
gas detectors use compressed xenon gas in long, thin tubes, which when ionized
generate a current between an anode and cathode (maintained at a high potential
difference). These detectors are typically less efficient than solid-state detectors,

Figure 6.6
(a) Solid-state detectors,
(b) xenon gas detectors,
and (c) multiple
(solid-state) detector
array.
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but they are highly directional, and therefore appropriate for the geometry of 3G
scanners. Solid-state detectors must be accompanied by external collimation in
order to provide necessary directivity (i.e., scatter rejection). In order to provide
both good resolution and high efficiency, in a single-slice scanner (single-row
detector CT or SDCT) each crystal would typically be 1.0 mm × 15 mm in area.

An important concept related to detector dimensions is slice thickness. In a
typical CT scanner, the axial response (along the z-direction) is a rect function
whose width is the slice thickness. The maximum slice thickness is equal to the
detector height, 15 mm in the typical SDCT case. Smaller slice thicknesses are
created by further restricting the beam using movable blades in the x-ray tube
collimator. Slice thickness is controlled at the console and is typically set in
millimeter increments, starting from 1 mm.

In a MDCT systems, as shown in Figure 6.6(c), the individual solid-state
detectors are typically 1.0 mm × 1.25 mm in size. In these systems, slice thickness
is controlled by both the axial beam width and the combined detector height.
In particular, MDCT systems have digital switching arrays that can group
detectors together in order to synthesize detector widths in multiples of the
physical detector heights. Accordingly, slice thicknesses are selected in multiples
of the detector height and the beam width is chosen to cover the desired axial
acquisition. For example, if there are 16 rows of detectors, each 1.25 mm in
height, we could acquire 16 simultaneous projections, each 1.25 mm thick.
Alternatively, we could acquire eight simultaneous projections, each 2.5 mm
thick, and so on. We will see later that there is a tradeoff in image quality that
must be addressed in selecting slice thickness, so it is not always a good idea to
simply acquire the thinnest possible slices.

6.2.5 Gantry, Slip Ring, and Patient Table

The gantry of a CT system holds the x-ray tube and detectors so that they can
be rotated around the patient rapidly and repeatably. The fan angle, size of the
detector array, and separation between the x-ray tube and detector array must
be capable of imaging a 50 cm (typical) FOV. A full 2-D scan in under 1 second
is required. The gantry can typically be tilted in order to facilitate acquisition of
nonaxial slices.

Most modern scanners are capable of continuous rotation without requiring
a ‘‘rewinding’’ of the source and detectors. Since there are large voltages that
must go to the x-ray tube and hundreds of signals that must be transmitted out
of the detectors, continuous rotation makes special demands on the mechanical
and electrical design, which the slip ring solves. A slip ring contains a large
cylinder with grooves on the outside so that brushes can make continuous
electrical contact with the rotating cylinder. The x-ray tube and detectors are
mounted inside the cylinder and are in continuous electrical contact with the
(stationary) controlling and data processing electronic hardware.

The patient table is more than just a place to put the patient. In helical
scanners, it is an integral part of the data acquisition hardware, since it must
be moved smoothly and precisely in synchrony with the source and detector
rotation. Even in single-slice scanners, the table’s positioning capabilities must
be quite flexible. Typically, the table can be extended well out from the gantry
and lowered in order to facilitate patient transfer from a hospital bed. It must
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be capable of ‘‘docking’’ with the scanner and locked into place so that motor-
controlled positioning of the patient can be accomplished. Typically, there are
positioning lights that can illuminate the patient to show the technician where
the slice(s) will be acquired. The table can then be moved to position the patient
under the guide lights in order to acquire the desired image(s).

6.3 Image Formation
6.3.1 Line Integrals

In a CT system, the x-ray tube makes a short burst of x-rays that propagate
(generally in a fan-beam geometry) through a cross section of the patient. The
detectors detect the exit beam intensity integrated along a line between the x-ray
source and each detector. As presented in Chapter 5 [see (5.3)], the (integrated)
x-ray intensity at any given detector is given by

Id =
∫ Emax

0
S0(E)E exp

[
−
∫ d

0
μ(s; E)ds

]
dE , (6.1)

where S0(E) is the x-ray spectrum and μ(s; E) is the linear attenuation coefficient
along the line between the source and detector.

Unfortunately, the integration over energy in (6.1), while physically correct,
is in a mathematically intractable form for CT image reconstruction (to be
discussed in Section 6.3.3). To get around this, we use the concept of effective
energy, E, which is defined as the energy that, in a given material, will produce
the same measured intensity from a monoenergetic source as is measured using
the actual polyenergetic source. This concept was first presented in Example 4.4.
Given this concept, it is correct to say that

Id = I0 exp

[
−
∫ d

0
μ(s; E) ds

]
. (6.2)

Given a measurement of Id and knowledge of I0, (6.2) can be rearranged to
yield a basic projection measurement gd,

gd = − ln
(

Id

I0

)
(6.3)

=
∫ d

0
μ(s; E) ds . (6.4)

Thus, we can make a very important observation about the function of a CT
scanner: The basic measurement of a CT scanner is a line integral of the linear
attenuation coefficient at the effective energy of the scanner.

In an actual CT system, the reference intensity I0 must be measured for
each detector; this is a calibration step. In fan-beam systems, an auxiliary
measurement is typically made using a detector positioned at the end of the
array so that there is always air between the source and this detector. Using this
measurement, the reference intensities for the other detectors can be determined
using prior calibration data of all detectors taken in air.



198 Chapter 6 Computed Tomography

6.3.2 CT Numbers

A CT scanner reconstructs the value of μ at each pixel within a cross section,
using a process that we will describe in detail in the following sections. Different
CT scanners, however, have different x-ray tubes, which in turn have different
effective energies. Thus, the exact same object will produce different numerical
values of μ on different scanners. Worse, since the x-ray tube on a busy CT
scanner may need to be replaced about once every year, the same CT scanner
will produce a different scan of the same object in successive years. This is
clearly not a desirable situation.

In order to compare data from different scanners, which may have different
x-ray sources and hence different effective energies, CT numbers are computed
from the measured linear attenuation coefficients at each pixel. The CT number
is defined as

h = 1, 000 × μ − μwater

μwater
, (6.5)

and is expressed in Hounsfield units (HU). Clearly, h = 0 HU for water, and since
μ = 0 in air, we find that h = −1, 000 HU for air. The largest CT numbers typi-
cally found naturally in the body are for bone, where h ≈ 1, 000 HU for average
bone, although CT numbers can surpass h ≈ 3, 000 HU for metal and contrast
agents. Usually, CT numbers are rounded or truncated to the nearest integer; they
are typically reproducible to about ±2 HU between scans and across scanners.

6.3.3 Parallel-Ray Reconstruction

We have learned that the basic CT measurement is a line integral of the effective
linear attenuation coefficient within a cross section. But line integrals are not
what we desire; we really want a picture of μ, or equivalently its CT number h,
over the entire cross section. Therefore, the important question is this: Can we
reconstruct a picture of μ given a collection of its line integrals? The answer is
‘‘yes,’’ and in this section we explore the theory and practice of reconstruction
from projections for parallel-ray geometry.

Geometry Let x and y be rectilinear coordinates in the plane. A line in the
plane is given by

L(�, θ ) = {(x, y)|x cos θ + y sin θ = �} , (6.6)

where � is the lateral position of the line and θ is the angle of a unit normal to
the line, as first introduced in (2.10) and shown in Figure 6.7. The line integral
of function f (x, y) is given by

g(�, θ ) =
∫ ∞

−∞
f (x(s), y(s)) ds , (6.7)

where

x(s) = � cos θ − s sin θ , (6.8)

y(s) = � sin θ + s cos θ . (6.9)
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Figure 6.7
The geometry of lines and
projections.
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This is a parametric form of the line integral; an alternate expression is given by

g(�, θ ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x cos θ + y sin θ − �) dx dy . (6.10)

Here, the sifting property of the 1-D impulse function δ(·) [see (2.6)] causes
the integrand to be zero everywhere except on the line L(�, θ ). The integral
acts on the impulse function by integrating the values of f (x, y) only along the
line—hence, it takes a line integral.

For a fixed θ , g(�, θ ) is called a projection; for all � and θ , g(�, θ ) is called the
2-D Radon transform of f (x, y). The relationship of a projection to the object
f (x, y) is shown in Figure 6.7. If we make the identifications

f (x, y) = μ(x, y; E) , (6.11)

g(�, θ ) = − ln
(

Id

I0

)
, (6.12)

we see that this mathematical abstraction exactly characterizes the CT mea-
surement situation. In what follows, we assume that g(�, θ ) corresponds to the
measurements and f (x, y) corresponds to the underlying unknown function or
object that we wish to reconstruct. Notice that our definition of a projection
corresponds to a collection of line integrals for parallel lines. Hence, these
are called parallel-ray projections, and they correspond in geometry to 1G CT
scanners only. We will find in Section 6.3.4, however, that the formalism and
methods developed in this section lead directly to a reconstruction approach for
fan-beam projections.

EXAMPLE 6.2
Consider the unit disk given by

f (x, y) =
{

1 x2 + y2 ≤ 1
0 otherwise

.

Question What is its 2-D Radon transform?
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Figure 6.8
Projection of a disk.
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Answer This function is circularly symmetric so its projections are independent of the
angle. It is therefore sufficient to calculate the projection at θ = 0◦ where the lateral
displacement � is horizontal and line integrals are vertical. (See Figure 6.8.)

Accordingly, we have

g(�, θ) =
∫ ∞

−∞
f (�, y) dy .

Here, g(�, θ ) = 0 when |�| > 1. When |�| ≤ 1, the integral must integrate the function
value on the unit disk, just the number 1, from the bottom of the unit circle to the top.
Accordingly, in this range we can write

g(�, θ ) =
∫ √

1−�2

−
√

1−�2
dy .

Performing the integration and supplying the known value outside this range yields

g(�, θ ) =
{

2
√

1 − �2 |�| ≤ 1
0 otherwise

,

which is the desired result.

Sinogram An image of g(�, θ ) with � and θ as rectilinear coordinates is called
a sinogram. It is a pictorial representation of the Radon transform of f (x, y) and
represents the data that are necessary to reconstruct f (x, y).

An object and its sinogram are shown in Figure 6.9. It is important to
observe several features about this sinogram. First, by convention in this book,
the bottommost row of the sinogram corresponds to the projection of the
object at θ = 0. With reference to Figure 6.7, we see that this is the projection
comprising vertical integrals of the object. Since the object in Figure 6.9(a) is
widest in the horizontal direction, this gives the widest projection, which is
evident in Figure 6.9(b).

Moving up from the bottommost row in Figure 6.9(b), the projections
are increasingly narrower and become narrowest at the angle θ = π/2. This
corresponds to the projection comprising horizontal integrals. The topmost row
of the sinogram corresponds to an angle just shy of θ = π , returning nearly
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Figure 6.9
(a) An object and (b) its
sinogram.(a) (b)
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to a projection comprising vertical lines. There is no need to proceed further in
angle, since these projections are redundant.

There are other interesting features in Figure 6.9(b). It is possible to see
sweeping features that run vertically through the sinogram. These features are
actually sinusoidal in character, and if the sinogram were ‘‘turned on its side,’’
they would be described by sinusoidal functions. This is the origin of the
name sinogram. It is straightforward to show that these features correspond to
individual objects in the image; the Radon transform of small points in the image
corresponds to (vertical) sinusoids in the sinogram. There are also accumulations
of bright white spots in certain rows of the sinogram in Figure 6.9(b). Upon
careful inspection of the image in Figure 6.9(a), it is apparent that these bright
spots correspond to the alignment of bright spots on parallel lines in the
projection at these specific angles. In other words, the regular alignment of
features in the image along certain directions gives rise to periodic bright spots
in the projections, which are revealed as organized features in the sinogram.

Although the sinogram is certainly understandable, it could never be argued
that it represents an image of the object. Clearly, it is necessary to take the data
represented in the sinogram and process them so that they look like the cross
section from which they came. This is the process of reconstruction, which we
now begin to develop.

Backprojection Let g(�, θ ) be the 2-D Radon transform of f (x, y), and consider
the projection at θ = θ0. In general, there are an infinite number of functions
f (x, y) that could give rise to this projection; hence, we cannot determine f (x, y)
uniquely from a single projection. Intuition tells us that if g(�, θ0) takes on a
large value at � = �0, then f (x, y) must be large over the line (or somewhere on
the line) L(�0, θ0). One way to create an image with this property is to simply
assign every point on L(�0, θ0) the value g(�0, θ0). When we repeat this for all �,
the resulting function is called a backprojection image and is given formally by

bθ (x, y) = g(x cos θ + y sin θ , θ ) . (6.13)

The backprojection image b30◦ (x, y) for the example in Figure 6.9 is shown in
Figure 6.10(a).

Loosely speaking, the backprojection image at angle θ0 is consistent with
the projection at angle θ0, but its values are assigned with no prior information
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Figure 6.10
(a) A backprojection
image and (b) a
backprojection
summation image. (a) (b)

about the distribution of the image intensities.1 To incorporate information
about the projections at other angles, we can simply add up (integrate) their
backprojection images, yielding the backprojection summation image

fb(x, y) =
∫ π

0
bθ (x, y) dθ , (6.14)

also called a laminogram. An example of a backprojection summation image is
shown in Figure 6.10(b). Early scanners did this using a discrete approximation
to the integral. However, it was soon shown analytically that this is the wrong
thing to do; this is also revealed from the blurriness of Figure 6.10(b). The con-
cept is useful, however, because the correct procedure also uses backprojection
except that it applies to filtered versions of the projections, as we shall see.

EXAMPLE 6.3
Question Consider the projection g(�, 45◦) = sgn(�), where sgn(�) is −1 when � ≤ 0
and is +1 when � > 0. What is the backprojection image bθ (x, y) at θ = 45◦.

Answer We have

b45◦ (x, y) = g (x cos 45◦ + y sin 45◦, 45◦)

= g

(
x

√
2

2
+ y

√
2

2
, 45◦

)

= g

(√
2

2
(x + y), 45◦

)
.

When x + y is negative, g is −1; when x + y is positive, g is +1. Mathematically, this is

b45◦ (x, y) =
{ −1 x + y ≤ 0

+1 x + y > 0
,

which is the desired result and is shown in Figure 6.11.

1Actually, a backprojection image has infinite energy (if its domain is considered to be the infinite
plane), and its projection at angle θ0 is infinite. Therefore, it is not really consistent with the
projection.
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Figure 6.11
A backprojection image.
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Projection-Slice Theorem In this section, we develop a very important rela-
tionship between the 1-D Fourier transform of a projection and the 2-D Fourier
transform of the object.

We begin by taking the 1-D Fourier transform of a projection with respect
to �:

G(�, θ ) = F1D{g(�, θ )} =
∫ ∞

−∞
g(�, θ )e−j2π�� d� , (6.15)

where � denotes spatial frequency (like u or v, except in an arbitrary direction).
Now we substitute the analytic expression for g(�, θ ) given in (6.10) and
manipulate this expression:

G(�, θ ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x cos θ + y sin θ − �)e−j2π�� dx dy d�

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)

∫ ∞

−∞
δ(x cos θ + y sin θ − �)e−j2π�� d� dx dy

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2π�(x cos θ+y sin θ) dx dy , (6.16)

where the last step followed from the sifting property of the delta function
[see (2.6)].

The final expression for G(�, θ ) in (6.16) is reminiscent of the 2-D Fourier
transform of f (x, y), defined as

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2π (xu+yv) dx dy , (6.17)

where the variables u and v are the frequency variables in the x and y directions,
respectively. In fact, making the identification u = � cos θ and v = � sin θ leads
directly to the equivalence and to the very important relationship

G(�, θ ) = F(� cos θ , � sin θ ) . (6.18)

Equation (6.18) is known as the projection-slice theorem, and it is the basis
of three important reconstruction methods. The relationship states that the 1-D
Fourier transform of a projection is a slice of the 2-D Fourier transform of the
object. Said another way, the 1-D Fourier transform of the projection equals
a line passing through the origin of the 2-D Fourier transform of the object at
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Figure 6.12
The projection-slice
theorem in graphical
form.

2-D Fourier transform

1-D Fourier transform

y

f(x, y) F(u, v)
v

x

u

u
u

that angle corresponding to the projection. A graphical interpretation is shown
in Figure 6.12. We see that � and θ may be interpreted as the polar coordinates
of the 2-D Fourier transform.

EXAMPLE 6.4
The projection-slice theorem helps us to understand how angular sampling can influ-
ence reconstructions. Suppose that only eight projections are acquired at angles θi =
π (i + 0.5)/8, i = 0, . . . , 7. Figure 6.13 shows the locations of the acquired Fourier data
corresponding to these projections.

Question Show that the function f (x, y) = cos x is invisible at these angles—that is, it
will produce projections that are identically zero at these angles.

Answer The 2-D Fourier transform of cos x is

F(u, v) = π [δ(2πu − 1) + δ(2πu + 1)] δ(v) ,

which has two 2-D impulse functions on the u-axis, as shown in Figure 6.13. On the other
hand, the projection-slice theorem tells us that, given the available observations, we will
know the Fourier transform of f only on the lines {(� cos θi, � sin θi)| − ∞ < � < ∞} for
i = 0, . . . , 7. Notice that although these lines are equally spaced over [0, π ], they do not
include the u-axis. Therefore, they will be zero, and the function cos x will be invisible.

The Fourier Method A conceptually simple reconstruction method, called the
Fourier method, follows immediately from the projection-slice theorem. One
simply takes the 1-D Fourier transform of each projection, inserts it with the

Figure 6.13
See Example 6.4.
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corresponding correct angular orientation into the correct slice of the 2-D Fourier
plane, and takes the inverse 2-D Fourier transform of the result. Accordingly,
we have

f (x, y) = F −1
2D{G(�, θ )} . (6.19)

The Fourier method is not widely used in CT due to the practical problem of
interpolating polar data onto a Cartesian grid, and the need to use the relatively
time-consuming 2-D inverse Fourier transform. Further analytic manipulation
of (6.19), however, leads to improvements, as we shall see below.

Filtered Backprojection The inverse Fourier transform of F(u, v) [see (6.17)]
can be written in polar coordinates as

f (x, y) =
∫ 2π

0

∫ ∞

0
F(� cos θ , � sin θ )ej2π�(x cos θ+y sin θ)� d�dθ . (6.20)

Using the projection-slice theorem, we have

f (x, y) =
∫ 2π

0

∫ ∞

0
G(�, θ )ej2π�(x cos θ+y sin θ)� d�dθ , (6.21)

from which it follows that

f (x, y) =
∫ π

0

∫ ∞

−∞
|�|G(�, θ )ej2π�(x cos θ+y sin θ) d�dθ , (6.22)

after some work and use of the fact that g(�, θ ) = g(−�, θ + π ).
From the point of view of integration over �, the term (x cos θ + y sin θ ) in

(6.22) is a constant, say �. Hence, (6.22) may be written as

f (x, y) =
∫ π

0

[∫ ∞

−∞
|�|G(�, θ )ej2π�� d�

]
�=x cos θ+y sin θ

dθ . (6.23)

We recognize the inner integral in (6.23) as an inverse 1-D Fourier transform
[see (2.63)], where the term |�| makes (6.23) a filtering equation. Here, the
Fourier transform of the projection g(�, θ ) is multiplied by the frequency filter
|�| and inverse-transformed. After the inverse transform, the filtered projection
is backprojected (this is accomplished by replacing � with x cos θ + y sin θ ),
which is followed by a ‘‘summation’’ of all filtered projections. This recon-
struction approach is appropriately called filtered backprojection, and it is a
considerable improvement over the Fourier method in speed and flexibility.
The term |�| is known as the ramp filter because of its appearance in Fourier
space.

An intuitive understanding of the role of the ramp filter can be found from
inspection of Figure 6.13. Here, the straight application of the Fourier method
leads to sampling that is inversely proportional to �. Additional area or ‘‘weight’’
is required to compensate for the sparser sampling at higher frequencies.
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Convolution Backprojection From the convolution theorem of Fourier trans-
forms [see (2.91)], we may write (6.23) as

f (x, y) =
∫ π

0

[
F −1

1D{|�|} ∗ g(�, θ )
]
�=x cos θ+y sin θ

dθ . (6.24)

Then, defining c(�) = F −1
1D{|�|}, we have

f (x, y) =
∫ π

0
[c(�) ∗ g(�, θ )]�=x cos θ+y sin θ dθ (6.25)

=
∫ π

0

∫ ∞

−∞
g(�, θ )c(x cos θ + y sin θ − �) d�dθ , (6.26)

where (6.26) results from substitution of the convolution integral and is the
equation for convolution backprojection. Performing a convolution rather than
a filtering operation (a pair of Fourier transforms with a multiplication in-
between) is generally more efficient if the impulse response is narrow. It is so in
this case, and generally most CT scanners perform (some form of) convolution
backprojection rather than filtered backprojection.

Unfortunately, c(�) does not exist, since |�| is not integrable (and therefore
its inverse Fourier transform is undefined). However, various formal expressions
involving generalized functions (e.g., delta functions and their derivatives) or
limits of functions have been developed. While these expressions are useful in a
theoretical setting, we require a practical approach to design an impulse response
that can be used in an actual CT scanner. This is accomplished by windowing |�|
with a suitable windowing function W(�), such as a square, Hamming, or cosine
window. Here, windowing denotes the use of a filter, in addition to the ramp
filter, that modifies the observed projection. In practice, therefore, convolution
backprojection (CBP) algorithms use the approximate impulse response

c̃(�) = F −1
1D{|�|W(�)} . (6.27)

It is also customary to set the filter value at � = 0 to be nonzero, in order to
produce the correct reconstructed average image value.

Reconstruction in Three Steps Filtered backprojection (6.23) uses three basic
steps to reconstruct an image from a sinogram: (1) filtering, (2) backprojection,
and (3) summation. Convolution backprojection (6.24) uses the same three
steps except that the filtering operation is implemented using a convolution.
The reconstructed images resulting from these two approaches will be identical
except for round-off errors due to numerical implementation issues.

Figure 6.14 illustrates the filtering (or convolution) step. Each row of the
sinogram in Figure 6.14(a) is filtered using a windowed ramp filter to yield the
filtered sinogram in Figure 6.14(b). The ramp filter is essentially a high-pass
filter and its value at f = 0 is 0. As a result, high frequency detail is accentuated,
the background value is now zero (gray in the filtered sinogram), and there
are negative values (dark values in the filtered sinogram). A projection and its
corresponding filtered projection are also shown in this figure for comparison.
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Figure 6.14
Convolution step:
(a) Original sinogram;
(b) filtered sinogram;
(c) profile of sinogram
row [white line in (a)];
and (d) profile of filtered
sinogram row [white line
in (b)].

(a) (b)

(c) (d)

50 100 150 200 250 300

50 100 150 200 250 300

Figure 6.15
Backprojection step.
(a) A selected filtered
projection and (b) the
backprojection image
created from the filtered
projection.(a) (b)

We have already seen the backprojection operation. Here, backprojection is
applied to each filtered projection, rather than the raw projection. An example
is shown in Figure 6.15. Since the filtered projections have both positive and
negative values, backprojection images also have positive and negative values. It
can be understood on an intuitive level that the presence of negative values will
permit the reconstruction of a zero value outside the region of support of the
object; of course, this requires the summation of many backprojection images
for this to happen.

The last step in reconstruction is the summation step, a process that is
illustrated in Figure 6.16. Notice that the summation process is accomplished
using an ‘‘accumulator’’ concept. Starting with a ‘‘zero’’ image, the first (fil-
tered) backprojection image is added. Then, the second backprojection image
is added, and so forth. There is no need to store hundreds of backprojec-
tion images. The overall process of filtered backprojection is very time and
memory efficient, which accounts for its great popularity over the past three
decades.
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Figure 6.16
Summation step.
(a) Partial summation
images using just 40, 80,
and 120 (out of 240 total)
projections. (b) The
filtered projections that
are used in the partial
summation images shown
in (a). (c) The image that
is reconstructed using all
240 filtered projections.

40/240 80/240 120/240

Partial summations

Final reconstructionFiltered sinogram

240/240

240

120

80

40

(a)

(b) (c)

6.3.4 Fan-Beam Reconstruction

As discussed in Section 6.2, all modern commercial scanners have a fan-beam
source-to-detector arrangement. Therefore, in practice it is necessary to recon-
struct images from fan-beam projections rather than parallel-ray projections. In
this section, we develop a CBP reconstruction algorithm that can be applied to
a fan-beam geometry.

Geometry There are three basic fan-beam geometries to consider: (1) those
that have equal angles between the measured ray-paths, (2) those that have
equal detector spacing, and (3) those that have equal angles and equal detector
spacing. The third geometry can only be satisfied if the detectors are placed
along a circular arc whose center is at the source. In this section, we consider the
equal-angle case with detectors positioned on a circular arc. A reconstruction
formula for the case of equal detectors on a straight line can be developed using
analogous means.

We consider the fan-beam geometry shown in Figure 6.17. This is a 3G
geometry in which the source and detector rotate together around the laboratory
origin, also called the rotational isocenter. A fan-beam projection, measured at
each rotational position of the source, is denoted p(γ , β) [in analogy to g(�, θ )],
where γ is the angular position of a given detector and β is the angular position
of the source, as shown in Figure 6.17. Notice that both γ and β are angles
measured in the counterclockwise direction; however, their origins are different
and so are their reference directions (physical orientations when taking on zero
values). In particular, β measures the source position around the isocenter, and
it is zero when the source is resting on the +y-axis. On the other hand, γ is
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Figure 6.17
Fan-beam geometry.
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measured around the source position, and it is zero for rays that pass through
the center of the detector array.

It is easiest to derive the fan-beam CBP formula by starting with what we
already know about parallel-ray reconstruction. Within the fan-beam projection
we have identified a line L(�, θ ) in Figure 6.7, where � is the lateral displacement
and θ is the angular orientation, exactly as before. We can see from the
geometry that the parameters of this line, � and θ , are related to the fan-beam
parameters by

θ = β + γ , (6.28)

� = D sin γ , (6.29)

where D is the distance from the source to the origin (isocenter).

Fan-Beam Reconstruction Formula Our development of a fan-beam recon-
struction formula begins with the equation for parallel-ray CBP [(6.26)], which
we repeat here for convenience:

f (x, y) =
∫ π

0

∫ ∞

−∞
g(�, θ )c(x cos θ + y sin θ − �) d� dθ . (6.30)

From the geometry of parallel-ray tomography,

f (x, y) = 1
2

∫ 2π

0

∫ T

−T
g(�, θ )c(x cos θ + y sin θ − �) d� dθ , (6.31)

where we have assumed that g(�, θ ) = 0 for |�| > T. Thus, in (6.31) we consider
rotation over the full circle and objects that are zero outside the disk with radius
T, centered at the origin.
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Let (r, φ) be polar coordinates in the plane. Then x = r cos φ, y = r sin φ,
and x cos θ + y sin θ = r cos φ cos θ + r sin φ sin θ = r cos(θ − φ). Substituting
this last expression into (6.31) gives

f (r, φ) = 1
2

∫ 2π

0

∫ T

−T
g(�, θ )c(r cos(θ − φ) − �) d� dθ , (6.32)

which is a parallel-ray reconstruction formula for f written in polar coordinates.
We now want to integrate over γ and β instead of � and θ . This is a transfor-

mation of coordinates, where the transformation is given in (6.28) and (6.29).
The Jacobian of this transformation is D cos γ , and direct substitution yields

f (r, φ) = 1
2

∫ 2π−γ

−γ

∫ sin−1 T
D

sin−1 −T
D

g(D sin γ , β + γ )

× c(r cos(β + γ − φ) − D sin γ )D cos γ dγ dβ . (6.33)

The following simplifications to this integral can be made:

• The limits of the outer integral can be replaced by 0 (lower limit) and 2π

(upper limit), since the functions are periodic in β with period 2π .

• The expression sin−1 T
D represents the largest angle γm that needs to be

considered given that the object is contained in a disk of radius T. Thus, we
can replace the upper and lower limits on the inner integral by γm and −γm,
respectively.

• We recognize the fan-beam projection as

p(γ , β) = g(D sin γ , β + γ ) . (6.34)

This gives the basic fan-beam reconstruction formula:

f (r, φ) = 1
2

∫ 2π

0

∫ γm

−γm

p(γ , β)c (r cos(β + γ − φ) − D sin γ ) D cos γ dγ dβ .

(6.35)

Fan-Beam Convolution Backprojection In this section, we manipulate the fan-
beam reconstruction formula of (6.35) into a form that more closely resembles
ordinary CBP.

Consider an arbitrary point in the cross section, given by the polar coor-
dinates (r, φ), as shown in Figure 6.18. Its position can also be defined relative
to the source and detector positions using the angle γ ′ and radius D′, as shown
in the figure. The argument of c(·) can be written in simpler form using these
coordinates (after some trigonometric manipulation) as

r cos(β + γ − φ) − D sin γ = D′ sin(γ ′ − γ ) , (6.36)

where γ is an arbitrary angle as depicted in Figure 6.17. This yields

f (r, φ) = 1
2

∫ 2π

0

∫ γm

−γm

p(γ , β)c(D′ sin[γ ′ − γ ])D cos γ dγ dβ , (6.37)

where D′ and γ ′ are determined by r and φ.
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Figure 6.18
Rotating polar
coordinates for fan-beam
geometry.
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It can be shown (see Problem 6.18) that

c(D′ sin γ ) =
(

γ

D′ sin γ

)2

c(γ ) . (6.38)

Accordingly, looking back at (6.37), we see that it is useful to define

cf (γ ) = 1
2

D
(

γ

sin γ

)2

c(γ ) . (6.39)

Combining (6.37) and (6.38) with this definition, we find that

f (r, φ) =
∫ 2π

0

1
(D′)2

∫ γm

−γm

p̃(γ , β)cf (γ
′ − γ ) dγ dβ , (6.40)

where p̃(γ , β) = cos γ p(γ , β), which is our final fan-beam reconstruction
formula.

To more clearly identify the ‘‘convolution’’ part and the ‘‘backprojection’’
part, we split the reconstruction formula of (6.40) into two pieces:

q(γ , β) = p̃(γ , β) ∗ cf (γ ) , (6.41)

f (r, φ) =
∫ 2π

0

1
(D′)2 q(γ ′, β) dβ . (6.42)

Here, q(·) is simply a filtered projection where the impulse response cf (·) is a
weighted (or windowed) version of c(·), the usual (approximate) ramp filter
[as in (6.27)]. However, the backprojection operator is a bit different since D′
depends on the image coordinate (r, φ) or, equivalently, (x, y). Therefore, each
filtered projection backprojects along the ray-paths of integration but does so
with a weighting that depends on the distance from the source. Thus, one should
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think of the phrase convolution weighted-backprojection when the projections
are fan-beams.

6.3.5 Helical CT Reconstruction

Consider the helical CT scenario in which there is a single detector array and the
patient table is continuously moved through the gantry. In this case, the nature
of the acquired data is different than in single-slice CT. Since x-rays move at the
speed of light, any acquired projection still corresponds to a single plane within
the patient; however, because of the continuous movement of the patient, no two
projections will correspond to the same plane. A given (fan-beam) projection
is therefore identified uniquely by its longitudinal position zj, measured relative
to the patient. The index j, in fact, not only identifies the position zj of the
projection but also determines its angle βj.

Suppose there are M angles acquired over 360◦. Then, the acquired angles
repeat such that βj − βj+M = 0. How far has the patient moved when the angle
repeats? This is determined by the pitch of the helix, which is given by

ζ = zj+M − zj , (6.43)

which is in turn determined by the speed of gantry rotation and the table speed.
Suppose that we want to reconstruct an image at the longitudinal position

z. In conventional (single-slice) tomography, we would need many projections
taken at a collection of angles within the axial plane passing through z. In
the helical geometry, however, we are not guaranteed even to have one such
projection (because z may not correspond to zn for any n). It is standard practice
to ‘‘create’’ the needed projections using linear interpolation of the projections
that are measured in nearby slices. For example, suppose we would like the
projection corresponding to the angle βj. We know that the projection angle βj

is acquired at all linear positions zj+kM for k = 0, 1, 2, . . . . It is straightforward
to find k such that zj+kM ≤ z < zj+[k+1]M. We know that the scanner acquires
projections at angle βj at both positions zj+kM and zj+[k+1]M. Linear interpolation
between these two projections yields an estimate of the desired projection

p̂z(γ , βj) = z − zj+kM

ζ
pzj+[k+1]M (γ , βj)

+zj+[k+1]M − z

ζ
pzj+kM

(γ , βj) , (6.44)

which is valid for any position γ within the projection. This procedure can be
repeated for all j = 1, . . . , M, noting that the choice of k depends on both z and
j. In this way, a complete set of projections for fan-beam reconstruction of the
2-D slice at z is created. A fan-beam reconstruction formula can then be used to
reconstruct a picture of the slice.

Many factors will affect the quality of a helical CT image. In particular,
the quality of interpolated data will be affected by the pitch of the helix. The
pitch is determined by the rate of rotation of the gantry and the speed of the
table feed. If the pitch is too big, while the fan is too thin, then aliasing artifacts
will appear. To compensate, the fan could be made thicker, which provides a
natural analog low-pass filter. Then, the images will be free from aliasing but
will be blurry. In clinical scanners today, protocols are preset into the scanner
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for certain types of studies. These protocols balance the conflicting requirements
of image quality with FOV requirements and speed of acquisition.

6.3.6 Cone Beam CT

With the goal of rapid coverage and reconstruction of 3-D volumes, it is natural
to consider the use of a cone beam radiation pattern and an area detector (rather
than a fan-beam and a linear detector). A standard fluoroscope, for example,
can rotate the cone-beam source and 2-D detector in a circle around the body,
electronically recording 2-D projection images at a collection of different angles.
Also, the geometry of MDCT systems with large-area detectors is correctly
understood to be in the form of a cone beam. In either case, the data within
the plane of the circular source path are exactly what one achieves with a
conventional fan-beam CT scanner; thus, an image can be reconstructed by
conventional means for this central image plane. It turns out, however, that
there is not sufficient coverage to yield mathematically correct reconstructions
in any other plane through the object. The situation is further complicated by
the fact that projections are often truncated; that is, the body extends beyond
the x-ray cone.

Despite these complications, so-called cone beam reconstruction algorithms
have been developed to produce excellent 3-D reconstructions. The Feldkamp
algorithm is the most well known and has been shown to produce excellent
reconstructions for the geometry described above.

6.3.7 Iterative Reconstruction

For the past 40 years, commercial CT systems have all used variants of CBP
for image reconstruction. However, current systems are rapidly changing over
to iterative reconstruction methods because they offer equivalent (or better)
reconstruction quality at substantially reduced dose. We describe iterative
reconstruction methods in Chapter 9, when describing emission tomography
systems.

Iterative reconstruction methods are more computationally demanding than
CBP. Since emission tomography’s data requirements are lower than that of
most other imaging modalities (because larger and thus fewer voxels are used
to represent a 3D volume), iterative reconstruction methods were introduced
roughly two decades ago for emission tomographic reconstruction and are thus
more fully developed in that application. Also, emission tomography is signifi-
cantly limited by noise, especially compared with most other imaging modalities,
and iterative reconstruction methods are particularly adept at handling noise.

The application of iterative reconstruction methods to CT is conceptually
straightforward and follows the same development as in Chapter 9 for emission
tomography.

6.4 Image Quality in CT
While the theory presented in the previous sections captures the ideal behavior
of CT systems, in practice there are limitations to what one can achieve. It is not
possible to achieve arbitrarily high resolution, since detectors have finite widths
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and there are sampling limitations, both in the number of projections and in
the number of ray-paths per projection. As well, since the patient will absorb
x-rays, we cannot use an arbitrarily large dose, and this limits the attainable
signal-to-noise ratio (SNR). A third problem is beam hardening, which is a
phenomenon caused by energy selective absorption of x-rays by human tissues
(as discussed in Section 5.2.2). In this section, we describe these phenomena and
indicate how they affect the appearance of reconstructed CT images.

6.4.1 Resolution

Filtered backprojection [see (6.23)] is an exact formula for the inverse Radon
transform. As noted in (6.27), however, the ideal (ramp) filter |�| is not realizable,
so an approximate filter W(�)|�| using a window function W(�) [see (6.27)]
must be used in practice. In addition, the line integrals themselves cannot be
imaged exactly due to the finite size of the detectors. In fact, CT detectors are
area detectors that locally integrate the underlying true signal, an effect that
can be modeled using an additional filter S(�) [see (3.81)], which is the Fourier
transform of the indicator function s(�) defining a detector. Combining these
effects, the filtered backprojection formula becomes

f̂ (x, y) =
∫ π

0

[∫ ∞

−∞
G(�, θ )S(�)W(�)|�|ej2π�� d�

]
�=x cos θ+y sin θ

dθ . (6.45)

The reconstruction in (6.45) is approximate, and the resulting function is a
blurred version of f (x, y). We can discover a relation between f̂ (x, y) and f (x, y)
by manipulating (6.45).

First, we recognize that (6.45) is precisely the inverse Radon transform of
the function

ĝ(�, θ ) = F −1{G(�, θ )S(�)W(�)} . (6.46)

By the 1-D convolution theorem,

ĝ(�, θ ) = g(�, θ ) ∗ h̃(�) , (6.47)

where

h̃(�) = s(�) ∗ w(�) . (6.48)

The result of filtered backprojection can therefore be interpreted as the inverse
Radon transform of the blurry projections ĝ(�, θ ).

In order to determine how the blurry projections cause the image of the
object to be blurred, it is convenient to draw upon the convolution property of
the Radon transform. In particular, it can be shown that the Radon transform of
the convolution of two functions is the convolution of their Radon transforms
(see Problem 6.9)

R
{
f ∗ h

} = R{f } ∗ R{h} . (6.49)

Notice that the convolution on the left in (6.49) is two-dimensional, while that on
the right is one-dimensional. Comparing (6.47) with (6.49) allows us to identify

R{h} = h̃(�) , (6.50)
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and therefore, upon taking the inverse Radon transform of both sides,

h(x, y) = R−1{h̃(�)} . (6.51)

From the convolution property of the Radon transform (6.49), we can conclude
that the reconstructed object is given by

f̂ (x, y) = f (x, y) ∗ R−1{h̃(�)} . (6.52)

Therefore, the reconstructed estimate f̂ (x, y) is a blurry version of f (x, y), and
the resolution of the system can be characterized by the point spread function
(PSF) R−1{h̃(�)}.

To find the PSF h(x, y), we use the projection-slice theorem (6.18). The
Fourier transform of h̃(�) is given by

H̃(�) = S(�)W(�) , (6.53)

which is independent of θ . Accordingly, the 2-D Fourier transform of h(x, y)
must be circularly symmetric and given by

H(q) = S(q)W(q) . (6.54)

It follows that the PSF is also circularly symmetric and given by the inverse
Hankel transform [see (2.113)]

h(r) = H−1{S(�)W(�)} . (6.55)

Finally, the reconstructed image is given by

f̂ (x, y) = f (x, y) ∗ h(r) , (6.56)

where r =
√

x2 + y2. The PSF is circularly symmetric and can be characterized
by a full width at half maximum (FWHM) given the detector width, which then
determines S(�), and the ramp filter window function W(�).

EXAMPLE 6.5
Suppose a CT system uses rectangular detectors having width d and a rectangular window
function with highest frequency �0 � 1/d.

Question What is the approximate PSF of this CT system?

Answer Rectangular detectors with width d blur the underlying projection with impulse
response function

s(�) = rect
(

�

d

)
.

In the frequency domain, this is represented by the filter

S(�) = d sinc(d�) .
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The ramp filter window function can be written as

W(�) = rect
(

�

2�0

)
.

The first zero of S(�) is at frequency � = 1/d. Since �0 � 1/d, the frequency cutoff defined
by the detectors is much less than that of the ramp filter, and the ramp filter window
function can be ignored. Therefore, the (circularly symmetric) 2-D transfer function is
(approximately) given by

H(q) ≈ d sinc(dq) .

From Table 2.3,

H{sinc(r)} = 2 rect(q)

π
√

1 − 4q2
.

Using the fact that the forward and inverse Hankel transforms are the same, and [see
(2.120)]

H{f(ar)} = 1
a2 F(q/a) ,

we can work out the following (approximate) impulse response:

h(r) = H−1{d sinc(d�)}

= d
1
d2

2 rect(r/d)

π
√

1 − 4(r/d)2

= 2 rect(r/d)

π
√

d2 − 4r2
.

6.4.2 Noise

Measurement Statistics A CT detector measures the intensity of the x-ray pulse
after losses in the patient. There is intrinsic noise in such a measurement, coming
from the Poisson nature of x-rays [see (3.52)]. In addition, body attenuation
and limited detector efficiency reduce the measured number of photons, further
increasing noise.2 We will make many approximations in this section in arriving
at a useful approximate expression for the noise in a CT image. The first
approximation is that we will assume that the CT system is monoenergetic,
operating at the effective energy E of the scanner. In this case, the statistical
behavior of the scanner can be understood by converting the observed intensity
at a given detector Id to an observed photon count as Nd = IdA�t/E.

We denote the basic CT measurement for the ith detector and jth angle by

gij = − ln
(

Nij

N0

)
, (6.57)

2The x-ray beam itself arises from a random process, and the number of x-rays in the beam is a
Poisson random variable. Body attenuation and detector efficiency produce random deletions (in
statistical jargon) of these x-rays, and the number of x-rays in the detected beam is also a Poisson
random variable.
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where N0 is the incident photon count and Nij is the number of detected
photons. Unfortunately, because the absorption of photons is a statistical phe-
nomenon, the same experiment repeated again would probably yield a different
measurement. In fact, Nij is a Poisson random variable with mean

Nij = N0 exp

(
−
∫

Lij

μ(s) ds

)
, (6.58)

where Lij is the ray-path from the source to detector i for the jth projection angle.
Equation (6.58) is just another way of writing the line integral introduced in
(6.1). Notice that the mean depends on the number of incident photons and on
the line integral of the linear attenuation coefficient along the ray-path between
the source and detector. In fact, the mean is the desired measurement.

The basic measurement gij is a transformation of the random variable Nij,
however, not a transformation of the mean of Nij. Therefore, gij is a random
variable and, assuming N0 is large, its mean gij and variance var(gij) are given by

gij ≈ − ln

(
Nij

N0

)
, (6.59)

var(gij) ≈ 1

Nij
. (6.60)

We assume that the random variables Nij are independent, and it follows that the
random variables gij are also independent. Given this second-order characteri-
zation of the basic CT measurements, we are now in a position to determine the
second-order statistics of the images that we create from these measurements.
These second-order statistics will permit us to define a signal-to-noise ratio of
reconstructed images, which is a measure of the quality of reconstructions.

Image Statistics In this section, we develop an expression for the mean and
variance of the reconstructed linear attenuation coefficients. For simplicity, we
assume parallel-ray geometry. It is mathematically convenient to use a discrete
approximation to the convolution backprojection (CBP) integral in (6.26), which
is given by

μ̂(x, y) = πT
M

M∑
j=1

N/2∑
i=−N/2

gθj (iT) c̃
(
x cos θj + y sin θj − iT

)
, (6.61)

where M is the number of projections taken over the range [0, π ), N + 1 (odd)
is the number of ray-paths per projection, T is the physical spacing between
detectors, and gij = gθj (iT). Notice that c̃(·) is a realizable approximation to the
ramp filter. The mean of the reconstructed image is therefore

mean[μ̂(x, y)] = πT
M

M∑
j=1

N/2∑
i=−N/2

gij c̃
(
x cos θj + y sin θj − iT

)
, (6.62)
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which for large N0, M, and N is exactly what we want. Therefore, CBP has the
desirable property that the mean of the reconstructed image approaches exact
reconstruction as the quality of measurement increases.

Since gij are assumed to be independent random variables, the variance of
the sum is the sum of the variances (see (3.56)), given by

σ 2(x, y) = var[μ̂(x, y)] (6.63)

= π2T2

M2

M∑
j=1

N/2∑
i=−N/2

var[gij]
[
c
(
x cos θj + y sin θj − iT

)]2 (6.64)

= π2T2

M2

M∑
j=1

N/2∑
i=−N/2

1

Nij

[
c
(
x cos θj + y sin θj − iT

)]2
. (6.65)

To proceed, we make a rather drastic approximation: Nij ≈ N. That the mean
number of detected photons is a constant is clearly false for nearly all objects;
however, by using this approximation, we can develop some important relation-
ships that are otherwise obscured in the summations.

Using the approximation Nij ≈ N,

σ 2(x, y) = σ 2
μ = π2T2

M2N

M∑
j=1

N/2∑
i=−N/2

[
c
(
x cos θj + y sin θj − iT

)]2
. (6.66)

For large N and M, we may make the approximation

π

M

M∑
j=1

T
N∑

i=1

[
c
(
x cos θj + y sin θj − iT

)]2

≈
∫ π

0

∫ ∞

−∞
[c (x cos θ + y sin θ − �)]2 d�dθ (6.67)

= π

∫ ∞

−∞
[c (�)]2 d� (6.68)

= π

∫ ∞

−∞
|C(�)|2 d� , (6.69)

where the last equality follows from Parseval’s theorem [see (2.96)]. For a
rectangular window with bandwidth �0 applied to the ramp filter,

π

∫ ∞

−∞
|C(�)|2 d� = π

∫ �0

−�0

�2 d� = 2π�3
0

3
. (6.70)

Thus, for a rectangular windowed ramp filter and the approximation Nij = N,
the reconstructed image variance is independent of (x, y), and is given by

σ 2
μ ≈ πT

M
1

N

2π�3
0

3
(6.71)

≈ 2π2

3
�3

0
1
M

1

N/T
. (6.72)
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We now interpret this expression for image noise variance with the following
observations:

• If we increase the bandwidth of the rectangular window, the image variance
also increases. This follows one’s natural intuition that noise has high
frequency components, while the image bandwidth tends to diminish at
high frequencies. We will see in emission tomography (Chapter 9) that the
design of windowing functions that optimally balance the increase in noise
contributions with the loss of image sharpness is very important.

• If we decrease T, the spacing between detectors, the variance decreases.
Notice, however, that if the size of each detector is forced to decrease in
order to do this, or if the detector efficiency decreases, then the decreased
spacing will be offset by a lower N.

• If we increase N, the variance decreases. In general, one increases N0 to
do this. One could also increase N by increasing the incident x-ray energy,
which lowers the amount of x-ray absorption. However, one would then
have a loss of contrast, a subject that is considered in the following section
on SNR.

• If we increase M, the variance decreases. Thus, the more angles the better.
This assumes constant acquisition time per angle—it would not be true with
constant total scan time. (However, increased M for constant total scan time
could still provide benefits from improved angular sampling.)

• The fraction N/T indicates the average number of photons per unit distance
along the detector array. In fan-beam geometries, we can increase this ratio,
and hence decrease the image variance, by increasing N0.

Image SNR Image variance is an important concept when we are trying to
measure the linear attenuation coefficient. However, in radiology we must also
consider the contrast between tissues, since this is what creates the visual effect
of objects or structures with boundaries in a medical image. Therefore, any
useful definition of SNR must contain both contrast and noise. We define SNR
here as

SNR = Cμ

σμ

, (6.73)

where C is the fractional change in μ from μ, μ is the mean linear attenuation
coefficient, and σμ is the standard deviation of the measurement (the square root
of the variance). Equation (6.73) is thus the CT version of the differential SNR
introduced in (3.69). Combining (6.72) with (6.73) gives

SNR = Cμ

π
�

−3/2
0

√
3
2

(N/T)M . (6.74)

In a good CT scanner design, we set �0 ≈ k/d, where k ≈ 1 and d is the
width of a detector. This gives

SNR ≈ 0.4kCμd3/2
√

(N/T)M . (6.75)
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If, in fact, d = T (as in a 3G scanner), then

SNR ≈ 0.4kCμd
√

NM . (6.76)

In the fan-beam case,

Nf : mean photon count per fan-beam,

D : number of detectors,

L : length of detector array,

and, therefore, N = Nf /D and d = L/D, which yields

SNR ≈ 0.4kCμLD−3/2
√

Nf M . (6.77)

Therefore, in the fan-beam case we have the odd situation that increasing the
number of detectors actually lowers the SNR. The reason, it turns out, is that
convolution of the projections with the ramp filter couples the noise between
detectors and does so to a greater extent as the number of detectors increases.
Why shouldn’t we reduce the number of detectors to, say, three or even one?
Although such a system would give excellent SNR, we know from Section 6.4.1
that the resolution would be abysmal.

EXAMPLE 6.6
Consider a fan-beam CT system with one source, D detectors, M angles, and J by J
reconstructed images, where D = M = J = 256. Assume that the width of each detector
is d = 0.25 cm and the ramp filter uses a rectangular window with cutoff �0 = 1/d.
The scanner is used to image a lesion with contrast C = 0.005 embedded in water
(μ = 0.15 cm−1).

Question We require the image to have a SNR of at least 20 dB. What is the minimum
number of photons per projection at the detectors that is required in order to meet this
SNR constraint?

Answer Since SNR(dB) = 20 log10 SNR, we have

SNR = 1020dB/20 = 10.

Since SNR = Cμ/σμ = 10, we have

σμ = 0.005
10

× 0.15 cm−1 = 7.5 × 10−5 cm−1.

Thus,

σ 2
μ = 5.625 × 10−9 cm−2 = 2π2

3
�3

0T

MN
.

The number of photons per projection is

Pp = ND = 2π2

3
�3

0T

Mσ 2
μ

D.
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Since �0 = 1/d, T = d = 0.25 cm, and D = M, we have

Pp = 2π2

3
1

0.252

1
σ 2

μ

= 1.87 × 1010 minimum .

6.4.3 Artifacts

This section identifies and briefly explains some of the artifacts that can appear
in CT images. Several of these are depicted in Figure 3.15.

Aliasing The projections will be aliased if they are undersampled. The effect on
a projection is that higher frequency information will appear as lower frequency
artifacts, as discussed in Section 3.6. These artifacts will continue through the
process of reconstruction (CBP, Fourier method, etc.), and appear as artifacts
in the image. The most readily apparent of these artifacts are streak artifacts
which appear to emanate, in particular, from small bright objects within the
image. An insufficient number of projections also causes aliasing. These artifacts
also appear in the reconstructed images, often as streaks emanating from object
boundaries at points which have small radii of curvature. These streaks may be
either dark or bright, depending on the precise location of the objects and edges
within the field-of-view.

Aliasing may be eliminated by sampling at a high enough (spatial sampling)
rate, assuming the object is band limited, or by low-pass filtering prior to
sampling. Both of these goals are achieved to some degree in current clinical
scanners. High sampling rates are achieved by providing numerous detectors
within the fan-beam and by sampling at numerous angles. Ultimately, the
number of detectors is limited by physical size, efficiency, and the fact that
smaller detectors receive fewer photons and, hence, have higher measurement
variance. The number of angles is limited by storage capacity time (both to
scan and reconstruct), and dose. Low-pass filtering (along each projection) is
achieved by the physical aperture of each detector, which acts as a boxcar filter.
There is no effective low-pass filtering in angle.

Another potential source for artifacts is in the backprojection-summation
process, which must supply filtered projection values for a finite set of points
(xi, yj) (pixels) in the plane. The critical issues are how many pixels will be used
over the field-of-view and what will be the method of interpolation. Too few,
and we produce an aliased version of the correct image, showing moiré patterns
that appear as a structured textures that do not really exist. For such a coarse
image, the projections should be low-pass filtered before backprojection.

A general rule of thumb for designing CT systems is that the number of
detectors should be approximately equal to the number of projections that
should be approximately equal to the number of points on the side of a
reconstructed image. A typical 3G system has around 700 detectors, acquires
1,000 projections, and reconstructs a 512 × 512 image.

Beam Hardening Beam hardening is caused by energy-selective attenuation
of the x-rays, as discussed in Section 5.2.2, and refers to the phenomenon
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in which the mean energy of the x-ray spectrum increases while propagating
through the body. In the human body, the linear attenuation coefficient decreases
with increasing E, as shown in Figure 4.8. Therefore, low-energy photons are
preferentially absorbed. Hence, since all CT x-ray sources have a distribution
(spectrum) of energies, the propagating beam becomes richer in high-energy
photons.

We had concluded in Section 6.2 that the concept of effective energy could
be used for polyenergetic sources. However, this concept assumes that the exit
spectrum is the same as the entering spectrum. When this is not true, and
standard reconstruction methods are used, the so-called interpetrous lucency
artifact may appear. (It is called ‘‘interpetrous’’ because it often occurs in bone.)
This artifact, which is particularly apparent in head scans (because of the outer
ring of bone), creates a kind of halo effect around the brain parenchyma. In other
parts of the body, streak artifacts, particularly at the tips of bones and at metal
pieces within the body (shrapnel, surgical clips, screws, etc.) may also appear.
Methods exist for compensating for or eliminating these artifacts, including
preprocessing projection data, postprocessing images, and dual-energy imaging.
In general, radiologists simply know to expect them and interpret the images
accordingly.

Other Artifacts Three other sources of artifacts in CT images are worth
mentioning: (1) electronic or system drift, (2) x-ray scatter, and (3) motion. The
electronic or system artifact of particular interest is that which is caused by
miscalibration or gain drift. The most dramatic effect is caused by the complete
failure of a detector. In a 3G scanner, this situation (usually) causes the detector
to report zero photons, and thus 100% attenuation at all angular positions.
The resulting reconstruction contains a ring artifact whose radius is equal to the
position of the defective detector from the detector array’s center.

X-ray scatter generally causes a convolutional blurring of each projection.3

A blurred projection creates a blurry image. It is possible to prevent scatter by
collimation and/or selective energy detection, but this comes at the expense of
lower efficiency. It is also possible to compensate for scatter by deconvolution,
but this has the tendency to further increase the noise in the projections. One
way that has been used to measure the amount of scattering present is off-plane
detectors.

Finally, motion is a difficult problem. Since a complete scan takes (typically)
between 0.3 seconds (for a single slice) and 10 seconds (for a full thoracic scan),
the heart is almost certainly going to have significant motion during the scan.
Breathing is going to be a problem on the longer scans or when patients cannot
hold their breath. It is possible to gate the data acquisition so that data will be
taken only at a certain stage in the cardiac cycle and/or breathing cycle. The
data acquired over successive cycles can then be pieced together and treated as
if they were taken simultaneously. These methods are used on some machines
in certain clinical situations where deemed necessary.

3This may have the desirable property of low-pass filtering the projection if aliasing is a problem.
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6.5 Summary and Key Points
Computed tomography solves the problem of loss of contrast present in pro-
jection radiography that is caused by superposition of overlying structures, by
focusing directly (and exclusively) on the cross-sectional image slice of interest.
This strategy significantly improves contrast, at the expense of spatial resolu-
tion, but the gain in contrast is so important that CT is ubiquitous in medical
imaging practice. In this chapter, we presented the following key concepts that
you should now understand:

1. A tomogram is an image of a cross-sectional plane or slice within or through
the body.

2. X-ray computed tomography (CT) produces tomograms of the distribution
of linear attenuation coefficients, expressed in Hounsfield units.

3. There are currently seven generations of CT scanner design, which depend
on the relation between the x-ray source and detectors, and the extent and
motion of the detectors (and patient table).

4. The basic imaging equation is identical to that for projection radiography;
the difference is that the ensemble of projections is used to reconstruct
cross-sectional images.

5. The most common reconstruction algorithm is filtered backprojection, which
arises from the projection-slice theorem.

6. In practice, the reconstruction algorithm must consider the geometry of the
scanner—parallel-beam, fan-beam, helical-scan, or cone-beam.

7. As in projection radiography, noise limits an image’s SNR.

8. Other artifacts include aliasing, beam hardening, and—as in projection
radiography— inclusion of Compton scattered photons.
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Problems
Instrumentation

6.1 A CT calibration experiment measures two Hounsfield numbers: hW
m = 10

for water and hA
m = −1, 100 for air.

(a) Find expressions for a and b so that

ahW
m + b = hW ,

ahA
m + b = hA .

(b) What are the correct CT numbers hW and hA for water and air,
respectively?

(c) What are the values of a and b for this calibration experiment?

6.2 Suppose a 6G CT scanner has a patient table which moves at a speed
of 2 cm/s. The x-ray source detector apparatus rotates at a speed of 4π

radians per second. Also assume that it takes 1 ms to measure a projection.

(a) What is the pitch of the helix?
(b) How many projections does the system measure over a 2π angle?
(c) How long does it take to do a 60 cm torso scan?

Radon Transform

6.3 Show that the Radon transform is a linear operator.
6.4 Show that the Radon transform of f (x − x0, y − y0) is g(� − x0 cos θ −

y0 sin θ , θ ).
6.5 Find the 2-D Radon transform g(�, θ ) of f (x, y) = exp(−x2 − y2). (Hint:

Use the rotational symmetry of f (x, y) to simply your integration.)
6.6 Show that the function h�(�)hθ (θ ) cannot represent a 2-D Radon transform

g(�, θ ) unless hθ (θ ) is a constant.
6.7 (a) Find the 2-D Radon transform g(�, θ ) of the 2-D function f (x, y) =

cos 2π f0x. Show that filtered backprojection produces the correct
reconstruction.

(b) Repeat part (a) for f (x, y) = cos 2πax + cos 2πby and f (x, y) =
cos 2π (ax + by).

6.8 A first-generation CT scanner is used to image a unit-square shaped object
(i.e, length of each side = 1). The object is surrounded by air and has a
constant linear attenuation coefficient of μ0. The coordinate system is set
up such that the origin is at the object center, and the x- and y-axes are
parallel to the sides of the object.

(a) Write a mathematical expression for the linear attenuation function
μ(x, y). (Hint: Use the rect function.)

(b) What is the Fourier transform of μ(x, y)?
(c) Write a mathematical relationship between the projection g(�, θ ) (com-

puted using the observed x-ray intensities) and μ(x, y).
(d) Using the projection-slice theorem, find G(�, θ ).
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(e) Take the inverse Fourier transform of G(�, θ ) to find an expression for
g(�, θ ).

(f) Sketch g(�, 30◦) (include axis labels) and sketch its backprojection
image b30◦ (x, y).

6.9 Prove the convolution property of the radon transform:

R
{
f ∗ h)

} = R{f } ∗ R{h}.

CT Reconstruction

6.10 The ‘‘unit square function’’ is given by

s(x, y) =
{

1 −1 ≤ x ≤ 1, −1 ≤ y ≤ 1
0 otherwise

.

Let gs(�, θ ) be the 2-D Radon transform of s(x, y).

(a) Show that gs(�, θ + π/2) = gs(�, θ ).
(b) Show that gs(�, −θ ) = gs(�, θ ).
(c) Write an expression for gs(�, θ ), −∞ < � < +∞, 0 ≤ θ < π given

knowledge of gs(�, θ ) only in the range −∞ < � < +∞, 0 ≤ θ < π/4.
(d) Sketch gs(�, θ ) at θ = 0, θ = π/8, and θ = π/4.
(e) Determine an expression for gs(�, θ ), 0 ≤ θ < π/4.

6.11 The mass of an object is defined as

m =
∫ ∞

−∞

∫ ∞

−∞
f (x, y) dxdy

and the center-of-mass is defined as c = (cx, cy) where

cx = 1
m

∫ ∞

−∞

∫ ∞

−∞
xf (x, y) dxdy ,

cy = 1
m

∫ ∞

−∞

∫ ∞

−∞
yf (x, y) dxdy .

The mass of a projection is defined as

mp(θ ) =
∫ ∞

−∞
g(�, θ ) d�

and its center-of-mass is given by

cp(θ ) = 1
mp(θ )

∫ ∞

−∞
�g(�, θ ) d� .

(a) Show that mp(θ ) = m.
(b) Show that cp(θ ) = cx cos θ + cy sin θ .
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(c) Define the triangle function as

f (x, y) =
{

1 0 ≤ y ≤ 1 − |x|
0 otherwise

.

Find mp
(

π
4

)
and cp

(
π
4

)
for the triangle function.

6.12 Consider an object comprising two small metal pellets located at (x, y) =
(2, 0) and (2, 2) and a piece of wire stretched straight between (0, −2) and
(0, 0).

(a) Sketch this object.

Assume that N photons are fired at each lateral position � in a parallel-ray
configuration. For simplicity, assume that each metal object stops 1/2 the
photons that are incident upon it no matter what angle it is hit.

(b) Sketch the number of photons you would expect to see as a function
of � for θ = 0◦ and θ = 90◦.

(c) Draw the projections you would see at θ = 0◦ and θ = 90◦.
(d) Sketch the backprojection image you would get at θ = 0◦ (without

filtering).

6.13 Consider the object in Figure P6.1 that is an equilateral triangle centered
at the origin, each side of which is of length a and one side of which is
parallel to the x axis. Suppose the object has constant linear attenuation
coefficient μ and is being imaged in a 1G CT scanner. Assume μ = 1 and
a = 6.

Figure P6.1
Object geometry for
Problem 6.13. a

a a

x

y

(0, 0)

(a) Find a formula for the projection g(�, 60◦) and sketch it.
(b) What is the value of b60◦ (0, a/4) for g(�, 60◦)?
(c) Find F(� cos 60◦, � sin 60◦).

6.14 In finding an approximation c̃(�) for the ramp filter in filtered backpro-
jection, you decide to multiply |�| by the triangular window of width �0
given by

W(�) =
⎧⎨
⎩

1 − |�|
�0

|�| ≤ �0

0 otherwise
.

(a) Derive an expression for the approximate filter c̃(�).
(b) Describe what happens as �0 → ∞.
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6.15 Show that∫ 2π

0

∫ ∞

0
�Gθ (�)ej2π�ω·x d� dθ =

∫ π

0

∫ ∞

−∞
|�|Gθ (�)ej2π�ω·x d� dθ.

6.16 In this problem, we want to figure out what is ‘‘wrong’’ with the backpro-
jection summation image given by

fb(x, y) =
∫ π

0
g(x cos θ + y sin θ , θ )dθ ,

and see how to fix it.

(a) Show that the 2-D Radon transform of the 2-D delta function δ(x, y)
is δ(�). (Hint: Use the projection slice theorem.)

(b) Show that the backprojection summation image of δ(x, y) is
1√

x2 + y2
.

(Hint: Write (x, y) in polar coordinates (r, φ), then use the fact that
sin θ ≈ θ for small θ and the fact that δ(a�) = δ(�)/|a|.)

(c) Show that the backprojection summation image of δ(x − x0, y − y0) is
1/
√

(x − x0)2 + (y − y0)2 —that is, that the backprojection summation
operator is shift invariant.

(d) Show that fb(x, y) = f (x, y) ∗ (1/
√

x2 + y2).
(e) Describe how one could, in principle, recover f (x, y) from fb(x, y).

Describe any problems you may foresee with your approach.

6.17 With each measured projection g(�, θ ) (viewed as a function of �) a
backprojection image bθ (x, y) can be generated.

(a) Write down a formula for bθ (x, y).

Now assume that we know only one projection: g(�, 30◦) = e−|�|.
(b) What is the value of b30◦ (1, 2)?
(c) Can you determine b45◦ (1, 2)? If yes, what is it? If no, why not?
(d) Can you determine b210◦ (1, 2)? If yes, what is it? If no, why not?
(e) Sketch b30◦ (x, y).

Suppose g(�, θ ) is sampled so that only the following values are known:
g(nT, θ ), −∞ < n < ∞.

(f) Can you determine b30◦ (1, 2) from the sampled projection g(n, 30◦)? If
yes, what is it? If no, say why not and suggest an approximate value.

(g) Can you determine b30◦ (2, 1) from the sampled projection g(n, 30◦)?
If yes, what is it? If no, say why not and suggest an approximate value.

6.18 For fan beam geometry, prove the following relationship is satisfied by the
ramp filter c(·):

c(D′ sin γ ) =
(

γ

D′ sin γ

)
c(γ ) .

Image Quality

6.19 In a CT system, each projection is actually obtained using a uniform
scanning beam of width W instead of an infinitesimal pencil beam. Find
the resultant estimate f̂ (x, y) of the function f (x, y) when CBP is used.
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6.20 Find the SNR of the CT reconstruction of a lesion immersed in a 20-cm
(diameter) cylinder of water whose attenuation coefficient is 5% different
than that of the water. A scanned source is used providing 100 projections
at 0.1 R (roentgen) per projection. The detector and beam dimensions
are 2.0 × 2.0 mm. Make appropriate assumptions about the reconstruc-
tion filter. Assume μ = 0.15 cm−1 and that the detectors are touching
each other. Also assume that there are 2.5 × 1010 photons/cm2 per
roentgen.

6.21 Joe is designing a new CT scanner. It will be a fan-beam design, with one
source and D detectors. He will use M angles, reconstruct images with N
by N pixels, and strictly enforce the design rule of thumb D = M = N.
The width of each detector d will be selected to be as large as possible
in order to completely fill a 1 meter detector array with D detectors. The
reconstruction ramp filter will be designed using a rectangular window
with bandwidth �0 = 1/d.

(a) Joe requires that a lesion with contrast C = 0.005 embedded in water
(μ = 0.15 cm−1) will have a SNR of at least 20 dB. Suppose D = M =
N = 300. What is the minimum number of photons per projection at
the detectors that is required in order to meet this SNR constraint.

(b) Assume the patient has 0.125 m2 cross-sectional area (lying completely
in each fan beam). Assume that the patient is exposed to 1 roentgen
when 2.5 × 1010 photons pass through 1 cm2 of tissue, and assume
that the dose to the patient in rads is equal to the exposure in roentgens.
What is the largest D(= M = N) that can be selected which will satisfy
the SNR requirement of part (a) and will keep the total dose for
the entire cross-sectional scan less than or equal to 2 rads. (Neglect
attenuation due to the patient and assume the detectors have 100%
efficiency.)

6.22 Your problem is to determine the number of detectors D to fit into an
array of fixed length L in order to optimize the SNR of a third-generation
CT scanner.

(a) Assume the approximate ramp filter is c̃(�) = F −1{|�|W(�)}, where
W(�) is a rectangular window with (single-sided) bandwidth �0.
Assume that �0 = min{d−1, �max}, where d is the width of a detector
and �max is a fixed constant. Assume that the number of projections M
is given by 1.5D. Find an expression for the SNR as a function of D.

(b) To avoid aliasing a J × J pixel reconstructed image it is decided to
choose �max = J/(2L). We also restrict the number of detectors to lie
in the range 1 ≤ D ≤ J. What D gives the best SNR?

6.23 Suppose we have a first-generation CT scanner with a mechanical problem.
For each projection angle, it measures zero at � = 0. Now we use the
scanner to image a uniform disk.

(a) Sketch the sinogram.
(b) What would the reconstructed image look like?
(c) If instead the scanner always zeroes the measurement at � = �0, what

would the reconstructed image look like?
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Applications and Advanced Topics

6.24 Suppose we know that f (x, y) = ∑n
j=1 fjφj(x, y). Define the ith line inte-

gral as gi = ∫
Li

f (x, y)ds, i = 1, . . . , m, and the ith measured line integral
as yi = gi + vi, i = 1, . . . , m, where vi is noise. Now define the follow-
ing vectors f = [f1 · · · fn]T, y = [y1 · · · ym]T, and v = [v1 · · · vm]T. Then in
matrix notation, our measurements are given by y = Hf + v, where H is
an m × n matrix.

(a) Determine Hij, the (i, j)th entry in H.
(b) In an ideal world we would find that v = 0, m = n, and H−1 exits

In this case, f = H−1y gives an exact reconstruction of f (and we
never even spoke of the Radon transform!). Discuss the meaning of
the following situations:
(1) H−1 exists but v �= 0.
(2) v = 0 but m < n.
(3) v = 0 but m > n.

(c) Suppose m > n and assume that the rank of H is n. Find an expression
for f̂ , the vector that minimizes E = (y − Hf )T(y − Hf ). (Hint: Multiply
out E and take the derivative with respect to each component of f
and set each to zero. Organize your answer using matrix notation and
solve for f .)

(d) In a typical system we may have 256 × 256 pixels in a recon-
structed image and 360 × 512 line integral measurements. Given these
sizes, explain the main difficulty with the above approach to image
reconstruction.

6.25 (a) Find the 2-D Radon transform gθ (�), for 0 ≤ θ ≤ π/4 only, of the unit
square indicator function:

f (x, y) =
{

1 −1/2 ≤ x, y ≤ 1/2
0 elsewhere

.

(b) Sketch gθ (�) for some θ , where 0 < θ < π/4.
(c) Find

∫∞
−∞ gθ (�) d�.

(d) Suppose only two projections, for θ = 0 and θ = π/2, are available.
Find an expression for the approximate summation backprojection
image f̂b(x, y) (given only these two images) and make a sketch of the
result.

(e) In general, is it possible to reconstruct f (x, y) perfectly given only a
finite number of projections? Explain your answer.

6.26 A first-generation CT scanner is used to image the object shown in
Figure P6.2 (surrounded by air). Suppose for E > 100 keV

μ1(E) = 1.0 exp −E[keV]/100[ keV] cm−1 ,

μ2(E) = 2.0 exp −E[ keV]/100[ keV] cm−1.

Suppose that each incident photon burst is polychromatic, but has only
two photon energies, and that there are 106 photons at 100 keV, and
0.5 × 106 at 140 keV.
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Figure P6.2
Object geometry for
Problem 6.26.

m1

m2 10 20 30 cm

x

y

(a) Calculate the incident intensity of the x-ray burst.
(b) Ignore the dimension of the detector in this part. Find the intensity Id

as a function of x for the measured projection at θ = 0◦. Sketch it.
(c) Calculate the local contrast of the middle square given the measured

projection Id(x). What is the local contrast of the projection g(�, 0)?
(d) Suppose the detector has a width of 1 cm. Find the measured projection

Id(x) (x being a continuous variable) in this case, and sketch it. Will
this change affect the local contrast? Explain.

6.27 A CT system is designed to acquire M parallel-ray projections of f (x, y) at
angles θi = π i/M, i = 0, . . . , M − 1. The collection of projections measured
by this system (modeled to be continuous in �) is defined to be the
M-projection Radon transform:

DMf = {g(�, θi)| i = 0, . . . , M − 1} ,

where g(�, θi) = ∫∫
f (x, y)δ(x cos θi + y sin θi − �)dxdy is the projection at

angle θi.

(a) Draw a picture showing the four positions of the detector array
required to determine D4f . Label which projection is acquired at each
position.

(b) Knowledge of DMf gives partial knowledge of the Fourier transform
F(u, v) of f (x, y). Draw a picture showing the set of points in the u-v
plane where F(u, v) is known given D4f . Indicate which projection
gave rise to each subset.

(c) Now let G1 = DMf1. Define G2 = DM(f1 + f2), where f2 = cos 2π fxx
cos 2π fyy, fx = cos(3π/16) and fy = sin(3π/16). Show that G2 = G1
for M = 4.

(d) For f2 given above, find the minimum value of M in order to guarantee
that G2 �= G1.

(e) The result of part (c) means that you can add a function to the original
without changing its M-projection Radon transform. In this context,
such functions are called a ghost functions. In theory, is it possible to
make M large enough so that there are no ghost functions of DMf?
Explain your answer. What happens in practice?

(f) Suppose one used large detectors, effectively low-pass filtering each
projection upon observation. Would f2 still be a ghost function?
Explain.
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6.28 Consider an object comprising three squares of the same size with width
20 cm, as shown in Figure P6.3. The origin of the coordinate system
is located at the center of the middle square. The linear attenuation
coefficient in these three regions are μ1 = 0.1 cm−1, μ2 = 0.2 cm−1, and
μ3 = 0.3 cm−1, respectively.

Figure P6.3
Object geometry for
Problem 6.28.

m1 m2 m3

x

y

20 cm

20
 c

m

20 cm 20 cm

Assume that parallel ray geometry is used.

(a) Find g(�, 0◦).
(b) Find g(�, 90◦).
(c) Find g(�, 45◦). Sketch it and carefully label the axes.
(d) Sketch b45◦ (x, y). Find the value b45◦ (1, 1).

Now, assume we are using a 3G CT scanner. The source–detector
distance is 1.5 m.

(e) What is the smallest possible circular FOV to image the entire object
shown in the figure? What is the shortest length of the detector array
that will ‘‘cover’’ the FOV?

(f) Suppose the detector array has 256 elements. Using the CT ‘‘rule of
thumb,’’ how many angles should be acquired? What is the pixel size of
the reconstructed image (assuming the image covers the entire FOV.)

6.29 A square object with side-width of 40 cm is imaged by a first generation
CT scanner.

(a) What type of collimators should be used for the source and the
detector?

(b) What is the smallest circular FOV to cover the entire object?
(c) Suppose the smallest angular increment of the scanner is 0.25◦ and we

strictly obey the CT ‘‘rule of thumb.’’ How many line integrals should
we measure for each angle? If the reconstructed image is just large
enough to cover the FOV, what is the size of the pixels?

(d) We found that the reconstructed image was noisy. Is it possible to
double the SNR given that we cannot change the 0.25-degree angular
increment and will not violate the rule of thumb? Explain.

(e) Suppose the object has a constant linear attenuation coefficient of
0.1 cm−1, sketch g(�, 45◦) and carefully label the axes.

(f) Sketch b45◦ (x, y). Find the value b45◦ (10, 10).

6.30 You are designing a CT scanner. You always use the rules M = D = J
and �0 = 1/d. You want a circular field-of-view (FOV) having a 60 cm
diameter, so your image will be a square with 60 cm sides.

(a) You want your system to be able to resolve two point sources separated
by 1 mm, to that at least one square pixel can always be put between
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them no matter what their orientation relative to the pixel area. What
is the minimum number of detectors you must use?

You decide to use 925 detectors, each 0.8 mm wide and fit side-by-side on
a line. You decide to place the x-ray source 180 cm away from the center
of the detector array (orthogonal to the array, of course).

(b) Will your FOV fit within the fan? Explain your answer.

Suppose μ = 0.2 cm−1 and suppose there are an average of 1.5 × 1011

photons hitting the detector array for each projection.

(c) What is the approximate SNR in dB of a tumor mass whose linear
attenuation coefficient is 0.25cm−1.

6.31 You have the good fortune to acquire a used 3G CT scanner that has slip
ring technology (continuously rotating 360-degree x-ray tube and detector
array). Everything is in good working order except that only one detector
channel is operational. Fortunately, you are able to switch this channel
between detectors so that you can acquire data from any detector, but
from only one detector for each pulse of the x-ray tube. The tube can
be pulsed continuously at a rate of one pulse per millisecond. The gantry
can rotate at one revolution per second. The geometry of the fan beam is
shown in Figure P6.4.

Figure P6.4
Scanner geometry for
Problem 6.31.

50 cm

70 cm

35 cm

Detector array

X-ray source

(a) Determine the fan angle from the depicted geometry.
(b) Suppose 703 detectors are packed into the array depicted. Determine

the spacing between the detectors.
(c) Suppose data from only the central detector is acquired (as fast as

possible) over a single counterclockwise rotation of the gantry (from
the x-ray source on the top back to the x-ray source on the top).
What line integrals are acquired? Draw the trajectory of data acquired
over this one acquisition cycle on a sinogram diagram. Are any line
integrals repeated? Explain.

(d) Now suppose that data from only the bottom-left detector (with
reference to Figure P6.4) is acquired, again over a single counter-
clockwise rotation of the gantry with the fastest possible rotation
and x-ray tube pulsing. What line integrals are acquired this time?
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Draw the trajectory on a sinogram diagram and explain whether there
are repeated line integrals or not.

(e) Devise a strategy based on the ideas in (c) and (d) that will scan a
sinogram without redundancy. In order to approximately obey the
‘‘CT rule of thumb,’’ how many rotations will be required to scan the
sinogram? Explain.

(f) What is so bad about this CT scanner that it should never be used to
scan patients?

6.32 Object motion can cause artifacts in CT images. This happens in part
because object motion produces an observation that is not a legitimate
Radon transform of any object. Assume parallel ray geometry.

(a) Prove that the Radon transform of δ(x, y) is δ(�)? Sketch its sinogram.
(b) Prove the following theorem:

Rf (x − x0, y − y0) = g(� − x0 cos θ − y0 sin θ , θ ).

(c) Find the Radon transform of δ(x − 1, y). Sketch its sinogram.

We now assume that while the scanner acquires data over θ ∈ [0, π/2]
the object is δ(x, y) and while the scanner acquired data over θ ∈ [π/2, π )
the object is δ(x − 1, y). In other words, the object moved during the scan
from (0, 0) to (1, 0).

(d) Sketch the sinogram that is acquired by this scan.
(e) Prove the following:

∫ ∞

−∞
�g(�, θ )d� = qx cos θ + qy sin θ ,

where

qx =
∫ ∞

−∞

∫ ∞

−∞
xf (x, y)dxdy ,

qy =
∫ ∞

−∞

∫ ∞

−∞
yf (x, y)dxdy.

(f) Show that the sinogram acquired by the scanner when the object
moved cannot be the Radon transform of any object.

6.33 The plot in Figure P6.5(a) shows the input energy spectrum of a polychro-
matic x-ray source and the linear attenuation coefficient of a material as a
function of photon energy.

Figure P6.5
Problem 6.33.
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(a) Sketch the energy spectrum of the x-ray beam after it passes through
the material. Explain your sketch.

(b) Suppose that an object is imaged using a 1G CT scanner. In
Figure P6.5(b) there are two different positions of the source and
detector while imaging this same object. Explain why the two
measurements should ideally be the same but are actually different in
practice.

(c) The fact that the two measurements are different causes artifacts in
CT reconstruction. One way to reduce these artifacts is to acquire
two measurements with two different input x-ray spectra, one having
higher mean energy than the other. Describe how you might obtain
these two measurements using the same x-ray tube.

(d) This so-called dual-energy CT setup requires calibration. Four mea-
surements are made on two test objects (Figure P6.6) using the two
input spectra, yielding measurements given in the table below. The
values in the table are line integrals (not x-ray intensities or numbers
of photons). Explain why gL

c1 is greater than gH
c1.

Figure P6.6
Problem 6.33. Detector

Aluminum WaterSource

8 cm2 cm

Detector
Aluminum WaterSource

CONFIGURATION 2CONFIGURATION 1
8 cm 2 cm

Configuration 1 Configuration 2

Higher photon energy (keV) gH
c1 = 2.2 gH

c2 = 4.3

Lower Photon energy (keV) gL
c1 = 3.16 gL

c2 = 6.79

(e) Suppose you had access to a 75 keV (monoenergetic) x-ray source.
Given μ(aluminum, 75 keV) = 0.7 cm−1 and μ(water, 75 keV) =
0.1866 cm−1, find the line integrals, g75

c1 and g75
c2 , for each of the two

configurations.
(f) For calibration, coefficients are to be determined so that measurements

using the high and low spectra can be combined in a linear equation
to yield what is expected from a monoenergetic 75 keV x-ray source.
Given your result from part (e), find the coefficients aL and aH such
that

g75
c1 = aLgL

c1 + aHgH
c1 ,

g75
c2 = aLgL

c2 + aHgH
c2 .

(g) For an arbitrary object, your dual-energy CT scanner will obtain two
sinograms gL(�, θ ) and gH(�, θ ). Write a mathematical expression for
the reconstructed object, μ(object, 75 keV), given these sinograms.
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Nuclear Medicine
Imaging

Overview
In the preceding part of the book, we considered projection radiography and
computed tomography, two imaging modalities that rely on the transmission
of photons through the body to form images. We now turn our attention to
nuclear medicine, an imaging modality that relies on the emission of photons
from within the body.

In contrast to projection radiography and computed tomography, in nuclear
medicine, which we cover in this part of the book, the biological behavior of a
substance’s biodistribution in the body is of interest; each molecule of the sub-
stance is labeled with a radioactive atom. Here, the ionizing radiation emitted
when the radioactive atom undergoes radioactive decay is used to determine the
location of the molecule within the body; the ionizing radiation is of no medical
interest per se. Since the biodistribution of the radiolabeled substance—the
radiopharmaceutical or radiotracer—is determined by the body’s physiologi-
cal and biochemical functioning, nuclear medicine is considered a functional
imaging modality.

Figure III.1 makes this point. Figure III.1(a) shows a whole-body bone scan.
In this anterior view, image intensity is proportional to the distribution of
a radiotracer that reflects the metabolic activity of bone. (The radiotracer is
ultimately metabolized via the kidneys, which is why there is a hot spot of
activity in the urinary bladder in the middle of the image.) Figure III.1(b) shows
a stacked series of separate projection radiographs of the corresponding areas
(from different patients). In these images, as discussed in the previous part of
the book, image intensity reflects the varying absorption of transmitted x-rays
through bone and other tissues.

In general, a radiotracer is injected into a peripheral arm vein of the patient,
or the patient inhales or ingests the radiotracer. Specialized instrumentation
produces images of the internal distribution of radioactivity, which is assumed to
mirror the distribution of the compound of interest. These images are compared
with known distributions in different disease states. Because there are hundreds
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Figure III.1
Representative (a)
emission image and (b)
transmission images.
Image (a) courtesy of
Harvey Ziessman, MD,
Johns Hopkins University
and Hospital. Images in
(b) courtesy of GE
Healthcare. (a) (b)
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of different radiotracers routinely available in nuclear medicine, there are literally
hundreds of different nuclear medicine studies, each of which assesses the
function of a different physiologic process or organ system within the body. The
technology of nuclear medicine permits direct measurements to be made of body
processes in humans that in the past could be examined only in experimental
animals. In order to most accurately depict the biodistribution of radiotracers,
instrumentation that emphasizes high image quality and quantitative accuracy
has been developed. Digital image processing plays an important role in nuclear
medicine, not only in image enhancement but also in extraction of quantitative
information about physiological function.

Nuclear medicine is used whenever a physician needs information on
physiologic or biochemical function. For example, the two most common nuclear
medicine procedures are bone scanning and myocardial perfusion imaging. Bone
scanning, as shown in Figure III.1(a), looks at the metabolic activity of bones; this
is complementary to the structural (anatomical) information from a projection
radiograph (e.g., Figure III.1(b)). A projection radiograph can show a fracture;
a bone scan can show active metabolism during the healing process. Similarly,
coronary angiography (a projection radiography technique), which depicts the
anatomy of the coronary arteries, shows the vessels that supply blood to the
heart muscle, whereas myocardial perfusion imaging shows the distribution of
blood flow in the muscle. Figure III.2 illustrates the use of nuclear medicine
to depict myocardial perfusion. The images show the distribution of a specific
radiotracer that distributes in heart muscle according to blood flow. The left
ventricle of the heart has the greatest blood flow and is by far the most prominent

Figure III.2
Myocardial perfusion
imaging via SPECT. Top
four rows: short axis
slices. Next two rows:
horizontal long axis
slices. Bottom two rows:
vertical long axis slices.
Image courtesy of Harvey
Ziessman, MD, Johns
Hopkins University and
Hospital.
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Figure III.3
Whole-body FDG-PET.
Left: anterior reprojected
view. Middle: posterior
reprojected view. Right:
left lateral reprojected
view. Images courtesy of
Harvey Ziessman, MD,
Johns Hopkins University
and Hospital.

structure in the images. The images represent tomographic slices from a 3-D
single-photon emission computed tomography (SPECT) study. In contrast, the
image in Figure III.1(a) is a projection image, which in nuclear medicine is often
called a planar image or planar scintigraphy.

In the same way that computed tomography is the 3-D tomographic modality
based on projection radiography, SPECT is the 3-D nuclear medicine modality
based on planar scintigraphy. In Figure III.2, the first four rows are short axis
slices (as though the heart were sliced like a bread loaf), the next two rows
are horizontal long axis slices (orthogonal to the short axis), and the final two
rows are vertical long axis slices (orthogonal to the short axis and also to the
horizontal long axis). These slices thus represent orientations relative to the
heart, not the long axis of the (entire) body.

Arguably the most advanced form of nuclear medicine imaging is positron
emission tomography (PET), which utilizes specialized radiotracers and instru-
mentation. Figure III.3 depicts a whole-body PET scan (in anterior, posterior,
and left lateral reprojection views) of the distribution of fluorine-18-labeled
deoxyglucose (FDG), whose distribution reflects glucose metabolism. FDG-PET
is the most commonly performed PET study with a focus on cancer detection
and staging. These reprojection views are common in FDG-PET and are formed
from the 3-D reconstructed dataset.



The Physics of
Nuclear Medicine

C H A P T E R

77
7.1 Introduction
Nuclear medicine relies on radiopharmaceuticals introduced into the body to
trace the spatial and temporal distribution of the underlying physiological
and biochemical processes that govern the radiopharmaceutical’s distribution.
Radiopharmaceuticals are usually introduced in very small quantities that do
not themselves affect the physiologic or biochemical processes. Radiopharma-
ceuticals are thus often called radiotracers, reflecting both the fact that they are
introduced into the body in trace quantities and that they trace body processes.
Radiopharmaceuticals consist of both a chemical compound (the ‘‘pharmaceu-
tical’’ portion of the word) and a radioactive atom (the ‘‘radio’’ portion of
the word). When the radioactive atom undergoes radioactive decay, a process
we describe below, radiation is emitted that leaves the body. External imaging
devices, such as scintillation cameras, record these radiation emissions com-
ing from the patient and produce either a planar, two-dimensional image or
cross-sectional, tomographic images.

Depending on the specific radiotracer, different physiological or biochemical
functions are imaged. This is strikingly different than projection radiography
or computed tomography. In these two transmission imaging modalities, while
the specific characteristics of the signal depend on specific imaging and instru-
ment parameters, the basic type of information does not change from image
to image; it depends on tissue attenuation characteristics, as we have dis-
cussed. In nuclear medicine, however, each different radiotracer produces a
depiction of a completely different physiological or biochemical function, so
the basic information itself is different. Further, since the radiation that forms
the basis of the image is not transmitted through the body, but arises from the
radioactive atoms within the body, nuclear medicine imaging is referred to as
emission imaging.

In this chapter, we consider the physical processes that give rise to radionu-
clides, radioactive decay, and the emissions that form the basis of nuclear
medicine imaging.

239
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7.2 Nomenclature
Recall from Chapter 4 that an atom consists of a nucleus of protons and
neutrons, which together are called nucleons, surrounded by orbiting electrons.
The atomic number Z is equal to the number of protons in the nucleus and
defines the element. The mass number A is equal to the number of nucleons in
the nucleus. The term nuclide refers to any unique combination of protons and
neutrons that forms a nucleus. If a particular nuclide is radioactive (i.e., it can
undergo radioactive decay), it is termed a radionuclide. Nuclides are typically
denoted by either A

ZX or X-A, where X is the element symbol.
Atoms with the same atomic number but different mass number (i.e., dif-

ferent numbers of neutrons) are called isotopes. For example, carbon-11 is an
isotope of carbon that decays by positron decay and is used in positron emission
tomography, as discussed in Chapter 9. Because isotopes have the same number
of protons (and hence electrons), they are chemically identical. Atoms with the
same mass number but different atomic numbers are called isobars. For example,
carbon-11 decays to boron-11; the two are isobars. Atoms with the same number
of neutrons are called isotones. Atoms with the same atomic and mass number
(i.e., the same nuclide) but with different energy levels are called isomers. For
example, technetium-99m decays to technetium-99; the two are isomers.

This nomenclature becomes important when we consider the radionuclides
used in nuclear medicine. Radioactive isotopes of certain elements serve as the
source of ionizing radiation that we image in nuclear medicine. As discussed
below, we are particularly interested in obtaining certain radiations that drive
our choice of nuclides.

7.3 Radioactive Decay
7.3.1 Mass Defect and Binding Energy

The sum of the masses of the constituents of an atom (i.e., the protons, neutrons,
and electrons) is greater than the atom’s actual mass. The difference between
the sum of the masses of the atom’s constituents and the actual mass is called
the mass defect.

As an example, consider stable carbon-12. An atom of carbon-12 has
6 protons, 6 neutrons, and 6 electrons. On the atomic scale, it is common to
express mass in unified atomic mass units (u), where 1 u is exactly 1/12 the mass
of a carbon-12 atom. The mass of a proton is 1.007276 u, the mass of a neutron
is 1.008665 u, and the mass of an electron is 0.000548 u. The mass defect of
carbon-12 is therefore 6 × 1.008665 + 6 × 1.007276 + 6 × 0.000548 − 12 =
0.098934 u.

Einstein’s famous relationship, E = mc2, states that mass and energy are
related and that matter and energy cannot be created or destroyed, they can
only be transformed from one form into the other. Since mass and energy are
related by Einstein’s equation, there is an amount of energy ‘‘missing’’ from the
atom (equivalent to the mass defect) that would otherwise be predicted to be
present based on the constituents of that atom. This missing energy is termed
the binding energy and can be computed from E = �mc2, where �m is the mass
defect and c is the speed of light (3 × 108 m/s). The unit of energy that we have
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been using throughout the book is the electron volt (eV), which is defined as
the amount of energy an electron gains when it is accelerated across a voltage
potential of 1 volt. Based on E = mc2, one u is equivalent to 931 MeV.

In general, a more massive nuclide is more likely to have a larger mass
defect, and therefore a larger binding energy, without necessarily being more
‘‘tightly bound.’’ Thus, it is often more appropriate to consider the bind-
ing energy per nucleon rather than the total binding energy per se. As an
example, we can again consider carbon-12. Since the mass defect of a carbon-
12 atom is 0.098934 u, the binding energy is 0.098934 × 931 = 92.1 MeV.
Since carbon-12 has 12 nucleons, the binding energy/nucleon = 92.1/12 =
7.67 MeV/nucleon. A graph of the binding energy per nucleon as a function of
mass number is shown in Figure 7.1. This graph is often referred to as the curve of
binding energy.

Binding energy applies to both the protons and neutrons in the nucleus
and to the orbiting electrons. An electrostatic attractive force exists between
particles with opposite charge (e.g., positively charged protons in the nucleus
and negatively charged orbiting electrons). An electron in an inner orbit is
attracted to the positively charged nucleus with a greater force than an electron
farther away. The energy required to remove an electron completely from an
atom is the electron binding energy, which is greater for electrons in the orbits
closer to the nucleus because of the greater attractive force of the nucleus for
inner electrons.

Why don’t the protons in the nucleus repel each other? Normally, an
electrostatic repulsive force exists between particles with the same charge;

Figure 7.1
Average binding energy
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of mass number. All
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plotted; approximate
positions of example
nucleons are indicated.

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of Nucleons in the Nucleus, A

A
ve

ra
ge

 B
in

di
ng

 E
ne

rg
y 

 P
er

 N
uc

le
on

, K
eV

Hydrogen-1

Hydrogen-2

Helium-3

Hydrogen-3

Lithium-6

Lithium-7

Beryllium-9

Boron-11
Nitrogen-14

Fluorine-19

Carbon-12

Chlorine-35

Iron-56

Molybdenum-98

Xenon-130
Neodymium-150

Tungsten-182
Plutonium-208

Xenon-136
Hafnium-176

Plutonium-194
Uranium-235



242 Chapter 7 The Physics of Nuclear Medicine

protons repel each other when separated by a distance greater than the diameter
of a nucleus. Within the nucleus, however, an attractive force, the nuclear
or strong force, is responsible for holding neutrons and protons together.
The energy required to separate the constituent protons and neutrons in a
nucleus is the nuclear binding energy.

Radioactive decay is the process by which an atom rearranges its constituent
protons and neutrons to end up with lower inherent energy. Radioactive decay
occurs spontaneously, and energy is released in the process. The result of
radioactive decay is an atom (the daughter atom) with less inherent energy than
that which preceded it (the radioactive parent atom). This change in energy is
reflected in the nuclear binding energy discussed above. Since binding energy is
the amount of energy missing from an atom, the daughter atom has a higher
binding energy per nucleon than the parent atom.

7.3.2 Line of Stability

If the different unique combinations of protons and neutrons as a nucleus that
are found in nature are cataloged, they can be separated into two groups:
nonradioactive nuclides, which are stable, and radioactive nuclides, which are
called radionuclides. In general, the total number of nucleons, and the ratio of
neutrons to protons, determine whether a nuclide is stable or radioactive.

A graph of the number of neutrons as a function of the number of protons
for each unique stable nuclide produces a curve that follows the line of identity
at low to intermediate atomic numbers (i.e., the nucleus has the same number
of protons as neutrons), and then diverges up, so that for stable nuclides at
higher atomic numbers there are more neutrons than protons in the nucleus.
This curve, shown in Figure 7.2, is called the line of stability, because it depicts
the data from all the stable nuclides. (It is called a ‘‘line’’ in practice even though
it is not a straight line.) When plotted on the same graph, radionuclides fall
off this line of stability. One way of conceptualizing radioactive decay is as the
attempt of any radioactive atom that is ‘‘off’’ of this line of stability to reach the
line of stability. In order to move toward the line of stability, an atom changes
its proton to neutron ratio in the process of radioactive decay.

The greater the binding energy per nucleon, the more stable the atom.
Thus, a second way to conceptualize radioactive decay is as a process an atom
undergoes to increase its binding energy per nucleon. Since the daughter atom
will always have a higher binding energy per nucleon than the parent atom,

Figure 7.2
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Figure 7.1 can also be helpful in visualizing the relationships between parents
and daughters in radioactive decay.

For example, radon-222 is the daughter of radium-226. Radium-226 under-
goes radioactive decay by alpha decay (see below) to produce radon-222.
The alpha particle is emitted from the nucleus of a radium-226 atom during decay
and carries off the ‘‘excess’’ energy of the atom. The binding energy/nucleon
of radium-226 and radon-222 is 7.96 MeV/nucleon and 7.99 MeV/nucleon,
respectively.

7.3.3 Radioactivity

The term radioactivity describes how many radioactive atoms are undergoing
radioactive decay every second. It does not reflect what type of radiation is being
emitted or the energy of that radiation. The common unit for radioactivity is
the curie, abbreviated as Ci, where 1 Ci = 3.7 × 1010 disintegrations per second
(dps). A disintegration refers to an atom undergoing radioactive decay. The SI
unit of radioactivity is the becquerel, abbreviated as Bq, where 1 Bq = 1 dps.
Clearly,

1 Ci = 3.7 × 1010 Bq . (7.1)

Radioactivity in the range of mCi or MBq is common in nuclear medicine
procedures.

EXAMPLE 7.1
The intensity of radiation incident on a detector at range r from a radioactive source is
given by

I = AE
4πr2 ,

where A is the radioactivity of the material and E is the energy of each photon.

Question For technetium-99m with radioactivity of 1 mCi, what is the intensity at a
distance of 20 cm?

Answer From Table 7.1 (see page 250), we know that the photon energy for
technetium-99m is

E = 140 keV .

The radioactivity is A = 1 mCi = 3.7 × 107 Bq. So the intensity at a distance 20 cm from
the source is

I = 3.7 × 107 Bq × 140 keV
4π (0.2 m)2 = 1.03 × 1010 keV

sec · m2 .

7.3.4 Radioactive Decay Law

The radioactive decay law states that the loss of atoms in a radioactive source
per unit time is proportional to the number of radioactive atoms. Thus, letting
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N represent the number of radioactive atoms in the source (and treating it as a
continuous quantity), we have

−dN
dt

= λN , (7.2)

where λ, the constant of proportionality, is called the decay constant. The decay
constant has units of inverse time, and it is a constant for a given radionuclide.
Assuming there are N0 atoms at time t = 0, this expression can be integrated to
determine the number of atoms Nt at time t, yielding

Nt = N0e−λt . (7.3)

The radioactivity A of a source is defined as the number of atoms disin-
tegrating per unit time. (Do not confuse this A with the mass number A of a
nuclide or the area element in computing fluence.) Combining this fact with
(7.2) and (7.3),

A = −dN
dt

= λN , (7.4)

and
At = A0e−λt . (7.5)

Either (7.3) or (7.5) is commonly referred to as the radioactive decay law. The
factor that multiplies the initial value (N0 or A0) is called the decay factor (DF),
and is given by

DF = e−λt . (7.6)

Recall that an exponential curve never goes to zero, so some radioactivity
always remains. The half-life t1/2 is the time it takes for the radioactivity (or the
number of radioactive atoms) to decrease by a factor of 2. By definition,

At1/2

A0
= 1

2
= e−λt1/2 . (7.7)

Taking the natural logarithm of both sides and rearranging yields

t1/2 = 0.693
λ

. (7.8)

Thus, the half-life and decay constant have a fixed relationship across radionu-
clides. As with the decay constant, the half-life is a constant for a given
radionuclide (but differs across radionuclides).

EXAMPLE 7.2
Consider two radionuclides P and Q. Suppose the half-life of P is twice that of Q,
tP
1/2 = 2tQ

1/2. At t = 0, we have N0 atoms of both radionuclides.

Question When will the radioactivities of two radionuclides be equal?
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Answer Since tP
1/2 = 2tQ

1/2, the decay constants of two radionuclides have the relation
λP = λQ/2. So at t = 0, the radioactivities for P and Q are

AP
0 = λPN0 and AQ

0 = λQN0 = 2AP
0 .

Based on the radioactive decay law, we have

AP
t = AP

0e−λPt and AQ
t = AQ

0 e−λQt = 2AP
0e−2λPt.

By equating AP
t and AQ

t , we have the following equation for t:

e−λPt = 2e−2λPt.

The solution is t = ln 2
λP

= tP
1/2. So at t = tP

1/2, the radioactivities of two radionuclides are

equal.

7.4 Modes of Decay
It is important to understand the different modes of radioactive decay as these
govern the different types of ionizing radiation produced. There are four main
modes of decay: (1) alpha decay, which results in emission of an alpha particle;
(2) beta decay, which results in emission of a beta particle; (3) positron decay,
which results in emission of a positron; and (4) isomeric transition, which results
in emission of a gamma ray. These ionizing radiations fall into two classes:
particulate radiation and electromagnetic radiation. The main particulate
ionizing radiations resulting from radioactive decay are alphas, betas, and
positrons. Alpha particles consist of two protons and two neutrons, beta
particles are identical to electrons except that they originate from the nucleus of
an atom, and positrons are antimatter electrons. The electromagnetic ionizing
radiations resulting from radioactive decay are gamma rays. Of these, in medical
imaging we are only concerned with positrons (used for positron emission
tomography in Chapter 9) and gamma rays (used for planar scintigraphy in
Chapter 8 and single photon emission computed tomography in Chapter 9).

7.4.1 Positron Decay and Electron Capture

A nuclide with a ratio of neutrons to protons too low for stability can undergo
electron capture or positron decay. These processes can be thought of as the
transformation of a proton into a neutron, although that is not what literally
occurs. A positron β+ is emitted in the process of positron decay:

p → n + β+ + ν ,

where p is a proton, n is a neutron, and ν is a neutrino. For example, carbon-11
decays by positron emission to boron-11:

11
6 C → 11

5 B + β+ + ν .
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A positron is actually an antimatter electron having a +1 charge and the same
rest mass as that of an electron. The neutrino, emitted with the positron, is
a massless, chargeless subatomic particle. For a given radionuclide undergoing
positron decay, the total kinetic energy of the positron plus the neutrino is a
constant; however, the division of this total energy among the positron and
neutrino varies from emission to emission.

Since a positron is an antimatter electron, an ‘‘unusual’’ atomic process
occurs when a positron and electron meet. After a positron is emitted, it travels
a short distance (several millimeters) in the material in which it is emitted,
depositing its kinetic energy. (Its kinetic energy is transferred to the material by
both collisional and radiative transfer, just as with a beta particle or energetic
electron.) It then meets a free electron in the tissue, and—because the positron
is an antimatter electron—mutual annihilation occurs. From conservation of
energy, two 511 keV annihilation photons appear (511 keV is the energy equiva-
lent to the rest mass of an electron or positron from E = mc2); from conservation
of momentum, they are emitted 180◦ back-to-back.

Atoms that undergo positron decay have an alternative decay mode—the
nucleus can actually capture an electron:

p + e− → n + ν .

Typically, an inner shell (K or L shell) electron is captured as these are in
the closest physical proximity to the nucleus. A given radionuclide source will
undergo electron capture at a certain fraction of time, and positron decays the
other, but a given atom will (of course) only undergo decay once, by one of the
two possible modes.

7.4.2 Isomeric Transition

A radionuclide may decay to a more stable nuclide that has the same atomic and
mass numbers; both the parent and daughter are not only the same element but
the same isotope of that element. In such a case, the parent usually represents
a transient, metastable state with higher energy. This excess energy is released
in the form of gamma rays. Recall from Chapter 4 that gamma rays are in
practice indistinguishable from the x-rays that are now familiar to you. (Some
textbooks indicate that the distinction between x-rays and gamma rays is based
on wavelength or energy, but it is actually based on site of origin: gamma rays
from the nucleus and x-rays from the electron cloud. In practice, most gamma
rays have higher energies than many x-rays; hence, the common but incorrect
distinction is based on wavelength or energy.)

An example of an isomeric transition is

Cs-137 → Ba-137m → Ba-137 + γ , (7.9)

where γ represents the 662 keV gamma ray photon released when Ba-137m
decays to Ba-137. Here, the ‘‘m’’ in Ba-137m represents the metastable
state.
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7.5 Statistics of Decay
Radioactive decay is a random process. If you conduct two experiments in which
you start with exactly N0 atoms of the same radionuclide in each experiment,
and then count the number of decays over a period of exactly one thousandth
of a half-life, you are very likely to get two different counts. The difference
you observe is not due to experimental error but due to the inherently random
nature of radioactive decay. This tells us immediately that the radioactive decay
law described in the previous section [(7.3) and (7.5)] must be considered as
a description of average behavior; the radioactive decay law predicts the mean
number of radioactive atoms and activity not the exact instantaneous number
and amount.

For large numbers of radioactive atoms and for periods of time much smaller
than their half-lives, the random behavior of radioactive decay is governed by
the Poisson distribution, which was first introduced in Section 3.4.3 and is
given by

Pr[N = k] = ake−a

k!
, (7.10)

where a is a parameter of the distribution. This is a probability mass function
describing the probability that a random variable N will equal k in a given
experiment. It can be shown that both the mean and variance of a Poisson
random variable are equal to a, the only parameter of the distribution, as noted
in (3.53) and (3.54).

As an example, suppose that we have N0 identical radioactive atoms
having a long half-life. Over a short period of time �t, only a tiny frac-
tion of these atoms will disintegrate; therefore, we can assume that N0 is
constant over this time. From the radioactive decay law [see in particular
(7.2)], we would expect to see exactly �N = λN0�t disintegrations over
this short time period. In fact, over repeated measurements we would actu-
ally see a variable number of disintegrations. We would also notice that the
average number of disintegrations would tend toward this predicted value.
This value turns out to be the mean of a Poisson distribution, which describes
the true random nature of radioactive decay. That is, for this experiment
we have

a = λN0�t ,

and the Poisson distribution governing the decay of these radioactive atoms is

Pr[�N = k] = (λN0�t)ke−λN0�t

k!
. (7.11)

Let us consider the probability that there are no disintegrations in an
extremely small time interval. Evaluating (7.11) for k = 0 yields

Pr[�N = 0] = e−λN0�t , (7.12)
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which for very small �t is approximated by

Pr[�N = 0] ≈ 1 − λN0�t . (7.13)

Since for an extremely small interval, there is going to be only one disintegration,
or none at all, and since probabilities must sum to 1, we can interpret λN0�t
as the probability of having one disintegration from all N0 radioactive atoms
in the time interval �t. This gives us another way to interpret the radioactive
decay constant λ: It can be thought of as the probability of radioactive decay
per radioactive atom per unit (small) time.

If �t is treated as a parameter and allowed to vary, then (7.11) characterizes
a time-varying process �N(�t), which is known as a Poisson counting process.
Such a process counts the number of events (disintegrations, in this case)
that have occurred over a certain period of time. In this case, the quantity
λN0 is known as the Poisson rate (see Example 3.7). It has units of events
(disintegrations) per second and can be thought of as a type of intensity of the
Poisson process. It is also a measure of the activity A of the decay process.
However, it must be reemphasized that the Poisson process behavior takes place
over time periods much smaller than the half-life of a radionuclide. On the other
hand, the radioactive decay describes the change in A over much longer periods
of time.

EXAMPLE 7.3
A patient study needs to be completed in no more than 10 minutes with at least 3.5 million
counts of photons to achieve the desired image quality.

Question Suppose we detect 6 K photons in the first second. What is the minimal
half-life of the radionuclide for the study to be successful?

Answer During the first second, the number of photons detected is

�N =
1∫

0

λN0e−λtdt = N0(1 − e−λ) = 6 K .

We need at least 3.5 million counts in 10 minutes, so

�N =
600∫
0

λN0e−λtdt = N0(1 − e−600λ) ≥ 3, 500 K .

The above two equations give us

1 − e−600λ

1 − e−λ
≥ 3, 500

6
.

Solving the inequality equation, we have

λ ≤ 9.45 × 10−5 s−1.

The minimal half-life is

t1/2 = 0.693

9.45 × 10−5Sec−1 = 7, 333 s ≈ 2 hr .
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7.6 Radiotracers
There are about 1,500 known radionuclides, of which 200 or so can be
purchased. Out of these, however, only a dozen or so are suitable for nuclear
medicine for several reasons. First, we desire ‘‘clean’’ gamma ray emitters—that
is, ones that do not also emit alpha and beta particles (because these particles
would only contribute to patient radiation dose without usefully contributing
to image formation, as they would never make it out of the patient’s body).
Positron emitters are also suitable because the positrons rapidly annihilate with
electrons to produce gamma rays. Second, unlike projection radiography and
CT, where we require attenuation of the radiation to produce image contrast,
in nuclear medicine we would prefer that there would be no attenuation of the
radiation. This is because in nuclear medicine we are trying to determine the
location of the emitters; attenuation simultaneously adds to the patient dose and
reduces the signal we can detect. This requirement suggests that the energy of the
gamma rays should be high so that they leave the body with little attenuation.
On the other hand, we must be able to actually detect the radiation once it leaves
the body, and the higher the energy the less likely the gamma rays will interact
in the detector. For these reasons (and others, as we will see later), the gamma
emitters used in nuclear medicine have energies in the range 70–511 keV.

Another important property of a radiotracer is its half-life. In general, the
half-life of a radiotracer depends on both the physical half-life of the radionuclide
and the biological half-life of the pharmaceutical; this biological half-life arises
from body processes that metabolize or clear the pharmaceutical. The effective
half-life Te combines the physical Tp and biological Tb half-lives:

1
Te

= 1
Tp

+ 1
Tb

. (7.14)

In general, we need to be able to form images in a matter of minutes, not
seconds or hours. If the radionuclide decays in seconds, there is hardly enough
time to administer and metabolize the compound before the source is lost. On
the other hand, if it takes hours to create an image, patient motion will be a
serious problem and natural metabolic processes will change the distribution
of the radiotracer in the body over the period of the exam. Furthermore, a
long half-life increases the radiation dose to the patient. Therefore, the ideal
effective half-life of the radionuclide is short but not too short. Typical times are
on the order of minutes to several hours. Because of this relatively short time
requirement, some radiotracers are made on-site in generators or cyclotrons,
while others are ordered from a nearby radiopharmacy. A list of the more
commonly used radionuclides and some of their properties is given in Table 7.1.

An important characteristic of a radionuclide is that it must be useful and
safe to ‘‘trace’’ within the body, either by itself or attached to a compound. Some
of the radionuclides in Table 7.1 are more useful than others in this respect.
Iodine, for example is a naturally occurring substance in the body, accumulating
in the thyroid gland. Iodine-123 or I-131 in a sodium salt can be administered
orally and measured in the thyroid to assess thyroid function. Technetium-99m
can be used to label diethylene triamine pentaacetic acid (DTPA), which is
filtered by the kidneys, and serial images of the kidneys can be used to assess
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TABLE 7.1

Common Radionuclides in Nuclear Medicine

Gamma Emitters

Z Nuclide Half-life Photon Energy (keV)

24 Chromium-51 28 d 320
31 Gallium-67 79.2 h 92, 184, 296
34 Selenium-75 120 d 265
38 Strontium-87m 2.8 h 388
43 Technetium-99m 6 h 140
49 Indium-111 2.8 d 173, 247

Indium-113m 1.73 h 393
53 Iodine-123 13.3 h 159

Iodine-125 60 d 35, 27
Iodine-131 8.04 d 364

54 Xenon-133 5.3 d 81
80 Mercury-197 2.7 d 77
81 Thallium-201 73 h 135, 167

Positron Emitters

Z Nuclide Half-life Positron Energy (keV)

6 Carbon-11 20.3 min 326
7 Nitrogen-13 10.0 min 432
8 Oxygen-15 2.1 min 696
9 Fluorine-18 110 min 202

29 Copper-64 12.7 h 656
31 Gallium-68 68 min 1,900
33 Arsenic-72 26 h 3,340
35 Bromine-76 16.1 h 3,600
37 Rubidium-82 1.3 min 3,150
53 Iodine-122 3.5 min 3,100

Source: Wolbarst, 1993.

renal function. Gaseous O2 in which one oxygen atom has been replaced by
oxygen-15 is used to measure blood flow and to assess oxygen metabolism
with positron emission tomography. Fluorodeoxyglucose (FDG) is used by the
body like glucose, except that the (labeled) fluorine-18 atoms remain where the
molecule is first used. Imaging the uptake of FDG in the brain, for example, is
thought to reveal aspects of the mental processes involved in motor, perceptual,
and cognitive tasks.

A final and somewhat subtle desirable characteristic for gamma emitters is
that they should have monoenergetic (single energy) decay. The reason for this
is that with monoenergetic emissions, energy-sensitive detection can be used to
discriminate the primary photons from those that have been Compton scattered.
It can be seen from Table 7.1 that most of these common radionuclides are
monoenergetic. Even those that are not monoenergetic, such as Tl-201 and
Ga-67, emit only two or three different energy photons, in contrast to a typical
polyenergetic x-ray beam, which has a continuous spectrum of energies.
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Technetium-99m (Tc-99m) is by far the most commonly used gamma ray
producing radionuclide in nuclear medicine. It is easily generated on-site using
a generator containing molybdenum-99, whose radioactive decay (half-life is
67 hours) produces Tc-99m. Tc-99m can in turn be tagged to a variety of
molecules, including sulfur colloids, glucoheptonate, albumin macroaggregates,
and phosphates, which can be used to track a variety of physiological processes
in the body. Tc-99m has a half-life of 6 hours and a monoenergetic gamma
ray energy of 140 keV, which are both ideal in terms of balancing the various
radionuclide requirements. As we describe in the following chapters the instru-
mentation related to planar scintigraphy and SPECT, it will be useful to think
of Tc-99m as the radioactive source and to work out examples with this source
as well.

EXAMPLE 7.4
Consider an experiment that uses dual radionuclides, technetium-99m and thallium-201.
At t = 0, we have equal number of atoms of both radionuclides.

Question When will the count rate of technetium-99m be smaller than 20 percent of
the total count rate?

Answer The average number of photons from technetium-99m is given by

�NTc(t) = λTcN0e−λTct.

Similarly, for thallium-201, we have

�NTl(t) = λTlN0e−λTlt.

When the counts of technetium-99m are smaller than 20 percent of the total counts, we
must have

4�NTc(t) ≤ �NTl(t).

From Table 7.1, we know λTc = 0.693/6 hr−1 and λTl = 0.693/73 hr−1. Solving the
above equation, we have

t = 36.65 hr.

7.7 Summary and Key Concepts
Nuclear medicine makes use of radiotracers (compounds that are chemically
labeled with radioactive atoms), which depend on the radioactive decay of
radionuclides. The choice and behavior of specific radionuclides significantly
influences the utility of the radiotracer. In this chapter, we presented the
following key concepts that you should now understand:

1. Nuclear medicine produces images that depict the distribution of a radio-
tracer; this distribution is governed by body function, not structure.

2. Nuclear medicine makes use of radionuclides; these are unique nuclear
species representing radioactive atoms, which emit ionizing radiation upon
(spontaneous) decay.
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3. A given radionuclide is characterized by its decay mode (which indicates
the type of ionizing radiation emitted) and half-life (the time for half the
radioactive atoms to decay, on average).

4. Radioactive decay is a random process that is governed by the Poisson
distribution. Its statistical properties are determined by the number of
radioactive atoms, time, and a decay constant, which is a characteristic of a
given radionuclide.

5. Radiotracers make use of radionuclides that emit radiation of appropriate
type and energy, have half-lives that are not too short or too long, and can
be used safely in the body to reveal physiology or function.

Further Reading
Cherry, S.R., Sorenson, J.A., and Phelps, M.E.

Physics in Nuclear Medicine, 4th ed. Philadel-
phia, PA: W.B. Saunders, 2012.

Christian, P.E. and Waterstram-Rich, K.M. Nuclear
Medicine and PET/CT: Technology and Tech-
niques, 7th ed. New York, NY: Elsevier/
Mosby, 2012.

Rollo, F.D. Nuclear Medicine Physics: Instrumenta-
tion and Agents. St. Louis, MO: C. V. Mosby,
1977.

Wolbarst, A.B. Physics of Radiology, 2nd ed. Nor-
walk, CT: Appleton and Lange, 2005.

Problems
Fundamentals of Atoms

7.1 Show that 1 u is equivalent to 931 MeV.
7.2 A deuteron has 1 proton and 1 neutron and has a mass of 2.01355 u.

Compute its mass defect and binding energy.

Radioactive Decay and Its Statistics

7.3 Compute the mean and variance of a Poisson distribution with parameter a.
7.4 Suppose there are 1 × 109 radioactive atoms in a given sample of iodine-

123 (123I), which has a half-life of 13 hours.

(a) What is the radioactivity of the original sample?
(b) How many radioactive atoms can be expected to be present after

24 hours?
(c) What is the probability that there will be 1 × 108 radioactive atoms

left after 24 hours?

7.5 Consider the problem in Example 7.1 and suppose we have 1 × 1012

atoms of technetium-99m to start with. What is the intensity measured at
t = 0 and at t = 1 hour?

7.6 (a) How long will it take for a radioactive sample with activity 1 Ci to
decay to activity 1 Bq if the half-life is τ .

(b) What approximate order of magnitude would you want the half-life
of a radioactive tracer used in nuclear medicine to be? Milliseconds?
Seconds? Minutes? Hours? Days? Weeks? Years? Explain your answer.
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7.7 Consider the imaging system shown in Figure P7.1. The D × D square
detector is on the x-y plane. The center of the detector coincides with the
origin of the x-y plane. A point source, S, is on the z-axis a distance R
away from the detector plane. The intensity on the detector is defined as
the energy of photons detected on a unit area of detector in unit time. If
the radioactivity of the source at time t = 0 is A0,

(a) What is the intensity at each point on the detector plane as a function
of time?

(b) What is the average intensity on the plane as a function of time?

Figure P7.1
A simple imaging system
with a radioactive source
and a planar detector. See
Problem 7.7.
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7.8 (a) Show that the decay factor DF is related to the half-life by

DF = e0.693t/T1/2 .

(b) The average lifetime τ of a radioactive sample is given by τ = 1/λ.
Find an expression for τ in terms of the half-life.

7.9 A vial containing 99mTc is labeled ‘‘2 mCi/ml @ 8 a.m.’’

(a) What is the activity of the sample at 4 p.m. on the same day?
(b) What volume should be withdrawn at 4 p.m. on the same day to

prepare an injection of 1.5 mCi for a patient?

7.10 (a) Assume that 108 atoms (N0) are undergoing radioactive decay. If after
864,000 seconds (10 days) there are 9.9212 × 106 parent atoms left,
what is the half-life of this radionuclide?

(b) If for this experiment the Poisson rate is 267.42 disintegrations per
second, what is the average number of disintegrations over 0.01
seconds?

(c) What is the probability that there are more than two disintegrations
over this time period?

7.11 At 1:00 p.m., we have 8 g of 21
11Ms, which has a half-life of 2 hours. How

much will have decayed by 5:00 p.m.?
7.12 A radioactive element is labeled 3 mCi/ml @ 8 a.m. One hour later its

activity is 1 mCi/ml.

(a) What is the half-life of this element?
(b) What is the activity of the same sample at 12 noon on the same day?
(c) What volume should be withdrawn at 12 noon on the same day to

prepare an injection of 1.5 mCi for a patient?
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Radiotracers

7.13 (a) Explain whether each radiotracer listed below is good or bad for
medical imaging.
(i) Eγ = 30 KeV, t1/2 = 7 hours;
(ii) Eγ = 150 KeV, t1/2 = 5 hours; and
(iii) Eγ = 200 KeV, t1/2 = 10 days.

(b) The activity of an object at t = 0 is 4 × 1010 dps. Its activity reduces
to 1 × 1010 dps after 5 hours. Compute the expected number of
radioatoms present at t = 0.

7.14 A doctor referred a patient to have a SPECT scan using a specific
radiotracer. That radiotracer was not available in the lab, but another
radiotracer with the same emitted photon energy and half-life was avail-
able. Should the technician make the substitution? Explain.
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8.1 Introduction
As in diagnostic x-ray imaging, nuclear medicine imaging evolved from
projection imaging to tomographic imaging. Projection studies in nuclear
medicine, called planar scintigraphy, have always used the Anger scintillation
camera, a type of electronic detection instrumentation. The corresponding
tomographic imaging method, called single photon emission computed tomog-
raphy (SPECT), uses one or more rotating Anger cameras to obtain projection
data from multiple angles. These imaging methods depend on radiotracers
labeled with radioactive atoms whose decay produces a single gamma photon
directly. Another imaging method, called positron emission tomography (PET),
is based on radiotracers labeled with radioactive atoms whose decay produces
a positron that is subsequently annihilated, producing two gamma photons.
PET is implemented only as a tomographic imaging method and does not
have a corresponding projection imaging mode. Together, SPECT and PET are
referred to as emission computed tomography; they are described in the next
chapter. Here, we focus on planar (2-D projection) scintigraphy.

8.2 Instrumentation
The three basic imaging modalities in nuclear medicine—planar imaging,
SPECT, and PET—can be logically grouped in two ways. Planar imaging and
SPECT use radiotracers that are gamma emitters, while PET uses radiotracers
that emit positrons. On the other hand, SPECT and PET require tomographic
reconstruction techniques (like CT), while planar imaging forms images by
projection (as in projection radiography). In this section, we describe the instru-
mentation in planar scintigraphy, much of which is also used in SPECT, which
is described in Chapter 9. Because of the peculiar nature of positron decay, PET
scanners have significantly different instrumentation, which we also describe in
Chapter 9.

255
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Figure 8.1
Components of an Anger
scintillation camera.
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As described in the Overview to Part III, nuclear medicine images are based
on the distribution of radioactivity. Unlike projection radiography and CT, we
are thus interested not in total intensity but in the detected decay rate of the
source, typically expressed as counts per time. Nuclear medicine images are thus
formed event-by-event.

The Anger scintillation camera, or gamma camera, was invented in the late
1950s by Hal Anger of the Donner Laboratory at the University of California,
Berkeley. It is the most commonly used imaging instrument in nuclear medicine
today. The complete camera system consists of a multihole lead collimator, a 10-
to 25-inch circular, square, or rectangular sodium iodide scintillation crystal,
an array of photomultiplier tubes on the crystal, a positioning logic network, a
pulse height analyzer, a gating circuit, and a computer, as shown in Figure 8.1.
We now describe each of these components in detail.

8.2.1 Collimators

The collimator is a 1- to 2-inch thick slab of lead of the same dimensions as
that of the scintillation crystal, with a geometric array of holes in it. The lead
that separates each hole is called a septum; collectively the lead represent septa.
The collimator provides an interface between the patient and the scintillation
crystal by allowing only those photons traveling in an appropriate direction
(i.e., those that can pass through the holes without being absorbed in the lead)
to interact with the crystal. Thus, the collimator discriminates against photons
based on their direction of travel, and restricts the field of view of the crystal. In
this regard, the collimator is not like a lens (although some authors draw that
comparison) because it does not steer or focus the photons the way a lens does.

There are several types of collimators used with Anger cameras: parallel-
hole, converging, diverging, and pinhole (Figure 8.2). The most commonly used
collimator is the parallel-hole collimator, which consists of an array of parallel
holes perpendicular to the crystal face, as shown in Figure 8.2(a). With parallel-
hole collimators, the image on the crystal face is the same size as the object. Such
collimators are either cast or fabricated from corrugated lead sheets. Originally,
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Figure 8.2
Different types
of collimators:
(a) parallel-hole,
(b) converging,
(c) diverging, and
(d) pinhole.

(a) (b)

(c) (d)

collimator holes were circular in cross section. This meant that the lead septa
were thicker in some areas than in others. Today, collimators have square,
hexagonal, or triangular holes, and the septa are of uniform thickness around
each hole.

Converging and diverging collimators are available as well but less frequently
used in practice. A converging collimator, shown in Figure 8.2(b), has an array
of tapered holes that aim at a point—the focal point—some distance in front of
the collimator. The image that is presented to the crystal is a magnified version
of the real object. A diverging collimator, shown in Figure 8.2(c), is essentially
an upside-down converging collimator. Diverging collimators have an array of
tapered holes that diverge from a hypothetical focal point behind the crystal. In
this case, the image presented to the crystal face is smaller than the real object.
Since converging and diverging collimators are simply flipped versions of each
other, some collimator carriages actually have an insert that can be flipped either
way, in effect producing two collimators in one (a div/con collimator).

EXAMPLE 8.1
When a converging or diverging collimator is used in an Anger camera, the image on the
crystal face is not of the same size as that of the object.

Question Using a diverging collimator with a focal length of zf , what is the ratio
between the size of the image and the size of the actual object when a planar object is
placed parallel to the crystal face at a distance z away from the collimator face?

Answer For a diverging collimator, only the photons traveling towards the focal point
can be detected. (Others will be absorbed by the collimator walls.) Using geometry and
ignoring the height of the collimator, we have the ratio between the size of the image and
the size of the actual object as

Si

So
= zf

z + zf
.

Pinhole collimators comprise a different class of collimators. As shown in
Figure 8.2(d), these are thick conical collimators with a single 2–5 mm hole in
the bottom center. As the source object is moved away from the pinhole, its
image on the scintillation crystal gets smaller. However, the image is not always
magnified (or minified) compared with the object. In fact, the camera image is
magnified (i.e., larger than real size) from the collimator face to a distance equal
to the length of the collimator and is then progressively smaller (minified) at
larger distances.
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The magnification produced by converging and pinhole collimators is useful
in those cases when the object being imaged is significantly smaller than the
field of view of the camera and when the object’s size or the amount of detail
within the object challenges the intrinsic spatial resolution capabilities of the
system. With magnification, the image presented to the camera face is larger
than life-size. This means that detail that is smaller in the ‘‘real world’’ than
the resolving capability of the camera may possibly still be resolved, as long as
the actual physical size presented to the camera face is larger than the camera’s
intrinsic resolution. This same concept is what allows us to see small details
with a magnifying glass that are invisible to the unaided eye.

8.2.2 Scintillation Crystal

The scintillation detector is the most commonly used detector in nuclear medicine
because it is more sensitive to electromagnetic radiation than a gas-filled detector.
This type of detector is based on the property of certain crystals to emit light
photons (scintillate) after deposition of energy in the crystal by ionizing radiation.
The most commonly used scintillation crystal in nuclear instrumentation is
sodium iodide with ‘‘thallium doping,’’ which is written as NaI[Tl]. Since
NaI[Tl] crystals absorb moisture from air, the crystals are hermetically sealed
in aluminum ‘‘cans.’’ Because the aluminum absorbs alphas and betas, NaI[Tl]
detectors are generally used only for the detection of x-rays and gamma rays.

The scintillation crystals in a gamma camera are typically 10–25 inches in
diameter and 1/4–1 inch thick. The thicker crystals are used for high-energy
gamma rays, while the thinner crystals are used for low-energy gamma rays. Of
course, any camera has only one crystal, so the user purchases a system with
a crystal thickness matched to his or her needs. Like the screens that are used
in projection radiography, thicker crystals stop more radiation than thinner
crystals, but they also have poorer spatial resolution—so there is a tradeoff
between efficiency and resolution just as there is in projection radiography. We
will have more to say about this later in the chapter.

8.2.3 Photomultiplier Tubes

Each gamma photon that interacts in the scintillation crystal (by a photoelec-
tric or Compton scattering process) produces a burst of light in the crystal,
comprising thousands of light (scintillation) photons. This light is reflected and
channeled out of the back of the crystal, through a glass plate and is incident
upon an array of photomultiplier tubes. Each photomultiplier tube (PMT),
shown in Figure 8.3, is a vacuum tube with two important components: a
sensitive front surface, called the photocathode, and a series of electrodes, called
dynodes. The PMT serves two important functions: it converts a light signal
into an electrical signal and it amplifies this electrical signal.

The front surface of a PMT has a transparent window through which light
travels in order to hit a photosensitive surface—the photocathode, an extremely
thin layer of an alloy such as cesium and antimony. For every four to five light
photons incident upon the photocathode, one electron is released or ejected
from the photocathode by the photoelectric effect.
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Figure 8.3
A schematic of a
photomultiplier tube.
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These photoelectrons are accelerated to the first dynode, an electrode that
is positively charged and positioned at a short distance from the photocathode
(see Figure 8.3). For each electron reaching the first dynode, 3–4 electrons
are released. The second dynode has a higher voltage than the first; thus, the
electrons liberated from the first dynode are accelerated to the second dynode.
Each of these electrons in turn liberates three to four electrons from this second
dynode. This process is repeated at 10–14 successive dynodes in the PMT,
and 106 to 108 electrons reach the tube’s anode (i.e., the final, most positively
charged electrode) for each electron liberated from the photocathode.

These electrons comprise the output of the PMT, and they form a current
pulse. The PMT outputs such a pulse each time a gamma photon interacts and
deposits energy in the NaI[Tl] crystal, triggering the sequence of events in the
tube as just described. This current pulse is directed into a preamplifier circuit,
which amplifies the signal to provide a voltage pulse with a peak voltage—that
is, its pulse height—that ranges from a few millivolts to a few volts.

As stated above, an array of PMTs covers the back of the crystal. This
array means that light produced in the scintillation crystal is detected no matter
where it is produced. An array is also necessary to produce the signals used
in event positioning. The original Anger camera had seven PMTs, but modern
gamma cameras have anywhere from 37 to 91 tubes or more, often arranged
in a hexagonal pattern, as shown in Figure 8.4. Generally, more PMTs mean
better spatial resolution and image uniformity, but this comes with a higher
initial cost, more difficult calibration procedures, and more costly maintenance.
The number of tubes is determined by the size and shape of both the crystal
and each individual PMT. The tubes must be smaller, of course, when there are
more of them arrayed over the scintillation crystal. Early PMTs had round cross
sections, whereas current PMTs often have hexagonal cross sections to better
‘‘tile’’ the scintillation crystal without gaps between tubes.
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Figure 8.4
Example arrangement of
61 PMTs on the face of a
circular Anger camera.
Rectangular scintillators
are most commonly used
today and more complex
shapes and arrangements
of the PMTs are used to
fit those crystals.
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8.2.4 Positioning Logic

When a gamma photon interacts with the crystal, thousands of scintillation
photons are produced, and every PMT produces an output pulse. The goal of
the Anger camera’s positioning logic circuitry is to determine both where the
event occurred on the face of the crystal (see Figure 8.4) and the combined
output of all the tubes, which represents the light output of the crystal (which
in turn represents the energy deposited by the gamma photon). These output
signals are denoted as X and Y for the estimated two-dimensional position of the
event and Z for the total light output (which is proportional to the total energy
deposited in the crystal by that gamma photon). The amplitude of a given tube’s
output is directly proportional to the amount of light (number of scintillation
photons) its photocathode receives. The tubes closest to the scintillation event
will have the largest output pulses, while those farther away will have smaller
output pulses. By analyzing the spatial distribution of pulse heights, the location
of a single scintillation event (X, Y) can be determined quite accurately—to
within a fraction of the diameter of a PMT, in fact. We will discuss this process
later, but for now it is important to remember that the rate of (X, Y, Z) signals
or pulses coming from the camera is proportional to total radioactivity, and
the size or height of each Z-pulse is proportional to the energy deposited in the
crystal by the gamma photon for the event that (X, Y, Z) represents.

8.2.5 Pulse Height Analyzer

The desired goal of the Anger camera is to create an image that portrays
the distribution of radioactivity (i.e., sites and numbers of radioactive atoms)
within the patient. Because the collimator only allows those photons traveling
in predetermined directions to interact in the crystal, a line drawn from the
scintillation event in the crystal through the nearest collimator hole is presumed
to intersect the site of origin of the photon (i.e., the radioactive atom it came
from) in the patient. If the photon has been Compton scattered in the patient,
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a line drawn through its direction of flight will not intersect its site of origin
but instead the site of the Compton interaction. Thus, photons scattered into
the field of view could be falsely attributed to activity at the sites of Compton
interactions in the patient. It is clearly not desirable to have these scattered
photons contribute to the final image, as they significantly degrade resolution
and contrast. It is important to note that a large percentage of photons striking
the crystal have been scattered in the patient.

Fortunately, photons that have been Compton scattered can be distin-
guished from those that arrive directly by analyzing the energy deposited in
the crystal via the Z-pulse, whose height is proportional to the total energy
deposited in the crystal. In practice, we know the energy of gamma photons
emitted from the radioactive source since we choose the radionuclide to use
in a given imaging session and we understand its radioactive decay properties.
If this amount of energy is deposited in the crystal, the gamma photon could
not have Compton scattered in the patient since it would have lost some of
its energy in the process [as determined in (4.8)]. Of course, a gamma photon
could emerge from the patient with all its energy (i.e., without having interacted
in the patient) and only deposit part of its energy in the crystal (via a Compton
scattering interaction). We cannot distinguish between this event and one in
which the gamma photon Compton scattered in the patient and then deposited
all its remaining energy in the crystal via a subsequent photoelectric event. In
practice, we can only be certain that the gamma photon has not scattered if it
deposits in the crystal the full amount of energy with which it was emitted, and
these are the only events we allow to contribute to image formation.

Scintillation spectrometry, or pulse height analysis, refers to the use of a
scintillation counting system to obtain an energy spectrum from a radioactive
source. This energy spectrum is a plot of the number of pulses with a given
pulse height as a function of the pulse height, as illustrated in Figure 8.5(a). The
measured spectrum is a function of the energies of gamma rays emitted by the
source and the interactions of these photons in the source and any intervening
material (e.g., the body), and in the crystal. It should be noted that the pulse
heights on the x-axis generally have arbitrary units (AU), although they could
be scaled to units of energy (keV) if the camera were properly calibrated.

A pulse height spectrum, as shown in Figure 8.5(a), has two main features:
a broad plateau called the Compton plateau and a peak at the highest pulse
heights, which is called the photopeak. The broad plateau represents Compton
scatter interactions in the patient and/or crystal, broadly distributed in energy

Figure 8.5
Pulse height spectrum for
technetium-99m, plotting
number of pulses or count
rate as a function of pulse
height or energy.
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due to the random nature of the Compton scatter angle. The rightmost limit of
this plateau, called the Compton edge, represents Compton interactions in which
the incoming (unscattered) gamma photon is backscattered 180◦ in the crystal,
thus depositing the maximum energy possible in a single Compton interaction.
The photopeak represents gamma photons that come directly from the source
without interacting and losing any energy and deposit all of their energy in
either a single photoelectric interaction or one or more Compton interactions
followed by a photoelectric interaction. Because a gamma photon cannot lose
all its energy in a single Compton scatter event, there is a separation between
the Compton plateau and the photopeak.

Of importance, scintillation detectors have imperfect energy resolution, as
discussed later in the chapter. As a result, the photopeak, which should be an
infinitely thin vertical line, is spread. The degree of spreading is related to energy
resolution in exactly the same way as the point spread function is related to
spatial resolution.

EXAMPLE 8.2
The pulse height analyzer is used to reject photons that have been Compton scattered.

Question What is the maximum angle through which a 140-keV photon can be
scattered and still be accepted within a 20 percent pulse height window?

Answer Note that 20 percent pulse height window is 10 percent on either side.
Therefore,

140 keV × 0.1 = 14 keV ,

140 keV − 14 keV = 126 keV.

Since

hν ′ = hν

1 + hν

m0c2 (1 − cos θ )
,

we have

126 keV = 140 keV

1 + 140 keV
511 keV

(1 − cos θ )
.

Solving for θ yields θ = 53.54◦.

8.2.6 Gating Circuit

The Z-pulse is proportional to the total energy deposited in the crystal by the
gamma ray photon and is used by the pulse height analyzer to discriminate
against Compton-scattered photons. The pulse height analyzer is used to set
an acceptance window around the photopeak (the dominant energy for the
particular radiotracer being used), as shown in Figure 8.5(b). Its lower threshold
is set to discriminate against Compton events, which have lower energy than a
non-Compton event. Its upper threshold is set to discriminate against multiple
(simultaneous, summed) events, which have more energy than a single event
(and for which ‘‘position’’ is a meaningless concept). Because scintillation
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detectors have imperfect energy resolution, it is not desirable to use an extremely
narrow window, because desirable events (i.e., true photopeak events) would
be excluded. Because the window has a finite width, some scattered photons
may still be accepted (those which scatter through a small angle, and thus
retain most of their energy). For example, 140-keV photons can scatter by as
much as 50◦ and still be accepted by the often-used 20 percent window (i.e.,
a window of ±10 percent around the photopeak energy). In practice, proper
window setting is vital, as a window that is not centered around the photopeak
(an offset window) can degrade field uniformity of response for many cameras;
this is typically a result of the slightly better light collection efficiency directly
under each photomultiplier tube.

Current cameras, with microprocessor-based correction circuitry (which
will be described later), generally maintain good uniformity even with offset
pulse height windows. Such cameras may be purposely peaked to the high
side of the photopeak to further reduce scatter, by eliminating any Compton-
scattered photons that show up in the lower half of the photopeak (due to every
camera’s less than perfect energy resolution). Some cameras have two or three
separate pulse height windows to simultaneously image the multiple emissions
of some radionuclides (e.g., those from gallium-67). In this way, counts are
acquired in a shorter amount of time as the multiple energy emissions are
utilized.

8.2.7 Image Capture

Together, the positioning logic and pulse height analyzer (with its gating circuit)
yield an estimated position (X, Y) of each scintillation event that falls within the
energy discrimination window. Earlier Anger cameras were analog and relied on
photographic image formation. In these systems, the X- and Y-pulses associated
with each Z-pulse that passed through the pulse height analyzer were used to
position a finely focused dot of light on a cathode ray tube face. A collection of
these light dots over time would produce an image. Since it took a period of time
for a complete picture to be obtained, perhaps up to several minutes to obtain
several hundred thousand counts, an integrating medium was used to record the
image. The most frequently used media were various types of photographic film.
A photographic camera was mounted on a cathode ray tube, and the shutter
was left open during the entire image acquisition period. The film was developed
and an image of the distribution of radioactivity was obtained.

It is standard today for an Anger camera to be interfaced to a computer.
During the transition period from analog image capture, as described above,
to digital capture via computer, the (X, Y, Z) signals were digitized (typically
with 16-bit quantization) and used by software to create images. In today’s
cameras (see Figure 8.1), the output of each PMT is digitized by its own analog-
to-digital converter, and the positioning logic and image formation described
below are implemented in a fully digital fashion. As a result, the computer and
its software become an integral and necessary part of the planar scintigraphy
image formation process, as they do in computed tomography. We describe the
computer-assisted image formation process in Section 8.3.
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8.2.8 Solid State and Other New Cameras

While Anger scintillation cameras remain the dominant nuclear medicine imag-
ing device, newer detectors are rapidly appearing. Of these, the solid state
camera is fast becoming an important competitor to the Anger camera. Solid
state cameras use semiconductors as the detector. Of note, semiconductors
directly produce current when gamma photons deposit energy in them, and thus
a semiconductor detector combines the functions of the crystal and PMTs. The
most commonly used semiconductor is cadmium-zinc-telluride (usually abbrevi-
ated as CZT); CZT has better energy resolution and count-rate capability than
typical scintillation detectors. The basic signal in a semiconductor detector is pro-
duced by electron-hole pairs created along the path as radiation passes through
the detector and produces ionization. Each electron-hole pair is somewhat anal-
ogous to an ion pair. The motion of electron-hole pairs in an applied electric field
generates the electrical signal. In many cases, the semiconductor is pixelated,
meaning that it is partially cut (in the thickness direction) into an array of 1 to
3 mm pixels. This pixelation facilitates the algorithms used for event positioning.

A hybrid approach between a conventional scintillation detector with PMTs
and a semiconductor detector is the use of a scintillation crystal (typically,
pixelated cesium iodide instead of continuous sodium iodide) with photodiodes
instead of photomultiplier tubes. This is essentially the same approach as
discussed in Section 6.2.4 for CT. While such systems are not ‘‘solid state’’ in the
same way as a semiconductor, they are often labeled this way in the marketplace.
Whether a continuous or pixelated detector is used and whether the detection
system is solid state, the general approach to image formation described below
is equally valid.

Despite these advances, the conventional gamma camera remains the
‘‘workhorse’’ of nuclear imaging. This is because its performance-to-cost ratio is
very high, particularly at larger fields of view—for example, for general purpose
and SPECT imaging.

8.3 Image Formation
The primary mechanism for creating images in planar scintigraphy is to detect
and estimate the position of individual scintillation events on the face of an
Anger camera. We now describe how the locations of these events are estimated,
how these locations are combined to produce images, and what these images
represent mathematically in terms of the distribution of radioactivity in the body.

8.3.1 Event Position Estimation

A single scintillation event produces a flash of light that yields a response from
many, if not all, PMTs attached to the Anger camera. The amplitude or height of
each tube’s response is proportional to its distance from the scintillation event,
and this is how the position (X, Y) of the scintillation event is encoded. We start
our discussion of event position estimation with a general mathematical frame-
work and then specialize the presentation to both analog and digital cameras.

Consider a coordinate system with the origin (0, 0) at the center of the
crystal. Let the PMTs be indexed by k = 1, . . . , K, and their positions be given
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by (xk, yk). Suppose the amplitudes of their response to a scintillation event are
given by ak, k = 1, . . . , K. These heights are viewed as representing samples of a
2-D distribution of light, and the location of the maximum of this distribution
represents the position (X, Y) of the event.

We could set (X, Y) equal to the location of the PMT having the largest
amplitude, but that would provide only a very crude estimate of the location,
yielding a resolution on the order of the size of a tube. Instead, scintillation
cameras implement a center of mass calculation to estimate (X, Y). To calculate
the center of mass of the tube responses, we first form1

Z =
K∑

k=1

ak , (8.1)

which represents the mass of the event’s light distribution. This signal is also
proportional to the total light output from the scintillation event (called the
Z-pulse) and is used in the pulse height analysis circuit, as previously discussed.
Given the total mass Z, the components of the center of mass (X, Y) are
calculated as

X = 1
Z

K∑
k=1

xkak , (8.2)

Y = 1
Z

K∑
k=1

ykak . (8.3)

These three values (X, Y, Z) represent the ‘‘heart’’ of an Anger camera. Together,
they provide the location (X, Y) of the scintillation event and the total light
output Z—or, equivalently, the total energy—of the event.

It is worth making a couple of comments about this process. First, it should
be understood that the ak’s are actually waveforms, short pulses arising from the
scintillation event causing the cascading electrons in each PMT. The individual
numbers X, Y, and Z represent values obtained at the peak of such pulses or
by integrating over a short time frame. Second, small signals occurring in PMTs
that are distant from the event can degrade the position estimates. Therefore,
a threshold circuit is added to permit only signals above a certain level to
contribute the estimates of X and Y. This discriminator circuit does not apply
to the estimate of Z, which still uses the output of all PMTs. Do not confuse
this discriminator circuit with the pulse height gating circuit, which determines
whether the Z signal is in a range sufficient to qualify the event as both a
non-Compton and nonmultiple event.

In a modern Anger camera, the event position estimation is implemented
digitally. In most camera designs, the output of each photomultiplier tube goes
directly to a separate analog-to-digital converter, typically with at least 16-
bit precision. Then, software embedded in programmable read-only memory

1In this and the following two equations, we use discrete summation instead of integration to
acknowledge the relatively small number of PMTs, photodiodes, or other signal outputs from a
camera.
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Figure 8.6
Arrangement of nine
square PMTs of an Anger
camera.
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(PROM) chips determines the event position utilizing the center-of-mass calcu-
lation described above. An advantage of digital position estimation systems is
that alternative algorithms can be easily implemented.

EXAMPLE 8.3
Consider an Anger camera with nine square PMTs arranged in a 3 × 3 array, as shown
in Figure 8.6. Each tube is numbered, and the recorded pulse heights of the tubes are: 5,
10, 15, 10, 40, 30, 0, 5, 10, in the order of the tube numbers.

Question What is the value of the Z-pulse? What is the position of the event?

Answer The value of the Z-pulse is the summation of the pulse height recorded by each
tube:

Z = 5 + 10 + 15 + 10 + 40 + 30 + 0 + 5 + 10 = 125 .

The centers of the tubes are

c1 = (−2, 2), c2 = (0, 2), c3 = (2, 2) ,

c4 = (−2, 0), c5 = (0, 0), c6 = (2, 0) ,

c7 = (−2, −2), c8 = (0, −2), c9 = (2, −2).

The estimated position of the event is

X = 1
Z

K∑
k=1

xkak = 80/125 = 0.64 mm,

Y = 1
Z

K∑
k=1

ykak = 30/125 = 0.24 mm .

8.3.2 Acquisition Modes

For each scintillation event whose pulse height falls within the photopeak energy
window, an Anger camera provides the estimated position (X, Y) of the event,
the time of the event, and the peak height of the Z-pulse. In list mode acquisition,
the (X, Y) signals are transferred directly to computer memory in the form of
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Figure 8.7
Anger camera acquisition
modes: (a) list mode;
(b) static frame mode;
(c) dynamic frame mode;
(d) multiple-gated
acquisition; and (e) whole
body.

(X1, Y1, Z1, t1)

(X2, Y2, Z2, t2)

(X3, Y3, Z3, t3)

(Xn, Yn, Zn, tn)

y

x

(b)(a)

(d)(c)

(e)

Time Cardiac
phase

a list of (X, Y) coordinates, as shown in Figure 8.7(a). In addition to the (X, Y)
signals, typically the Z-pulse value is also recorded, and timing markers at evenly
spaced intervals (e.g., every 10 ms) are also included. Physiological trigger marks,
such as the occurrence of the R-wave from an electrocardiogram (ECG) monitor
of the patient’s heart, can also be inserted. In list mode acquisition, no matrices
or images are formed within computer memory during acquisition. Although
no images are produced immediately, list mode acquisition is useful because the
(X, Y) signals are permanently recorded in computer memory, allowing flexible
control over subsequent formatting into digital matrices. The precision of the
event position is limited only by the number of bits used to store the X and Y
positions. The downside is that a large amount of storage space is required even
for a single study.

Static frame mode acquisition, as shown in Figure 8.7(b), represents the face
of the Anger camera as a computer matrix—that is, a finite collection of discrete
bins, or pixels, as introduced in Section 2.2. Accordingly, each pixel corresponds
to a certain area of the camera face and is designated by a specific range of
(X, Y) signal values. An image is created by starting with a zero image at the
beginning of the scan and then incrementing the pixel containing (X, Y) with
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each (accepted) scintillation event. Finally, if there are 400,000 accepted events,
then the sum of all the pixel values in the final image will be 400,000—that is,
the total counts for the scan.

Dynamic frame mode acquisition, as shown in Figure 8.7(c) is a temporal
succession of frame mode images. After the first image is created and stored,
its buffer (matrix) is zeroed and another image is accumulated in identical
fashion. This mode allows the study of transient physiological processes such
as radiotracer uptake, washout, or redistribution. Movies of the temporal
progression of a dynamic process can be created by appending the frames and
replaying them after acquisition is complete. Generally, the number of pixels
in dynamic frame mode images is smaller in order to yield higher counts (and
correspondingly lower noise) in each pixel. [Increasing pixel size to reduce
noise has already been discussed in the context of projection radiography;
see (5.37).]

A further extension of frame mode acquisition is multiple-gated acquisition
(or MUGA), as depicted in Figure 8.7(d). In this mode, the data from the camera
are distributed to a series of matrices in computer memory. A trigger signal
(usually a physiological trigger such as the R wave of the ECG) controls the
distribution of data among the matrices. Immediately after the trigger, data from
the camera are placed in the first matrix for a fixed time interval. When the time
interval has elapsed, data are then placed in the second matrix for the same time
interval. This process continues until the occurrence of a new trigger signal, at
which time data distribution restarts at the first frame, or until all the assigned
matrices in computer memory are used, in which case no data are acquired until
the occurrence of a new trigger signal.

Multiple-gated acquisition is used to study a repetitive (cyclic) dynamic pro-
cess. For example, in a cardiac-gated blood pool study, in which the circulating
blood is labeled with radioactive atoms and the beating chambers of the heart are
examined, the data from the corresponding phases of many heartbeats are super-
imposed during acquisition, resulting in a series of images representing one ‘‘aver-
age’’ cardiac cycle. Typically, the cardiac cycle is divided into 16–64 frames,
with each frame representing 1/16–1/64 of the cycle.

Whole-body acquisition is yet another variation of static frame mode
acquisition. In this mode, the body is divided into a matrix of pixels, as
depicted in Figure 8.7(e) and a series of static frames are acquired to cover the
body, in a ‘‘step and shoot’’ sequence. As an alternative, the camera or bed
can continuously move. The position of the patient relative to the camera is
maintained so that the camera can be scanned over the whole patient, thereby
creating a whole-body image.

The most common (2-D) matrix sizes used in nuclear medicine are 64 × 64,
128 × 128, and 256 × 256, although matrices up to 1,024 × 1,024 are available.
The larger the matrix size, the better the digital spatial resolution in the image,
up to the limit imposed by the intrinsic capabilities of the camera. The digital
sampling requirements necessary to preserve the spatial resolution in the analog
image are given by the Nyquist theorem in Section 3.6. This theorem states
that, to accurately portray a signal, the sampling frequency must be twice the
highest frequency present in the signal. Thus, pixel dimensions should be smaller
than one-half of the spatial resolution of the Anger camera. In practice, pixel
dimensions range from 2 to 6 mm.
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Figure 8.8
One cycle of heartbeat is
divided into frames. The R
wave of the ECG signal is
used to trigger acquisition
in multiple-gated frame
mode.

R R

One heartbeat

One frame

EXAMPLE 8.4
The multiple-gated acquisition mode can be used to study beating hearts. In this mode,
each cycle of the acquisition is triggered by the R wave of the ECG, as shown in
Figure 8.8.

Question Suppose the heart rate is 50 bpm (beats per minute). We want each frame to
last for 75 ms. What is the total number of frames?

Answer The heart rate is 50 bpm, so each heartbeat lasts for 60/50 = 1.2 s. Each frame
lasts for 75 ms. Therefore, a heartbeat is divided into

N = 1.2 second
75 ms

= 16 frames.

8.3.3 Anger Camera Imaging Equation

Consider what happens to a photon emitted from within the body. Statistically,
the photon has equal probability to propagate in any direction. As shown in
Figure 8.9, sometimes the photon will get absorbed (a), sometimes it will be
scattered and then absorbed (b), and sometimes it will leave the body (with or
without being scattered) (c, d, e). If it leaves the body, sometimes it will hit
the Anger camera (d, e); more often it will not (c). When a gamma ray hits
the camera, it will usually be absorbed by the lead in the collimator because it
will either be traveling in an improper direction or will miss a collimator hole.
We will ignore Compton scattering in our development of an imaging equation;
hence, photons are assumed to travel in straight lines.

After biodistribution, the radioactive atoms constituting a radiotracer are
distributed throughout the body (or sample) as a spatially varying concentration

Figure 8.9
Imaging geometry
showing the paths of five
photons (a, b, c, d, and e)
and a camera-centric
coordinate system.

z
y

x

a b c d e

Patient

Gamma
camera
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given by the number of radioactive atoms per unit volume. From (7.4), we
see that multiplying this quantity by the radioactive decay constant λ gives
the radioactivity per unit volume. It is customary in nuclear medicine to view
this quantity, the radiotracer activity concentration function, denoted here by
f (x, y, z) and having, for example, units of Bq/m3, as the fundamental quantity
that is observed. Given this definition, the radioactivity within a differential
volume element dxdydz is given by

dA(x, y, z) = f (x, y, z)dxdydz . (8.4)

A gamma camera counts individual photons hitting the detector, so unlike CT
where intensity I is the appropriate raw measurement, in nuclear medicine the
photon fluence rate φ [see (4.14)] is the correct raw measurement. Accordingly,
incorporating both the inverse square law and attenuation along the path the
differential photon fluence rate dφ(xd, yd) at the detector position (xd, yd, 0) due
to the differential source at (x, y, z) is

dφ(xd, yd) = dA
4πr2 exp

{
−
∫ r

0
μ(s; E) ds

}
. (8.5)

Here it is assumed that the origin (s = 0) of the line is at the point (x, y, z) and
the end point of the line is at (xd, yd, 0), which means that the total distance a
photon travels from the source to the target is

r =
√

(x − xd)2 + (y − yd)2 + z2 .

In order to find the total photon fluence rate, we must integrate over all
differential radioactivity elements that are physically able to contribute to the
fluence at (xd, yd, 0) on the detector. This implies that the collimator must be
considered since it is designed to restrict the view of the detector face.

For simplicity, we restrict our attention to a parallel-hole collimator and
consider the response at a detector point residing above (and within the projec-
tion of) a hole (see Figure 8.9). We further simplify our analysis by assuming
that the only part of the object that is ‘‘seen’’ by this point is formed by a
cylindrical tube created by extending the collimator hole along the z-axis into
the object. Then the desired integral is given by

φ(xd, yd) =
∫∫∫

Tube

f (x, y, z)
4πr2 exp

{
−
∫ r

0
μ(s; E) ds

}
dx dy dz . (8.6)

This integral can be worked out in principle, but it suits our purpose better—in
order to get at the essence of the situation—to make additional approxima-
tions to achieve further simplification. First, we assume that both the activity
concentration f (x, y, z) and linear attenuation coefficient μ(x, y, z) are constant
within the tube at any given depth z. Second, we assume that r ≈ |z| for any
differential radioactive element within the same tube. These assumptions allow
us to substantially simplify the volume integral, yielding

φ(xd, yd) = Ah

∫ 0

−∞

f (xd, yd, z)
4πz2 exp

{
−
∫ 0

z
μ(xd, yd, z′; E) dz′

}
dz , (8.7)
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where Ah is the area of the collimator hole. The geometry in Figure 8.9, where
the camera itself contains the laboratory origin, is used to establish the limits of
integration of the integrals.

Equation (8.7) specifies the photon fluence rate at any position on the
detector (given the stated assumptions); therefore, the expected number of
counts in a planar scintigraphy image pixel can now be determined. First, the
photon fluence can be computed by multiplying the photon fluence rate φ by the
image acquisition time T. Second, the (mean) number of photons hitting a given
pixel on the camera face is the integral of the photon fluence over the region
defining the pixel. Making the assumption that the photon fluence is constant
within the pixel means that we get the photon count by simply multiplying the
photon fluence by the area of the pixel. Putting these facts together yields the
mean photon count in pixel k as

nk = εTAkφ(xk, yk) (8.8)

= εTAkAh

∫ 0

−∞

f (xk, yk, z)
4πz2 exp

{
−
∫ 0

z
μ(xk, yk, z′; E) dz′

}
dz , (8.9)

where (xk, yk) and Ak are the position and area of pixel k, respectively. A
detector efficiency factor ε has been introduced to account for losses of expected
counts due to many factors such as collimator and scintillator losses.

We see from (8.9) that the pixel counts in a planar scintigraphy image
are acquired by a type of projection of the underlying activity concentration.
This is analogous to projection radiography—for example, (5.3)—but there
are important differences. On the one hand, this equation is simpler because
there is (typically) only one energy to consider; therefore, there is no integral
over an energy spectrum as there is in radiography and CT. On the other
hand, (8.9) is not a simple line integral of f (x, y, z) since there are two sources
of depth-dependent signal loss, one arising from the inverse square law and
the other from object-dependent attenuation between the radiation source
and the detector. Because of these effects, we can expect that radioactivity close
to the camera will contribute more counts than an equivalent radioactivity that
is farther away from the camera. This means that images from one side of the
body will generally be very different than images acquired from the opposite
side—that is, they will not just be mirror images. This is especially true for low-
energy radiotracers since the body’s attenuation is larger. Like the reading of
x-ray films, where magnification distorts sizes of objects that are near versus far,
we can get accustomed to reading planar images in nuclear medicine, knowing
about object-dependent attenuation and the anatomy of the body. It will turn
out this object-dependent attenuation causes problems for SPECT, and we will
require a simpler imaging model for computational tractability, in analogy to
the effective energy model employed in CT.

Planar Sources We saw above that the image formed on an Anger camera is a
projection of the radioactivity within the body with depth-dependent effects. As
in projection radiography, it is useful to consider a planar source in order to see
what the image would be like without depth-dependent effects. This concept is
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particularly useful when we begin incorporating other effects such as blurring
and noise in the next section.

The source or object in nuclear medicine imaging is the activity concentration
f (x, y, z). Let us define a planar source fz0 (x, y) which has radioactivity restricted
to the plane defined by z = z0; in other words,

f (x, y, z) = fz0(x, y)δ(z − z0) . (8.10)

Because the units of δ(z) are inverse length (e.g., m−1), we recognize that the
new source fz0(x, y) has units of planar activity concentration (e.g., Bq/m2). Of
course, z0 < 0 in order to conform to the geometry of Figure 8.9. Substituting
(8.10) into (8.7) and applying the sifting property of the impulse function
[see (2.6)] yields

φ(xd, yd) = Ahfz0 (xd, yd)
1

4πz2
0

exp

{
−
∫ 0

z0

μ(xd, yd, z′; E) dz′
}

. (8.11)

Using (8.8) we see that the mean pixel count in pixel k is

nk = εTAkAhfz0(xk, yk)
1

4πz2
0

exp

{
−
∫ 0

z0

μ(xk, yk, z′; E) dz′
}

. (8.12)

Equation (8.12) shows that the mean pixel count in an image of a planar
source represents the planar activity concentration within the source plane scaled
by three factors. This first factor εTAkAh is image acquisition or instrument
design variables that can be controlled to some extent. To get higher counts, we
can increase the efficiency, acquisition time, pixel size, or collimator hole size.
This all makes perfect sense, but by this point in the book we know there will be
tradeoffs in image quality that must be considered when taking any one of these
measures. The second factor 1/(4πz2

0) represents a signal loss due to the inverse
square law. The signal loss, while dependent on z0, is uniform in the plane—that
is, independent of x and y—so it does not affect the relative amplitudes of the
radioactive sources as they appear on the detector plane. The second factor is
the effect of the integrated attenuation of photons as they travel from the plane
z = z0 to the plane z = 0. Unless μ(x, y, z; E) is itself independent of x and y in
the range z ∈ [z0, 0]—which is not likely in realistic scenarios—then this term
is not uniform, and it causes a variation of the relative source amplitudes across
the image plane. This emphasizes the inherent difficulty, even for ideal planar
sources, in comparing relative intensities between sources located at different
points within a planar scintigraphic image.

8.4 Image Quality
There are many factors that affect the performance of Anger cameras, including
spatial resolution, sensitivity, and field uniformity. Modern Anger cameras
contain correction circuitry to improve performance in these areas as much as
possible. We now explore these and other factors affecting image quality in
planar scintigraphy.
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8.4.1 Resolution

The ability of an Anger camera to localize a photon interaction is characterized
by its resolution, defined by a full width at half maximum (FWHM) value, as
discussed in Section 3.3. Two factors affecting resolution are most important:
collimator resolution and intrinsic resolution. These two factors combine to
yield the system resolution of the Anger camera. Since scintigraphic scans can
be lengthy, patient motion enters as another factor affecting resolution, but we
will not develop a model for patient motion here.

Collimator Resolution Since a parallel hole collimator is most commonly used,
we focus on its performance here. With reference to the geometry shown in
Figure 8.10, the collimator resolution is given by (see Problem 8.14)

RC = d
l
(l + b + |z|) , (8.13)

where d is the collimator hole diameter, l is the collimator hole length, b is the
(effective) scintillator depth, and |z| is the collimator surface-to-patient distance.
The most important feature of this equation is that the FWHM is dependent
on target range |z|—that is, RC = RC(|z|). In particular, collimator resolution
degrades as |z| increases; therefore, targets farther away are blurred more.

EXAMPLE 8.5
Making the collimator hole longer will reject more Compton scattered photons. This
also has an impact on the resolution of the imaging system.

Question If we double the hole length to reject more Compton-scattered photons, what
is the collimator resolution? Is there a limit on the collimator resolution?

Answer Equation (8.13) gives

RC = d
l

(l + b + r) = d + b + r
l

d.

When the collimator hole length is doubled, the collimator resolution becomes

R′
C = d

2l
(2l + b + r) = d + b + r

2l
d < RC.

Figure 8.10
Collimator geometry
demonstrating
depth-dependent
resolution.
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So by doubling the hole length, the collimator resolution is also improved. If we make
the hole length go to infinity, the collimator resolution tends to be the hole diameter, d,
which is the limit to the resolution. We will see later, by using longer holes, we degrade
the collimator sensitivity.

We can factor collimator resolution into our imaging equation for planar
sources quite readily. Equation (8.13) does not give an explicit formula for the
collimator PSF, but it is common to assume that the PSF is Gaussian with
FWHM equal to RC. For a Gaussian function (see Examples 3.4 and 3.5),

FWHM = 2σ
√

2 ln 2 .

Therefore, since FWHM = RC, a common approximation for the collimator
PSF is

hC(x, y; |z|) = exp
{
−4(x2 + y2) ln 2/R2

C(|z|)
}

, (8.14)

where we have made the dependence on range |z| explicit.
Consider our planar source f (x, y, z) = fz0 (x, y)δ(z − z0) from the previous

section. By design, all the sources are at range r = |z0| from the collimator.
Therefore, putting (8.14) together with (8.11) yields

φ(x, y) = Ahfz0 (x, y)
1

4πz2
0

exp

{
−
∫ 0

z0

μ(x, y, z′; E) dz′
}

∗ hC(x, y; |z0|) . (8.15)

The PSF blurring is a convolution in this case because the collimator is spatially
the same in the x-y plane. We could not write a 3-D convolution for a 3-D
source, however, since there is depth dependency in both the basic imaging
equation and the collimator PSF.

Equation (8.13) is based on the assumption that photons are always
absorbed in the septa. In reality, some fraction of photons will penetrate
the septa, which causes RC to be somewhat larger than what is predicted above.
A simple way to account for septal penetration (see Problem 8.5) is to assume
in (8.13) that the hole length is slightly shorter than reality. The effective hole
length (le) is defined as

le = l − 2μ−1 , (8.16)

where μ is the linear attenuation coefficient of the collimator material, typically
lead, at the photon energy under consideration. The effective hole length is
shorter than the actual length and is shortest at the highest photon energies
because these photons are more penetrating (recall that μ is smallest at the
highest photon energies). Using this definition, the adjusted collimator resolution
becomes

RC = d
le

(le + b + r) . (8.17)

This definition more accurately reflects the fact that a given collimator has a
different (effective) spatial resolution depending on the energy of the radiotracer
used. In particular, a collimator designed for low-energy radiotracers will have
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poor resolution when used for high-energy radiotracers (because photons can
penetrate the septa without being absorbed), and is generally an ill-advised prac-
tice for that reason. It should be noted that b, the effective scintillation crystal
thickness, is also energy-dependent. Higher-energy photons will penetrate the
crystal farther, on average, before being absorbed, which contributes an addi-
tional degradation of resolution (RC becomes larger) with high-energy photons.

Intrinsic Resolution The concept of collimator resolution incorporates both
the geometry of the collimator and the energy-dependent septal penetration of
photons. Additional blurring takes place in the scintillator itself, however, and
this process is characterized by the intrinsic resolution of the Anger camera.

The concept of intrinsic resolution is not quite the same as that of resolution
in an intensifying screen in radiography. In both projection radiography and
planar scintigraphy, there is a flash of light in the scintillator (or phosphor)
when a photon is absorbed. In projection radiography, the spread of the light
is permanently recorded on the (film or solid state) detector. The amount that
the light spreads represents the blurring of the image. In planar scintigraphy,
the spreading of the flash of light is used to estimate the position of the single
absorption event. It is inaccuracy in the estimation of (X, Y) that accounts for
imperfect intrinsic resolution in planar scintigraphy.

There are two primary reasons for inaccuracy in the estimation of (X, Y) in
an Anger camera. The first reason is related to the path of the absorbed photon.
As discussed in Chapter 4, a photon that is absorbed by the photoelectric
effect may have experienced some Compton scattering events prior to the final
absorbing event. Those Compton events occurring in the scintillator generate
flashes of light, smaller in intensity than the final event but spread out in space.
These flashes are detected in the array of photomultiplier tubes (as though they
came from a single event) and they contribute to the error in estimating (X, Y)
by skewing the peak light distribution along the photon path.

The second reason for inaccuracy in the estimation of (X, Y) is noise or
statistical fluctuation. Consider a photon that goes straight through a collimator
hole and is absorbed promptly in a single photoelectric event. This is an ideal
event, devoid of geometric or Compton scattering problems and should be
localized perfectly if we lived in a perfect world. In fact, the physics and
electronics that follow are beset with inherent statistical fluctuations that render
the result less than perfect. First, both the number and the spatial distribution
of scintillation light photons resulting from the photoelectric event are random.
Although detailed analysis of the physics of the scintillator can provide good
models for the mean numbers of these photons, the exact number cannot be
known perfectly. Thus, the number and spatial distribution of light entering into
any PMT are also random. The situation gets progressively worse within a PMT,
where the electron cascade process is also random. All this leads to statistical
variations in the peak pulse heights ak, k = 1, . . . , K within the photomultiplier
array. These variations lead to a statistical error variance associated with the
estimation of (X, Y), which causes additional blurring in the localization of
radioactive sources in space.

Intrinsic resolution of an Anger camera can be characterized by another
FWHM, RI, which encompasses both sources of variation in the scintillation
process. It is common to model the PSF associated with this process by a
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Gaussian function. Accordingly [see (3.23)], we define

hI(x, y) = exp
{
−4(x2 + y2) ln 2/R2

I

}
, (8.18)

the intrinsic PSF of an Anger camera. Unlike collimator resolution, intrinsic
resolution is not dependent on the target or its range. We can factor intrinsic
resolution into our imaging equation for a planar source as follows:

φ(x, y) = Ahfz0 (x, y)
1

4πz2
0

exp

{
−
∫ 0

z0

μ(x, y, z′; E) dz′
}

∗ hC(x, y; |z0|) ∗ hI(x, y) .

(8.19)

Generally, intrinsic resolution is much better than collimator resolution (i.e.,
RI � RC) at typical imaging depths, so the collimator’s geometric characteris-
tics dominate effective resolution. The effective resolution is the result of the
subsystem cascade of RI and RC, as discussed in Section 3.3.4.

8.4.2 Sensitivity

As noted above, not every gamma ray leaving the body will be directed at
the camera. If possible, we would like to detect those that are directed at the
camera in the right direction. There are two major factors that may prevent
such detection. First, the photon may be absorbed in the collimator; second,
the photon may pass through both the collimator and the scintillation crystal.
A very high sensitivity (or efficiency) camera will detect most photons; a very
low sensitivity (or efficiency) camera will reject or miss most photons. Most
cameras are somewhere in-between; we now characterize sensitivity in more
detail.

Collimator Sensitivity From (8.13), we can see that longer collimator holes
yield better resolution (smaller RC). When the holes are made longer, however,
fewer gamma ray photons that impinge upon the collimator will actually pass
through it and reach the scintillator crystal. This means that the collimator is
less efficient or less sensitive. The collimator efficiency ε, also called collimator
sensitivity, is given by

ε =
(

Kd2

le(d + h)

)2

, (8.20)

where K ≈ 0.25. The quantity ε reflects the fraction of photons (on average)
that pass through the collimator for each emitted photon directed at the camera.
All else being equal, we would like to choose collimator parameters that make
ε as large as possible.

The resolution of a parallel hole collimator is best at the collimator surface
and degrades with distance |z|, as shown in (8.13). On the other hand, (8.20)
shows that the sensitivity is independent of the distance between the source and
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the collimator. While this seems at first to contradict the inverse-square law, it
really does not. The field of view of each hole increases with increasing distance.
This means that each hole ‘‘sees’’ a larger area at a greater distance from the
collimator (see Figure 8.10). Looking at it another way, more holes see the same
source if it is farther away from the collimator. As a radioactive source is moved
away from the face of the collimator, the count rate through the central hole
decreases due to the inverse-square law. However, more and more holes see
the source, and the total count rate remains constant. Since more holes see the
source, its image is spread over a larger area of the crystal face (i.e., the image
is progressively smeared out). Thus, the resolution gets worse with increasing
distance. The reason why the overall sensitivity is not affected in the same way is
because the counts from the source are not lost but instead distributed to other
parts of the camera.

Consider a fixed source range |z| satisfying |z| � le + b. Then,

RC ≈ d
le

|z| , (8.21)

and by substitution,

ε ≈
(

RCKd
|z|(d + h)

)2

. (8.22)

This relationship shows that there is a tradeoff between resolution and sensi-
tivity. Thus, while we already understand the need for separate high-energy,
medium-energy, and low-energy collimators to account for differences in septal
penetration, there is also the need to consider different collimators for the same
energy range that trade off resolution and sensitivity. Table 8.1, for example,
shows several low energy (i.e., for 140 keV) collimators and their resolutions
and sensitivities.

TABLE 8.1

Resolution and Sensitivity for Several Collimators

Collimator d (mm) l (mm) h (mm) Resolution Relative

@ 10 cm (mm) sensitivity

LEUHR 1.5 38 0.20 5.4 12.1

LEHR 1.9 38 0.20 6.9 20.5

LEAP 1.9 32 0.20 7.8 28.9

LEHS 2.3 32 0.20 9.5 43.7

LEUHR = low energy ultra-high resolution

LEHR = low energy high resolution

LEAP = low energy all purpose

LEHS = low energy high sensitivity
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EXAMPLE 8.6
We saw in Example 8.5 that use of a collimator with long holes can help to reject
Compton scattered photons and improve collimator resolution.

Question What is the change in sensitivity if we double the hole length and keep other
parameters fixed?

Answer For simplicity, assume le = l. Then the sensitivity of a collimator is given
by (8.20):

ε =
(

Kd2

le(d + h)

)2

.

If the collimator hole length is doubled, we have

ε′ =
(

Kd2

2le(d + h)

)2

= ε/4 .

So by doubling the collimator hole length, we reduce the sensitivity by 75 percent.

Detector Efficiency A gamma ray may enter the detector crystal, fail to
interact with the crystal, and exit without depositing any energy. If no energy
is deposited, obviously no pulse will be generated. Scintillation detectors are
between 10 and 50 percent efficient for electromagnetic radiation. The wide
difference in efficiencies is mostly the result of different designs trading off
efficiency, resolution, and target gamma ray energy.

The crystals used in Anger cameras vary from 10 to 25 inches in diameter
and from 1/4 to 1 inch thick. The thicker the crystal, the higher the probability
that an incoming photon will interact, deposit its energy, and be detected; thus,
the higher the sensitivity of the camera. The thicker the crystal, however, the
poorer the spatial resolution, due to the complex interaction between the crystal,
the PMTs, and the light pipe that is generally used to optically couple the two.
One-quarter-inch-thick crystals have about 1 mm better intrinsic resolution than
one-half-inch-thick crystals. When counting low-energy radionuclides such as
thallium-201, there is no difference in sensitivity. However, when counting
technetium-99m, one-quarter-inch-thick crystals have 15 percent less sensitivity
than one-half-inch-thick crystals. At higher energies, the difference in sensitivity
is even more significant.

8.4.3 Uniformity

Field uniformity is the ability of the camera to depict a uniform distribution of
activity as uniform. At one time, it was thought that nonuniform response arose
from changes in sensitivity across the crystal. To correct the nonuniformity, a
uniform flood or sheet source of radioactivity was imaged and recorded, and
used as a reference. Clinical images were corrected during acquisition by either
adding counts to the image in areas where the flood had too few counts relative
to the other areas or by subtracting (i.e., purposely not recording) counts in
areas with too many counts.
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It is now well-known that the majority of the nonuniformity in a camera
occurs as a result of spatial distortion; that is, the mispositioning of events (errors
in determining the (X, Y) location). To correct this distortion, reference images
are acquired, and digital correction maps generated and stored. Each map con-
tains values that represent (X, Y) correction shifts. Sophisticated microprocessor
circuitry is used to reposition each count in real time during acquisition using
these shifts. With many current cameras, it is best to acquire correction maps
with the same radionuclide that is used for patient imaging. In some cameras,
several sets of corrections maps are stored on the computer, representing all the
radionuclides used in the nuclear medicine department, and the appropriate set
chosen for a given patient study.

Variation in the position of a pulse from different areas of the camera
within the pulse height window can also produce nonuniformities. This spatially
dependent energy variation may also be corrected by microprocessor circuitry.
The combination of energy variation and spatial distortion is responsible for
loss of spatial resolution and imperfect linearity and uniformity. In today’s
cameras, explicit uniformity correction is typically carried out with multiplicative
factors, only after spatial distortion (and spatially dependent energy response)
corrections.

8.4.4 Energy Resolution

Pulse height analysis is critical for rejection of scattered photons, whose inclusion
in the image would reduce contrast. Thus, the performance of the detector
system, and especially its energy resolution, is critical. In an ideal detector, the
photopeak would be a single vertical line at that pulse height representing the
energy of the emitted x-ray or gamma ray. In reality, the statistical nature of
the light emission and the finite energy resolution of the detector system smears
out this line, producing a bell-shaped photopeak. In essence, the observed pulse
height spectrum can be treated as the convolution of the ideal spectrum with the
energy impulse response function of the system.

The worse the energy resolution of the detector system, the broader the
photopeak. Energy resolution can be quantified as the FWHM of the photopeak
in a fashion similar to the use of FWHM to characterize spatial resolution.
This is measured by first determining the counts at the peak of the photopeak
and locating the points on either side of the peak where the counts are half of
the peak counts. The width of the photopeak in pulse height units is obtained
by subtracting the lower pulse height from the upper. Finally, this width is
divided by the pulse height at the apex of the photopeak to yield a percentage of
energy resolution measurement. The smaller the number, the better the energy
resolution; typical scintillation detector systems average 8–12 percent FWHM.
It is important to note that the time resolution of the scintillation detector system
also plays a role in energy resolution, in that two scintillation events occurring
within the time resolution will produce a single, sum pulse. There is clearly a
relation between energy resolution and the optimum width of the pulse height
window discussed in Section 8.2.6 and illustrated in Figure 8.5.

In order to calibrate a pulse height analyzer to establish the quantitative
relationship between energy deposited and pulse height, either the applied
voltage across the PMT or the amplification in the electronics is adjusted until
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the photopeak from a known energy source falls at the desired pulse height.
Changing the applied voltage across the PMT changes the size of pulses coming
out of the detector by changing the amplification in the tube. If the voltage
across each dynode is increased, electrons liberated from the previous dynode
gain more kinetic energy. Upon striking the next dynode, a larger number of
electrons are liberated. This leads to a larger signal from the PMT. Changing
the amplification in the electronics directly changes the size of each pulse.

8.4.5 Noise

The entire imaging process, from gamma ray emission to electron cascade in a
PMT is governed by the Poisson probability law (as introduced in Section 3.4.3).
In particular, the number of detected photons (per unit area) is a Poisson random
variable (by way of analogy to the initial discussion in Section 6.4.2). In a Poisson
process, the variance is equal to the mean, which we have used to simplify the
analysis of noise in projection radiography. We now study the implication of
this fact for planar scintigraphy.

Signal-to-Noise Ratio Because both projection radiography and planar scintig-
raphy are ultimately limited by the total number of photons per unit area
contributing to image formation, the calculation of SNR is essentially the same
for the two modalities. In Chapter 5, we related intensity to the total number
of photons [see (5.35)] in projection radiography; this same relation appears
in (4.16), where we used the term energy fluence rate instead of intensity. By
way of analogy to Section 5.4.1, we will focus on N, the mean total number of
acquired photons.

The intrinsic SNR of the camera (for this acquisition) is [see (3.59)]

SNR = N√
N

=
√

N . (8.23)

Therefore, the intrinsic SNR of the image is made larger by increasing the
number of detected photons. This situation is identical to that of projection
radiography.

We know that in frame mode, the face of the Anger camera is divided into
a rectilinear grid of pixels. Suppose there are J × J pixels arranged in a square
grid covering the camera. Then, without any prior knowledge about the source,
we would expect to see the N detected photons spread evenly over all J2 pixels.
Accordingly, the intrinsic SNR per pixel is given by

SNRp =
√

N
J2 =

√
N
J

. (8.24)

An obvious, and important, implication of this equation is that the per-pixel SNR
decreases as the pixel size becomes smaller. This should help to explain why it
is not always advantageous to use a 512 × 512 matrix for a planar scintigraphic
image. Aside from the fact that the camera may not have sufficient resolution to
justify the implied pixel resolution, the SNR may drop precipitously, yielding a
severely degraded image.
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It is often very useful to characterize our ability to discern a hot spot or
cold spot from the background. This requires the concept of contrast C, as
introduced in Section 3.2. The contrast here is the fractional change in counts
in a pixel or set of pixels from the background. If Nb is the mean background
count and Nt is the mean target count, then the contrast is defined [in a fashion
analogous to (3.12)] as

C = Nt − Nb

Nb
. (8.25)

The local SNR is defined as

SNRl = Nt − Nb√
Nb

, (8.26)

which is readily simplified [see (5.38)] to yield

SNRl = C
√

Nb . (8.27)

As a practical matter, the mean count is not known, anywhere, since it is
a parameter of an unknown probability mass function. Instead, averages are
used to approximate means. For example, if tn, n = 1, . . . , N represents N pixel
counts within a target and bm, m = 1, . . . , M represents M pixel counts within
the background (e.g., surrounding the target), then the means are estimated as

N̂t = 1
N

N∑
n=1

tn , (8.28)

N̂b = 1
M

M∑
m=1

bm . (8.29)

These estimates are then used in (8.27) to provide an estimate of the local
SNR. This kind of calculation is used in practice to evaluate the detectability
of objects, providing guidance about the choices of collimators, imaging times,
pixel dimensions, etc.

8.4.6 Factors Affecting Count Rate

It is clear from the previous section that increasing the total number of detected
and correctly positioned events will improve the SNR in images created using an
Anger camera. The simplest approach to achieve this would be to increase the
image acquisition duration, but this is usually undesirable in nuclear medicine for
several reasons. The longer the acquisition, the greater the chance the patient will
move, introducing motion blur in the image. As well, the longer the acquisition,
the greater the chance that the radiotracer’s distribution will change (because of
the underlying physiological and biochemical processes). Finally, the longer the
acquisition, the fewer the number of patients who can be imaged in a workday
and the greater the discomfort and inconvenience each patient experiences.
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If we are to keep the image acquisition duration to a feasible value, we must
increase count rate in order to increase total counts. This situation is analogous
to that in projection radiography, and some of the solutions are apparently the
same—for example, improve detector efficiency or increase dose. But there are
some practical considerations that must be addressed in planar scintigraphy that
are largely missing in projection radiography. We know, for example, that it is
straightforward to improve collimator efficiency, but it is at the expense of spatial
resolution. So, for a given desired resolution, perhaps geared toward a particular
clinical goal, we cannot improve collimator efficiency beyond a certain value.

We also know that we could improve detector efficiency in order to increase
the number of detected photons. If that efficiency is improved by changes to
the detector material, providing higher gamma ray stopping power with the
same geometry, then that is good. A great deal of research has gone into this
endeavor, leading to very efficient detector materials today, and it is not clear
how much farther this can be taken. The obvious solution is to increase the
detector’s thickness, but we know that this will degrade resolution.

As in projection radiography, we can increase the dose, in this case by inject-
ing a larger amount of the radiotracer (i.e., more radioactivity) into the patient.
Aside from the obvious, undesirable properties associated with increasing the
dose of ionizing radiation to the patient, planar scintigraphy (unlike projection
radiography) has a problem handling the larger numbers of photons per unit
time with increasing activity incident upon the camera. In particular, after the
deposition of energy in the detector, it takes a certain amount of time for the
scintillation photons to be given off, and for the electronics to register a ‘‘count.’’
During this time, called the dead time or resolving time τ of the Anger camera,
the detector is only partially responsive to the deposition of additional energy.
The inverse of the resolving time is the maximum counting rate of the camera:

Maximum counting rate = 1
τ

. (8.30)

In clinical situations, resolving times are typically between 10 and 15 μs, and this
leads to maximum counting rates of between 60K and 100K counts per second.
Furthermore, Anger cameras are paralyzable, which means that the observed
count rate does not simply plateau at 1

τ
, but actually begins to progressively

decrease (the camera ‘‘loses counts’’), as the radioactivity increases.
Furthermore, exceeding the maximum counting rate may cause pulse pileup,

a situation that occurs when two or more photons are absorbed in the crystal
too close together to be counted as separate events. The photons may be treated
as a single event whose energy is the sum of the energies deposited by the two (or
more) photons; in this case, both (or more) are rejected due to energy window
considerations. Alternatively, only the second may be rejected, due to the time
required to count the first. Either case represents a loss of counts and an excess,
unnecessary dose to the patient.

8.5 Summary and Key Concepts
Nuclear medicine produces images of function (body physiology and biochem-
istry). Planar scintigraphy is the nuclear medicine technique that produces 2-D
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projection images of radiotracer distribution using an Anger scintillation camera.
In this chapter, we presented the following key concepts that you should now
understand:

1. Planar scintigraphy is the nuclear medicine analog of projection radiography.

2. Planar scintigraphy makes use of an Anger scintillation camera, which
consists of a collimator, a scintillation crystal, photomultiplier tubes, posi-
tioning logic, a pulse height analyzer, and an image capture device (today, a
computer).

3. Typical collimators include parallel-hole, converging, diverging, and pinhole.

4. Event positioning is based on a center-of-mass calculation; unlike radio-
graphic image formation, this takes place on a photon-by-photon basis.

5. The basic imaging equation includes terms for both activity (the desired
parameter) and attenuation (an undesired, but extremely important, addi-
tional factor); these two terms are not separable.

6. Image quality depends on resolution (governed by both the collimator and
the intrinsic resolution of the camera), noise (governed by the sensitivity of
the system, the injected activity, and the acquisition time), and count rate
factors.

Further Reading
Cherry, S.R., Sorenson, J.A., and Phelps, M.E.

Physics in Nuclear Medicine, 4th ed. Philadel-
phia, PA: W. B. Saunders, 2012.

Christian, P.E. and Waterstram-Rich, K.M. Nuclear
Medicine and PET/CT: Technology and Tech-
niques, 7th ed. New York: Elsevier/Mosby,
2012.

Rollo, F.D. Nuclear Medicine Physics: Instrumenta-
tion and Agents. St. Louis, MO: C. V. Mosby,
1977.

Problems
Instrumentation

8.1 (a) Explain with diagrams the design and operation of an Anger gamma
camera.

(b) What are some of the physical considerations when choosing which
radionuclide to use for imaging.

8.2 Suppose you are designing a collimator to be used in an Anger camera.
Assume the radiotracer used emits 140 keV gamma rays and the collimator
surface-to-patient distance r is 10 cm.

(a) What is the minimum septal thickness h required for the septal pene-
tration to be less than 60% for gamma rays incident at 45◦?

(b) Suppose the resolution and sensitivity of the collimator are given by:

Resolution = d
(
1 + r

l

)
, Sensitivity = d4

l2(d + h)2 ,
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where d is the collimator hole diameter and l is the collimator hole
length. Assume h = 0.2 mm. What values of l and d should be chosen
for the resolution and sensitivity of the collimator to be 7.8 mm and
28.9 × 10−4, respectively?

(c) Describe the advantage(s) and disadvantage(s) of making the holes
longer (with no other changes to the design).

(d) Can you compensate for the longer holes by changing the scintillator
in any way?

8.3 A photon that has undergone Compton scattering has both changed its
direction of flight and lost some energy. Pulse height analysis is used
to reject these scattered photons during nuclear imaging. A pulse height
window is symmetrically set around the photopeak of the pulse height
spectrum. The full width of this window is usually expressed as a percent
of the photopeak energy.

(a) Calculate the maximum angle through which a 140 keV photon can
be scattered and still be accepted within a 20% offset window centered
at 150 keV.

(b) What are the maximum acceptable scattering angles for 140 keV and
364 keV photons if 20% windows centered at photopeak are used.

(c) Draw a conclusion about the ‘‘directional selectivity’’ of an Anger
camera as a function of energy.

8.4 Consider an Anger camera with only one parallel collimator hole. The mea-
sured intensity is the energy deposited on the camera per unit time per unit
area. Suppose the hole diameter is d, and a point source with radioactivity
of A is at a distance of r from the camera, directly below the hole.

(a) What is the measured intensity?
(b) What is the measured intensity if we double the hole diameter?
(c) What is the measured intensity if we double the source–camera

distance?

8.5 Photons can penetrate (i.e., go through) a collimator’s septa, which means
that a photon entering one collimator hole can sometimes be detected under
another hole. Here we consider the effect of septal penetration on collima-
tor design and collimator resolution. Let the hole diameter be d, the septal
thickness be h, and the hole length be l. Ignore Compton scattering—that
is, photons go straight—and ignore the scintillator thickness.

(a) What is the minimum distance w through a septum that the photon can
pass under the condition that it enters one hole and is detected in the
adjacent one? Simplify your expression by assuming that l � 2d + h.

(b) Suppose we desire septal thickness to be large enough to stop 95% of
the photons that pass through the minimum distance w. What inequal-
ity should h satisfy? [Use the simplified expression from part (a)].

(c) How does septal penetration influence collimator resolution?

8.6 A radioactive pellet containing a 140 keV gamma ray emitting substance
with activity A mCi is placed 1 m away from an Anger camera such
that one-fourth of its total disintegrations hit the detector. Assume
t1/2 = 6 hours. Assume that the Z-pulse height—that is, the photopeak—
is equal to the energy of the incident photon.
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Figure P8.1
See Problem 8.6.(a) (b)
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(a) What should be the acceptance window (in percentage) around the
photopeak so that photons that are Compton-scattered more than
30◦ are rejected.

For the remainder of this problem, consider only non-Compton-scattered
photons. Assume that the time response of the camera’s Z-pulse to an
absorbed photon hitting the camera at time t = 0 is given by the plot
shown in Figure P8.1(a). Assume that the response of camera is additive
in nature so that its net response to multiple absorbed photons at different
time instants is the shifted addition of their individual responses.

(b) Plot and label the net response of camera’s Z-pulse for two photons
absorbed at time t = 0 ns and t = 5 ns.

Assume that the photon detection circuit and position logic circuit is turned
on when the Z-pulse exceeds 80% of the photopeak and is turned off when
the response falls below 80% of that height. A photon is considered to be
accepted as an event if the maximum of the Z-pulse when the detection
circuit is on falls within a 20% acceptance window around the photopeak.

(c) What is the minimum time interval between two detected photons
such that they are accepted as separate events.

(d) What should be the activity of the radioactive pellet so that the chances
of having at least one disintegration in the time interval given in part (c)
is 50%.

Consider the arrangement of PMT’s shown in Figure P8.1(b), where the
origin is at the exact center of the square. Let the responses from the four
PMT tubes to a detected photon be given by 80, 30, 20, and 5 (top-left,
top-right, bottom-left, and bottom-right).

(e) Compute the height of the Z-pulse and the x and y location of the event.

Image Formation

8.7 (a) Derive an imaging equation for an Anger camera having a converging
collimator.

(b) Derive an imaging equation for an Anger camera having a diverging
collimator.

8.8 Consider nine 1 cm × 1 cm PMTs arranged in 3 × 3 array (Figure P8.2).
The output of each PMT to a scintillation event is modeled as

ai = 20 exp
(

− (x − xi)2 + (y − yi)2

5

)
, (P8.1)
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where (x, y) is the location of the scintillation event, and (xi, yi) is the
center of the i-th PMT.

Figure P8.2
See Problem 8.8.
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(a) Find the output of each PMT for a scintillation event that occurs at
(−0.5, 0.5) cm.

(b) What is the estimated position of the scintillation event?
(c) Is the estimated position the same as its true position? If not, explain

why.

8.9 A series of scintillation events produce responses from the PMTs in an
Anger camera. The recorded pulses have a photopeak centered at pulse
height 180. The pulse height is proportional to the energy deposited into
the crystal, which is shown in Figure P8.3(a). (This is not a pulse height
spectrum.)

Figure P8.3
See Problem 8.9.

140
120
130

140

150

160

170

180

190

200

150 160 170 180 190 200 210 220

E
ne

rg
y 

de
po

si
te

d 
(k

eV
)

Pulse height

(a) (b)

y

x

12

3 4

5

67

2 
m

m

(a) We want to set an acceptance window around the photopeak to reject
those the photons that have undergone Compton scattering angles
larger than 50 degrees. What is the range of photon energies that will
be accepted by the acceptance window?

Consider seven PMTs located around the origin of the x-y coordinates
on the face of the Anger camera shown in Figure P8.3(b). The diameter
of the tubes is 2 mm and each tube has been assigned a number. A
single scintillation event yields a response from the PMTs. All other tubes
recorded zero height except these 7 tubes, which recorded heights 40, 5,
15, 15, 20, 45, 30 in the order of tube numbers.

(b) Compute the Z-pulse. Will this pulse be accepted by the acceptance
window?

(c) Estimate the position of the event (X, Y).
(d) Explain why we do not set (X, Y) equal to the location of the PMT

having the largest amplitude.
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8.10 You will be imaging a radioactive source using an Anger camera.

(a) Sketch and label the pulse height spectrum. Make the photopeak at
180 AU (for 140 keV photons).

(b) Determine the maximum scatter angle such that the photons will be
within a 10% pulse height window.

For parts (c) and (d), assume the PMT arrangement and corresponding
pulse heights shown in Figure P8.4.

(c) Compute the Z-pulse.
(d) Computer the position (X, Y) of the event.
(e) What are the causes of event localization error?

Figure P8.4
See Problem 8.10.
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Image Quality

8.11 In practice the spatial resolution in a clinical nuclear medicine image is
determined by three factors: the intrinsic resolution of the camera (I),
the collimator resolution (C), and patient effects (P). Suppose the impulse
response could be modeled as arising from the cascade of three linear
shift-invariant systems, one for each factor.

(a) Suppose each system has an impulse response given by a rect function,
and suppose their widths are rI, rC, and rP, respectively. Find the
FWHM of the cascade system.

(b) Suppose each system has an impulse response given by a Gaussian,
and suppose their standard deviations are σI, σC, and σP, respectively.
Find the FWHM of the cascade system.

8.12 We are conducting a study that requires us to acquire a number of images
over a 2-hour period of time. Each acquisition lasts for 10 minutes and
technetium-99m is used as the radiotracer. The images are recorded in
frame mode with a matrix size of 128 × 128. In order to get satisfactory
image quality, we need at least 2 million counts for each image.

(a) In order for the last image to have enough counts, what is the total
count in the first minute of the study?

(b) What is the SNR per pixel as a function of the image number?



288 Chapter 8 Planar Scintigraphy

(c) Suppose there is a tumor with 10% contrast, what is the approximate
count for the first image so that the tumor has a 5 dB local signal-to-
noise ratio in the last image.

8.13 Consider the cardiac study described in Example 8.4, and suppose the
image for each frame is a 64 × 64 matrix. We need 1K counts for each
pixel on average when the study is done. We can detect at most 128K
photons per second on the entire camera.

(a) How many heartbeats are needed?
(b) How long does it take to complete the study?
(c) What is the SNR for each pixel?
(d) If we want to double the SNR by prolonging the study, how long will

it take to complete the study?

8.14 Using geometric arguments, derive the collimator resolution formula
given in (8.13).

8.15 A planar scintigraphy imaging system (assume a 2-D system) is set up
with the collimator as shown in Figure P8.5.

Figure P8.5
System setup for Problem
8.15.
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Three compartments P, Q, and R mimick three different tissues, and
have attenuations μP = 0, μQ = 0, and μR = 0.1 mm−1, respectively.
Assume δ ≈ 0 mm. N0 atoms of radionuclide A (tA

1/2 = 3 hours) were
put uniformly in compartment P, and 1

2 N0 atoms of radionuclide B
(tB

1/2 = 6 hours) were put uniformly in compartment Q.

(a) Compute the projection φ(x) [units of photons s−1 cm−1] at 1) time
t = 0 and 2) time t = tA

1/2.
(b) Determine the time tmax at which the absolute signal difference

|φ(5) − φ(−5)| is maximum.
(c) What is the collimator efficiency and resolution?
(d) What is the absolute signal difference at time t = 3 hours incorporating

collimator efficiency.
(e) What is the width of compartment P in the final image? (Assume the

system resolution is dominated by the collimator resolution.)

8.16 An Anger camera collimator has the following dimensions: septal thickness
h = 6 mm, septal height l = 10 cm, and hole diameter d = 3 mm. The
detector thickness is b = 2.5 cm, and the range of the object z = 0.5 m.
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(a) Find the collimator resolution at the given range.
(b) Suppose the intrinsic resolution of the Anger camera is 0.2 mm. Write

an expression for the overall PSF of the Anger camera at the given
range, assuming both hC and hI are Gaussian.

Photons sometimes penetrate the collimator’s septa, which means that
a photon entering one collimator hole can sometimes be detected under
another hole, as shown in Figure P8.6.

Figure P8.6
Septal penetration by a
photon. See Problem
8.16.

Primary hole Adjacent hole

Photon

w

In parts (c), (d), and (e), we consider the effect of septal penetration on
collimator design and collimator resolution. Assume the linear attenuation
coefficient for lead is μ.

(c) Assume a photon enters one hole, penetrates an adjacent septum and
is detected in the adjacent hole. What is the minimum length w of the
path through the septum as shown in the figure? (The result should
be in units of mm.)

(d) Suppose we desire septal thickness to be large enough to stop 95%
of the photons that pass through the minimum distance w. For fixed
l and d, what inequality should h satisfy?

(e) How does septal penetration influence collimator resolution?
(f) Can we use the acceptance window to reject photons that penetrate

septa and are detected in adjacent holes? Explain.
(g) A photon can be rejected if its Z-pulse is too small. What physical

event(s) could cause this low Z-pulse?

8.17 Assume a 2-D scenario in which a pellet filled with radiotracer is located
at the origin. The pellet emits gamma rays in the x-y plane and its
radioactivity is A = 0.54 mCi as shown in Figure P8.7(a). The detector is
made of a material with μ = 0.64 cm−1 and thickness of b = 2 cm.

(a) What is the average rate of photons per second hitting the detector (in
photons per second)?

(b) Find the efficiency of the detector at its center (that is, at x = 0).

A parallel hole collimator with septal thickness h = 2.5 mm, septal height
l = 8 cm, and hole diameter d = 5 mm is added onto the detector, as
shown in Figure P8.7(b).

(c) What is the collimator resolution RC?
(d) Assume the intrinsic resolution of the detector is 1 mm. What is the

overall PSF of the camera knowing that both hC and hI are Gaussian?
(e) Given the geometry, how many holes receive radiation that can hit

the detector?
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Figure P8.7
(a) Detector without
collimator. (b) Detector
with collimator. See
Problem 8.17.
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(f) If l gets larger, at some point radiation will only be able to hit the
detector through one hole. Find the smallest l = l0 when this happens.
What is Rc in this case?

(g) If the camera sensitivity is ε when l = 8 cm, what is its sensitivity
when l = l0? (For simplicity assume that the effective height of a
collimator hole is equal to l.)

Applications

8.18 Suppose you replaced the standard collimator on an Anger camera with
one that has only one hole with diameter d positioned at the center of the
camera—i.e., at x = 0 and y = 0. Let the object be a small radioactive
point source that is placed 20 cm away from the camera face in direct
alignment with the center of the camera.

(a) When a gamma ray photon goes through the collimator hole, the
camera produces a response. Explain in words what happens to this
photon and what sequence of events takes place in order to produce
the X and Y signals and the Z-pulse.

(b) Suppose the X signal is held constant until the next photon hits the
camera (so it is a piecewise constant signal X(t) in time.) Draw X(t)
when the hole has a small diameter [call this X1(t)] and then draw
X(t) when the hole has a larger diameter [call this X2(t)]. Account for
all effects that change when you increase the hole diameter and draw
the signals on the same vertical and horizontal scales with clear labels.

(c) Would you expect the sequence of Z-pulses to change when the hole
diameter (of this single hole) is increased? Explain your answer.

(d) If you double the hole diameter, what must you do to the hole length
in order for the camera to have the same sensitivity?

8.19 A planar scintigraphy calibration experiment is being performed using a
uniform flood phantom. With this phantom, each pixel out of 64 × 64
pixels on an Anger camera is struck by four gamma photons per second
on average.

(a) If a total count of 2,000,000 across the whole camera is considered
to be a complete experiment, how long will it take (on average) to
complete the calibration scan?
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The burst of light from a scintillator—the Z-pulse—lasts for a brief
moment every time a gamma ray hits it. Let us model this burst as a
triangle with peak height A (e.g., in volts), dropping linearly to zero
in 250 μs, as shown in Figure P8.8. The pulse height analyzer detects
peaks and records their peak voltage. For the pulse shown in Figure P8.8,
therefore, the pulse height analyzer records the value A. Assume that the
response of two or more gamma rays is the sum of their Z-pulses, delayed
in time according to their time-of-arrival.

Figure P8.8
Z-pulse waveform. See
Problem 8.19.
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(b) Draw the combined Z-pulse arising from two photons, one striking
the camera at t = 0 and the other at t = 100 μs. What will the output
of the pulse height analyzer be? (It should be a sequence of heights at
different times.)

Assume the photopeak is set at A and a ±20% discriminator window is
used.

(c) Because of the discriminator, the second photon may not be detected if
it arrives too soon after the first. Determine the time separation required
in order for the second photon to be detected as a separate event.

(d) Is it theoretically possible to complete the experiment in the time you
computed in part (a)? Explain.

(e) Under what condition(s) will a photon be rejected because its Z-pulse
height is too small? Explain.

(f) Assume that the experiment is concluded when 2,000,000 counts are
accepted no matter how long it takes. What is the intrinsic SNR in a
single pixel?

8.20 A small pellet is located at the origin and filled with a radiotracer, as
shown in Figure P8.9(a). Assume a two-dimensional scenario in which
the pellet emits gamma rays only in the x-y plane and the radioactivity is
equal to A = 0.027 mCi.

(a) What is the average rate of photons hitting the detector (1-D Anger
camera)?

Assume the detector is made of NaI(Tl) (μ = 0.644 cm−1) and its
thickness is b = 2.5 cm.

(b) What is the detector efficiency at the center of the detector?
(c) If the Anger camera is rotated stepwise around the origin and requires

2 × 105 detected counts at each orientation, how many orientations
can be captured in 10 seconds? (Ignore rotation time.)
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A parallel hole collimator with septal thickness h = 5 mm, septal height
l = 12 cm, and hole diameter d = 5 mm, is mounted on the camera, as
shown in Figure P8.9(b).

Figure P8.9
See Problem 8.20.
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(d) What is the collimator resolution Rc at the range of the pellet?
(e) Assume that there is no Compton scattering and that the lead septa

always absorb gamma rays incident upon them. Find the rate of
photons hitting the detector in the three central holes. Plot this as a
function of hole number for n = −1, 0, +1.

(f) What is the (approximate) resolution R̂c that you would deduce
from your result in part (e)? Compare with Rc and speculate on any
difference you may observe.

8.21 An Anger camera collimator has the following dimensions: septal thickness
h = 6 mm, septal height l = 10 cm, and hole diameter d = 3 mm. The
detector thickness is b = 2.5 cm. The range z = 0.5 m.

(a) Find the collimator resolution.
(b) Suppose the intrinsic resolution of the Anger camera is 0.2 mm. Write

an expression for the intrinsic PSF assuming it is Gaussian.
(c) Find the overall resolution of the Anger camera.

The final image (static frame mode) on the Anger camera is shown in
Figure P8.10.

Figure P8.10
See Problem 8.21.
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(d) Find the total count of the scan.
(e) Find the local contrast and SNR of the object comprising the nine

pixels at the center of the camera.
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Planar scintigraphy is the only direct imaging approach in nuclear medicine
(i.e., an image exists directly at the end of frame mode acquisition). The other
two imaging methods in nuclear medicine—single photon emission computed
tomography (SPECT) and positron emission tomography (PET)—require com-
puted tomography image reconstruction methods. Like computed tomography
(CT), these modalities require the acquisition of projection data, which are then
reconstructed into transverse (or transaxial) slice images. SPECT systems can be
designed around a customized array of detectors but are usually based on one
or more high-quality Anger cameras, which rotate around the body to acquire
a series of projection images with different angular orientations. Multiple cross
sections of the body can be reconstructed—in parallel, in principle—from these
data. It is reasonable to say that SPECT is to planar scintigraphy as multiple-row
detector CT is to projection radiography.

PET is in a class of its own, however, having no suitable analogy in other
imaging modalities. PET measures the location of the line on which a positron is
annihilated, an event that produces two simultaneous 511 keV gamma photons
(or annihilation photons). After accumulating many such coincidence lines, line
integrals of activity are produced and computed tomography reconstruction
methods are directly applied.

PET is unique in both its physics and chemistry. The most commonly used
PET radionuclides, carbon-11, nitrogen-13, oxygen-15, and fluorine-18, are
isotopes of elements that occur naturally in organic molecules. (Fluorine usually
does not, but it is a bioisosteric substitute for hydrogen.) Thus, radiopharmaceu-
tical synthesis is simplified, and the tracer principle (which mandates as small a
change in the molecule to be traced as possible) is better satisfied. Indeed, useful
PET radiopharmaceuticals are now available to measure in vivo such important
physiologic and biochemical processes as blood flow, oxygen, glucose, and
free fatty acid metabolism, amino acid transport, and neuroreceptor density.
The short half-lives of the radionuclides (e.g., carbon-11, 20 minutes; nitrogen-
13, 10 minutes; oxygen-15, 2 minutes; fluorine-18, 110 minutes) permit the

293
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acquisition of serial studies on the same day without background activity from
prior injections interfering with the measurements.

The physics of PET permits greater quantitative accuracy and precision.
The use of small, high-density detector crystals improves spatial resolution
(about 4 mm in the best commercial whole-body PET scanners). The lack
of collimation to determine photon direction dramatically increases sensitiv-
ity. Finally, coincidence detection allows mathematically accurate attenuation
correction, as we shall see.

We now explore the instrumentation, reconstruction methods, and image
quality of both SPECT and PET, which together comprise emission computed
tomography (ECT) systems.

9.1 Instrumentation
9.1.1 SPECT Instrumentation

SPECT refers to true transaxial tomography with standard nuclear medicine
radiopharmaceuticals (i.e., those that emit a single photon upon decay). SPECT
is performed with either specialized geometry detector systems or rotating Anger
cameras. By far the most popular method of doing SPECT is with a rotating
Anger camera, or more often multiple cameras, mounted on a special gantry
that allows 360-degree rotation around the patient, and we mainly focus on this
approach. A typical rotating Anger camera system is shown in Figure 9.1.

In rotating Anger camera SPECT, the camera (also referred to as a head)
is usually rotated either 180◦ or 360◦ (assuming a single-head system). At each
angle, a projection image (a standard planar image) is acquired so that, effec-
tively, multiple 1-D projections from different (contiguous) cross sections of the
body are acquired simultaneously. After complete rotation of the camera, each
cross section is reconstructed separately with either convolution backprojection
or an iterative reconstruction method, yielding a collection of transverse images,

Figure 9.1
A dual-head SPECT
system. Courtesy of GE
Healthcare.
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stacked to form a reconstructed volume. We will have much more to say about
this in Section 9.2.

Two types of collimators are used in a rotating-camera SPECT system (see
Section 8.2.1). Most often, a parallel-hole collimator is used; this geometry
corresponds to that of parallel-beam geometry in CT. Here, the geometry is
parallel both in-plane and in the axial direction. In some cases, a fan-beam
collimator is used. This collimator converges in-plane, like a converging col-
limator but has parallel-hole geometry in the axial direction. With fan-beam
collimation in each contiguous 1-D projection, the ‘‘stack’’ has fan-beam
geometry, but the slice-to-slice geometry is parallel. In rare cases until now
(although increasingly more often than in the past), a collimator-detector
system with more complicated geometry is used, requiring more sophisticated
reconstruction algorithms. Such systems are briefly considered below.

Perhaps the biggest advance in the most commonly used clinical SPECT
systems is the incorporation of multiple Anger cameras—a dual-head system is
shown in Figure 9.1. As shown in Table 9.1, adding camera heads increases sen-
sitivity, all else being equal. Dual-head variable-angle systems that are capable
of orienting the heads at both 90◦ and 180◦ are particularly popular as this opti-
mizes the acquisition geometry for the two most commonly performed nuclear
medicine procedures: cardiac SPECT and whole-body bone scans. These two
types of studies account for at least 70 percent of all nuclear medicine imaging
procedures. Cardiac SPECT is often performed with 180◦ acquisition (i.e., only
a 180◦ arc of projection data around the heart is acquired), whereas many
other SPECT studies use 360◦ of projection data. This has been a controversial
issue for over two decades now. Because of photon attenuation, the ‘‘front’’
180◦ of data and the ‘‘back’’ 180◦ of data are not identical. In some cases,
it thus helps to use the full 360◦ of data; in others (i.e., when the organ
of interest—such as the heart—is located towards the front or the back),
it may be detrimental to image quality to use the full 360◦ of data.

The increased sensitivity provided by multihead systems can be used pri-
marily in three ways. First, it can be used to decrease noise while using the same
acquisition time as with a single-head system. Second, it can be used to decrease
acquisition time to get the same counts as a single-head system; this decreased
acquisition time increases patient throughput, decreases motion (and associated

TABLE 9.1

Comparison of Acquisition Times and Relative Sensitivities for Single- and
Multihead Systems with Identical Camera Heads and Collimation

360◦ 180◦

Acquisition Relative Acquisition Relative
Times Sensitivities Times Sensitivities

Single 30 1 30 1
Double (heads@180◦) 15 2 30 1
Double (heads@90◦) 15 2 15 2
Triple 10 3 20 1.5



296 Chapter 9 Emission Computed Tomography

blur), and decreases tracer washout effects (which might lead to a mathemat-
ically inconsistent projection dataset). Third, it may be ‘‘traded’’ for higher
resolution through the use of higher resolution/lower sensitivity collimators.

EXAMPLE 9.1
Suppose a single-head system requires N counts in a 30-minute scan using an all-purpose
collimator. Let us imagine performing the same study with a two-head system instead,
and let the two new collimators have higher resolution with just 75 percent of the
sensitivity of the all-purpose collimator on the single-head system.

Question How long will it take to achieve the same counts as the single-head system,
and will the image quality be equivalent?

Answer In 30 minutes, each (high-resolution) head collects 0.75 × N counts (on aver-
age, of course). This corresponds to 2 × 0.75 × N counts in 30 minutes. The time t to
collect just N counts satisfies

t
30 minutes

= N
2 × 0.75 × N

,

so

t = 30 minutes
1.5

= 20 minutes .

The image obtained in just 20 minutes will be better because, although the total counts
are the same in the two scans, the resolution is better in each of the dual-head collimators.

Multihead systems have permitted a wide variety of SPECT scans to be
performed in less than 30 minutes. This is an important time milestone because
beyond 30 minutes patient motion becomes a very significant factor in image
quality. Three-head systems exist, and it would seem that M-head systems
(where M > 3) would be in the offing. However, simple geometric constraints
(packing that many heads in close to the patient), quality control issues (how
do you keep all those detectors in calibration?), and cost (M heads means M
collimators and head components) make it impractical to go much further in this
design direction. For higher sensitivity, manufacturers have gone to specialized
geometries, as discussed below.

Studies have shown that Anger cameras must have significantly better per-
formance for SPECT than for planar scintigraphy. For example, nonuniformity
must be reduced to less than 1% in order to avoid reconstruction artifacts. This
requires acquisition of a 30–120 million count reference image of a uniform
field for subsequent computer correction of nonuniformities. (There should be
around 10,000 counts per pixel in order for the relative Poisson variation or
noise in the uniformity calibration to be < 1% (

√
10,000/10,000), so a longer

reference scan is required for 128 × 128 acquisition versus 64 × 64 acquisi-
tion.) The camera image must also be mechanically properly aligned within the
computer matrix, or an axis-of-rotation correction made. In addition, there are
several other factors that must be accounted for to make SPECT truly quantita-
tive. In the past, there was disagreement about the need for attenuation, scatter,
and spatial resolution corrections for subjective visual interpretation of SPECT
images, but it is now generally accepted that such corrections are desirable for
both visual interpretation and quantitative analyses.
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Specialized Geometry SPECT Systems Several manufacturers have released
commercial SPECT systems that rely on a combination of more exotic detectors
and specialized geometry in an attempt to significantly enhance imaging perfor-
mance, especially detection sensitivity. Many of these systems utilize a solid-state
detector, cadmium-zinc-telluride (CZT), which we mentioned in Section 8.2.8.
CZT has significantly better energy resolution than NaI along with higher count-
rate capability. It can be manufactured as a pixelated detector; with 1 × 1 mm
pixels, intrinsic spatial resolution < 2 mm can be achieved. The specialized
SPECT systems combine CZT or another detector material with unique collima-
tion approaches; for example, multiheads and a multipinhole array. A picture
of one such system is shown in Figure 9.2.

Some of these approaches involve movement of the detectors and/or colli-
mators; others do not. In all cases, the specialized geometry yields significantly
higher detection sensitivity, by a factor of as much as eight, particularly for car-
diac imaging (for which many of these systems have been specifically optimized).
This increased sensitivity can be used to decrease dose, imaging time, and/or
image noise. All such unique approaches require specialized reconstruction
methods.

Combined SPECT/CT Systems As we have emphasized throughout this book,
each imaging modality yields a very different type of signal or signals, which
is why each is clinically useful and none are redundant. Nuclear medicine
images depict function (e.g., the activity of a physiological or biochemical
process) rather than structure or anatomy. However, the spatial resolution
in most nuclear medicine images is no better than several millimeters, and
the radiotracer’s distribution does not necessarily follow anatomical borders,
making anatomic localization difficult. Accordingly, there has been a push in
emission tomography, especially in PET (as we shall see below) and also in
SPECT, to build combined systems that also incorporate CT. In such systems,

Figure 9.2
A GE Discovery NM
530c cardiac SPECT
system. Courtesy of GE
Healthcare.
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registered SPECT or PET and CT slices are obtained, and the emission images
can be superimposed on the CT slices (with the emission activity typically
depicted in color, and the CT in shades of gray). This type of display makes it
much easier to determine the anatomic location of any increased (or decreased)
area of activity.

The first combined SPECT/CT systems used low-output x-ray tubes, pro-
ducing CT images of relatively poor quality (i.e., limited spatial resolution and
higher noise than conventional diagnostic CT images); they were not considered
usable for diagnosis, only for anatomic localization. Most current-generation
SPECT/CT systems use high-output tubes and produce CT images of routine
diagnostic quality.

Of importance, the CT images can also be used to help determine the
attenuation experienced by the photons emitted from the radiotracer; this
attenuation effect, which confounds the measurement of activity, is intrinsic to
SPECT imaging [see (9.2) and (9.6)]. The CT images provide a transmission
dataset for use in reconstruction, as described in Section 9.2.1 below.

9.1.2 PET Instrumentation

Positron emitting radionuclides are used in PET; the radiopharmaceuticals make
PET a functional imaging technique and in the family of nuclear medicine
modalities. A typical PET system is shown in Figure 9.3. From the outside, we
only see the plastic housing, and a PET system looks just like a CT or magnetic
resonance imaging (MRI) system, but the hardware is quite different in PET.

Consider a positron-emitting radiopharmaceutical distributed in a patient
and refer to Figure 9.4 for the following discussion. When a positron is emitted,
it travels up to several millimeters in tissue depositing its kinetic energy. It then
meets a free electron in the tissue, and mutual annihilation occurs (recall that a
positron is an antielectron). From conservation of energy—noting that 511 keV
is the energy equivalent to the rest mass of an electron or positron—two 511 keV
annihilation (gamma ray) photons appear. From conservation of momentum,
the two 511 keV photons are emitted back-to-back; that is, they propagate
outward from the site of annihilation (almost exactly) 180◦ apart.

Figure 9.3
A PET system. Courtesy
of GE Healthcare.
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Figure 9.4
Coincidence detection due
to positron decay and
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It is possible to use a single-head Anger camera to individually detect just one
of the two 511 keV gamma ray photons that are emitted by positron-electron
annihilation. Images could then be created using planar scintigraphy or SPECT
reconstruction (if the camera rotates). With a multihead system, both photons
might be detected if two of the Anger cameras were 180◦ apart and the photons
made it through the opposing collimators. In this case, scintigraphy or SPECT
techniques could be used to create an image as well.

However, it is more advantageous (and this is what distinguishes PET from
SPECT) to exploit the fact that a positron annihilation produces two gamma
rays at the same time. PET uses electronic circuits, as shown in Figure 9.4, to
detect a pair of 511 keV photons at the same time, in what is called annihilation
coincidence detection (ACD). With this approach, only simultaneous gamma
rays are declared as events, and all other events are rejected. Whether two
detected photons are declared as ‘‘simultaneous’’ depends on a user-set time
interval, called a time window, which is typically 2–20 ns for modern scanners.

Of major importance, if two opposing detectors simultaneously detect
the (paired) 511 keV gamma rays, the annihilation event must have occurred
somewhere along the line joining the two detectors (the so-called coincidence
line). Said another way, ACD intrinsically provides information about the
direction of travel of the photons. Detector collimation is not required with
this approach and is in fact undesirable because it reduces the sensitivity of the
detectors and may cause undesirable directional dependencies if the detectors
remain in fixed positions.

Commercial dual-head SPECT scanners could be used, together with ACD
circuitry, for PET (and some were sold this way in the early days of PET). In
this case, the two heads are placed 180◦ apart and their collimators removed
(or replaced with special collimators that isolate axial planes only). The heads
must be rotated in order to pick up emissions from all angles around the
patient, as tomographic reconstruction methods are used to reconstruct cross-
sectional images (see Section 9.2). In order to efficiently stop 511 keV photons,
it is generally necessary to make the NaI(Tl) crystals (in the Anger cameras)
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thicker, which increases positioning uncertainty. Because of this and because of
the inefficient angular acquisition, dual-head SPECT scanners are not an ideal
solution for PET, and commercial PET systems based on this approach have not
been available for a long time.

Full-fledged PET systems surround the patient with multiple rings of detec-
tors, each having a diameter of about 100 cm, as shown in Figure 9.5. Each
detector is electronically coupled to every other detector in a comprehensive
ACD circuit. Older systems used a single scintillation crystal coupled to a PMT
as the basic detector. The requirement for better resolution, however, has led
to the development of so-called detector blocks that are based on the Anger
camera principle. As an example, each detector block might comprise a single
scintillation crystal backed by four PMTs, which are arranged in a 2 × 2 matrix,
as illustrated in Figure 9.6. The scintillation crystal is cut into an array of smaller
crystals, typically 8 × 4, 8 × 7, or 8 × 8 arrays, which partially isolate the light
burst from each scintillation event to one of these subcrystals. Relative PMT
signal heights are used to identify which of the subcrystals contained the event
in a crude approximation of the center of mass calculation, as in a conventional
Anger camera (see Problem 9.7).

With the block detector approach, a full PET scanner consists of a number
of these blocks. As an example, a PET scanner might have three primary rings of
detectors with 48 detector blocks in each ring for a total of 144 detector blocks
(3 × 48). Each detector block has 64 subcrystals backed by four PMTs, which
means that we can also think of this PET scanner as having 24 rings (3 rings ×
8 subcrystals) and 384 detectors per ring (48 detector blocks × 8 subcrystals).

Figure 9.5
Geometry of a
multiple-ring PET system. Detector blocks

Multiple rings

Figure 9.6
Geometry of a PET
detector block.

Cuts in
crystal
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As the quest for better and better spatial resolution continues, limitations of
the current detector block approach become significant; these include concerns
with efficiency, resolution, and contrast. Accordingly, cutting-edge approaches
are being developed, including the use of the very same solid state approaches
as discussed for planar scintigraphy in Section 8.2.8.

PET scanners have lead or tungsten septa between the detector rings
(although this is increasingly rare because of the routine use of 3-D mode;
see below). The purpose of the septa is to collimate the photons into a set of
2-D slices. In this mode, PET reconstruction methods reduce to 2-D reconstruc-
tion applied to each slice or cross section separately. This geometry reduces
the contribution of scattered photons between slices and is very similar to
that of SPECT. When the septa are removed, the scanner operates in 3-D
mode, and coincidence events between any crystal pair are accepted. This fully
3-D (‘‘septa-less’’) acquisition and reconstruction is a big advance; the use
of 3-D mode provides about a factor of 5–10 increase in sensitivity. This increase
in sensitivity comes with a cost—significantly higher acquired scatter events
(scatter coincidences, in which at least one of the two annihilation photons
scatters in the patient before detection)—but accurate postacquisition software
algorithms now exist for scatter correction in 3-D PET.

The original commercial PET scanners used sodium iodide NaI(Tl) as the
detector scintillation crystal, the same material used in planar scintigraphy
and SPECT. Since 511 keV photons are harder to stop than the lower energy
photons used in planar scintigraphy and SPECT, next-generation PET systems
used bismuth germanate (BGO) instead of NaI(Tl) as the scintillation crystal.
The linear attenuation coefficient of BGO at 511 keV is 0.964 cm−1 as opposed
to 0.343 cm−1 for NaI(Tl). Therefore, BGO detectors can be about one-third
the thickness of what would be required for NaI(Tl) in order to yield the
same stopping power. For example, a typical BGO crystal is about 3 cm deep.
Each crystal is typically ‘‘cut’’ into smaller subcrystals that are on the order of
6 × 6 mm. The downside of BGO as compared with NaI(Tl) is that it is only
12–14 percent as efficient in light conversion.

Both NaI(Tl) and BGO are relatively slow scintillators having scintillation
decay times of 230 ns and 300 ns, respectively. (In this context, the scintillation
decay time is the time it takes for the scintillation light output to decay to
e−1 of its initial value.) Faster scintillators would be advantageous because it
would permit narrower time windows to be used in ACD circuits. Narrower
time windows would in turn reject more random coincidences, which are the
detection of two photons that are deemed to be from the same annihilation
event but are actually from two different annihilations. Accordingly, current-
generation PET systems use other detector materials, including cerium-doped
lutetium oxyorthosilicate (LSO) and gadolinium oxyorthosilicate (GSO), which
are single-crystal inorganic scintillators. The decay times of LSO and GSO are
on the order of 50 ns, a very significant improvement over NaI(Tl) and BGO.
The attenuation coefficients are comparable, as well, so these crystals can be
made relatively small for good spatial resolution and still retain good stopping
power (which translates to good detection sensitivity).

Just as in planar scintigraphy, the outputs of PET detectors are analyzed
by energy discrimination circuits. An energy discrimination window, centered
on the photopeak, is usually desirable. In this way, photons that have been
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detected after Compton scattering in the patient are rejected, and multiple
simultaneous detection of photons is also rejected. Sometimes, it is desirable
to lower the discrimination window to include part of the Compton plateau.
The reason for this is that it is common for there to be a Compton interaction
within the detector, depositing a fairly large amount of energy, but allowing the
photon to ultimately escape the detector without being fully absorbed. In this
case, the primary Compton event is actually the correct event to detect as
it represents the proper location of one of the two 511 keV photons created
during positron annihilation. Setting the lower window threshold is therefore
a matter of trading off the acceptance of two types of Compton events—those
that occur in the patient, which we do not want to count and those that occur
in the crystal, which we do want to count. A common lower energy threshold
is 300–350 keV.

Time-of-Flight PET For most of the discussion in this chapter, the difference in
arrival times (at the detectors) of the two 511 keV annihilation photons is not
considered, as long as both arrivals are within the coincidence time window.
However, it is important to note that the two photons only arrive at exactly
the same time at two opposing detectors if the annihilation event is exactly
halfway between the two detectors. Any offset will be reflected by one of the
photons arriving sooner at its detector than the other at its detector. This
difference in arrival times could be used to position the annihilation event along
the coincidence line, potentially yielding better spatial resolution and/or higher
signal-to-noise in the reconstructed image.

Bearing in mind that the two annihilation photons are traveling at the speed
of light, very high temporal resolution is required to take advantage of this
so-called time-of-flight (TOF) information in PET. In TOF-PET, the difference
in arrival times is recorded and used in the reconstruction process. This arrival
time difference increases as the annihilation event is farther from the midpoint
of the coincidence line. Of importance, in order to have TOF information
exactly locate the event, thus eliminating the need for reconstruction per se, the
scanner’s temporal resolution would have to be on the order of 25 picoseconds.
Unfortunately, modern scanners have temporal resolution of a few hundred
picoseconds (equivalent to spatial resolution of a few centimeters if we only
use TOF information to position the annihilation event), so some sort of
reconstruction is still required. However, the TOF information can be used to
constrain the reconstruction algorithm.

The approximate improvement in SNR over that obtained with non-TOF
PET is:

SNRTOF =
√

2D
c�t

SNRnon-TOF , (9.1)

where D is the diameter of the object being imaged, c is the speed of light, and �t
is the temporal resolution of the scanner. All else being equal, the improvement
in SNR is greatest for larger-sized objects (e.g., the human body as opposed to
the brain) since larger-sized objects lead to greater differences in arrival times.
In order to improve �t, very new detectors with a short scintillation decay time,
such as lanthanum bromide (LaBr3), are used.
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Combined PET/CT Systems As noted above, in discussing nuclear medicine
we always emphasize the ‘‘functional’’ nature of the image data. There is now
ample evidence that clinical interpretation of nuclear medicine studies, especially
in PET, can benefit from reference to anatomic images from CT or MRI. In
the past, a physician would review the PET images on a computer display and
the CT films on a light box and then perform mental ‘‘image fusion.’’ This
prompted the development of software for postacquisition image registration
and fusion. This process requires the images from both procedures to be on a
common computer (typically via transfer of the CT exam to a nuclear medicine
computer workstation); the PET images are interpolated to a common voxel
size and registered with the CT exam, and the fused or overlaid images are
displayed.

At least in theory, the best way of registering PET and CT is if both
studies are acquired via a combined system with a common gantry and patient
table. Accordingly, virtually all PET equipment manufacturers have developed
combined PET/CT systems, and these represent the vast majority of PET systems
sold today.

In a combined PET/CT system, both PET and CT exams may be performed
without moving the patient relative to the table between the two exams. This
provides functional and anatomical images that can be registered and fused
with a higher degree of positional accuracy than is permitted by imaging on
two separate scanners, especially because of differences in body shape and
position introduced by the use of two different tables. The improved registration
accuracy with a combined PET/CT system thus mainly results from the patient
being in the same position on one table. However, physiologic motion such as
breathing and abdominal motion cannot be avoided. These motions decrease
the registration accuracy and may produce artifacts in attenuation-corrected
PET images using the CT map (see below). Notice that the CT exam is typically
taken during a breath-hold, but the PET exam requires breathing. In addition
to improved positional accuracy, there is easier availability of both the PET and
CT data for the fusion software with a combined PET/CT system since they are
combined within one system.

As with combined SPECT/CT systems, in addition to their use for anatomic
localization, the CT images may be used as attenuation maps for performing
attenuation correction on the PET images. As noted above, one of the theoretical
advantages of PET over SPECT is that measured tissue attenuation values can
be used to exactly correct for the effects of attenuation in the emission data,
as discussed below in Section 9.2.2. In this regard, the attraction of using CT
is that it provides high resolution, high contrast, and low noise attenuation
maps obtained quickly using a fast helical scan. As with SPECT, note that using
x-ray CT images for attenuation correction requires converting attenuation
values measured with a low-energy, polychromatic x-ray beam into 511 keV,
monoenergetic attenuation values.

Combined PET/MRI Systems As we will subsequently discuss in forthcoming
chapters, MRI offers certain advantages over CT. Accordingly, it is not surprising
that manufacturers have been developing combined PET/MRI systems, and these
are now becoming commercially available. However, combining PET and MRI is
technically challenging. The high static magnetic field, quickly changing gradient
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fields, and radio frequency signals from the MRI portion of the system interfere
with PMTs and some of the PET electronics, which adversely affect the PET
images. In addition, the PET detectors may produce inhomogeneities in the MRI
magnetic field, as well as electromagnetic interference, both of which adversely
affect the MR images.

Several approaches are being used to address these challenges, including
using two separate scanners with a common patient bed (akin to the conven-
tional PET/CT approach, which yields a very long gantry), integrating the PET
detectors in the MRI scanner and guiding the scintillation light to an enclo-
sure outside the MRI system proper, using a custom magnet architecture, and
using new approaches to PET detectors, including the substitution of avalanche
photodiodes for PMTs.

9.2 Image Formation
In considering reconstruction in emission tomography, we focus on the recon-
struction of a 2-D cross-sectional image from observations of line integrals
within the cross section. This approach is consistent with SPECT (with suitable
approximation) and 2-D PET. It is completely analogous to our development of
CT reconstruction methods in Chapter 6, upon which we draw heavily.

9.2.1 SPECT Image Formation

Coordinate Systems Our first task is to set up a convenient (and conventional)
coordinate system. Since the Anger camera rotates in SPECT, it is necessary
to have both a laboratory (fixed) coordinate system and a rotating coordinate
system; these are both shown in Figure 9.7. It is important to realize that
because of the requirement for rotation and to conform with our previously
defined notation for tomographic reconstruction, the notation shown in this
figure differs from the ‘‘camera-centric’’ notation that we used for planar
scintigraphy in Chapter 8.

Applying the same approximations that we used in developing the imaging
equation for planar scintigraphy (see Section 8.3), we assume that the photon

Figure 9.7
Geometry of a SPECT
system.
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fluence rate is constant within each pixel on the gamma camera. Therefore,
given the geometry in Figure 9.7, a cross-sectional image acquired at a fixed
position z—referred to as an axial cross-section—must use pixels located at
position z on the camera. These pixels will ‘‘see’’ an underlying radiotracer
activity concentration f (x, y, z) only within the slice at z, and so we can
identify and denote the image to be reconstructed as fz(x, y). When this image
is viewed in a conventional orientation (positive x to the right and positive
y pointing up), it is as if we are standing at the subject’s feet and looking
at a slice of their body. This is a conventional radiographic view of the
cross-sectional image.

In principle, the imaging equation for SPECT (using an Anger camera)
would be identical to the imaging equation for planar scintigraphy [see (8.9)].
However, because of our choice of a laboratory coordinate system, it is necessary
to use a coordinate system on the face of the Anger camera that is different from
the one that is used in Chapter 8, and a somewhat different imaging equation
will emerge below. As shown in Figure 9.7, we use the variable � to coincide with
the x-axis when the rotation angle θ is zero. The other coordinate on the camera
is z, coinciding with the laboratory coordinate z regardless of orientation. One
further point is that the Anger camera is assumed to remain at a fixed distance
R from the origin. With this choice, the coordinate � will represent the lateral
position of a line integral, and the geometry used in the reconstruction of a cross
section in SPECT corresponds exactly to that in CT.

Imaging Equation We assume parallel-hole collimators, which implies parallel-
ray geometry. When the camera is located in its ‘‘home’’ position θ = 0, we can
map the coordinate system used in planar scintigraphy (Chapter 8) into that of
SPECT. Letting x → z, y → �, and z → y (compare Figure 8.9 and Figure 9.7),
we can rewrite (8.7) as

φ(z, �) = Ah

∫ R

−∞

f (x, y, z)
4π (y − R)2 exp

{
−
∫ R

y
μ(x, y′, z; E) dy′

}
dy . (9.2)

Notice that there is a slight abuse of notation in keeping the arguments of f and
μ the same as in the laboratory frame; the present functions refer to the activity
concentration and linear attenuation coefficients defined on the laboratory
frame in Figure 9.7. Although the camera acquires data for all z positions
while in any fixed rotation, the two-dimensional reconstruction process of
any slice is the same. In what follows, we drop the explicit dependence on
z, but do not forget that there is a separate reconstruction problem (which
can be implemented on a parallel computer, in fact) for each z coordinate on
the camera.

When the camera is rotated, the lines of integration are no longer in the y
direction. By design of this coordinate system, the lines of integration are the
same as those in CT [see (6.6)],

L(�, θ ) = {(x, y) | x cos θ + y sin θ = �} . (9.3)

Because of the exponential term in (9.2), we cannot use the set form of the line
integral (i.e., using the impulse function). Instead, we use the parameterization
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Figure 9.8
Integration geometry for
SPECT imaging equation.

Camera

Camera

(a) (b)

y y

x

s

s xu

[introduced in (6.8) and (6.9)]

x(s) = � cos θ − s sin θ , (9.4)

y(s) = � sin θ + s cos θ . (9.5)

Examination of the geometry shown in Figure 9.8, recognizing that the mean
pixel count is related to the underlying photon fluence rate by nk = εTAkφ(xk, yk)
[see (8.8)], and careful substitution yields

nk(�, θ ) = εTAkAh

∫ R

−∞

f (x(s), y(s))
4π (s − R)2 exp

{
−
∫ R

s
μ(x(s′), y(s′); E) ds′

}
ds , (9.6)

where nk(�, θ ) denotes the mean pixel count at lateral position � and angle θ .
Equation (9.6) is the starting point for a SPECT imaging equation.

Unfortunately, there are two complications that make (9.6) generally intractable
as an imaging equation. The first complication has to do with the presence of a
second unknown function, μ(x, y), the linear attenuation coefficient. There has
been a considerable amount of research into this problem; even when μ can be
measured, inferred, or approximated, the presence of the additional term in
the integrand leaves a relatively difficult reconstruction problem at hand—one
with no closed-form analytic solution. This is essentially one side of the
second complication, which arises due to the position-dependent terms—the
inverse-square law and the photon attenuation—in the integrand. Also, be
aware that the same collimator sensitivity considerations that were discussed in
Section 8.4.2 apply here as well.

Instead of trying to solve (9.6) directly, we will develop a simplified form
for image reconstruction—one that was used for many years in practice—by
ignoring both the inverse square law and the attenuation terms in the integrand.
Using this bold approximation yields

nk(�, θ ) = εTAkAh

∫ ∞

−∞
f (x(s), y(s)) ds , (9.7)

where the upper limit of integration has been set to ∞ since f = 0 behind the
collimator. We can now divide by the constant terms to form

g(�, θ ) = nk(�, θ )
TAkAhε

, (9.8)
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which we recognize from (9.7) as the line integral of activity concentration.
Therefore, using the impulse function [see (2.3)] and referring to (9.7), (9.8) can
be written as

g(�, θ ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x cos θ + y sin θ − �) dx dy , (9.9)

which is precisely the form of the standard CT imaging equation [see (6.10)].
One important difference between the CT and SPECT cases is that the SPECT
imaging equation uses the actual photon counts with a simple scaling factor
in arriving at a Radon transform relation, while CT requires a logarithmic
transformation of the observed x-ray intensities.

Reconstruction Because of approximations made above, we can use the same
CBP reconstruction formula in SPECT as in CT [see (6.26)]

f̂ (x, y) =
∫ π

0

∫ ∞

−∞
g(�, θ )c̃(x cos θ + y sin θ − �) d�dθ . (9.10)

This inverse formula is commonly used in SPECT even if only as a starting point
for iterative reconstruction (see Section 9.2.3).

In (9.10), c̃ is an approximate ramp filter, defined in (6.27) and repeated
here for convenience:

c̃(�) = F −1
1D{|�|W(�)} . (9.11)

In CT, the definition of the ramp windowing filter W(�) is not very critical.
As long as its cutoff frequency �0 is high enough, there will be very little
degradation in image quality. In SPECT, however, the windowing filter is very
critical to image quality. In particular, if it is chosen to allow too many high
frequencies through, then the SPECT images will be dominated by noise due to
the high-frequency emphasis of the ramp filter. If, on the other hand, W(�) is
chosen to pass only the very lowest spatial frequencies, then image detail will be
absent. It is common to use a ramp combined with some sort of low-pass filter,
such as a Butterworth filter, which is defined as:

W(�) = 1√
1 +

(
�

�c

)2n
, (9.12)

where �c is the filter’s critical or cut-off frequency and n is the order of the filter.

Attenuation Correction Attenuation influences the relative, as well as absolute,
apparent distribution of activity within an image; it is thus important to try to
correct for this effect even if only subjective visual interpretation—rather than
absolute quantification—of the images is used. We used a simplified imaging
equation (9.7), which does not include the effects of attenuation, in order to
derive the convolution backprojection formula for SPECT that is given in (9.10).
This was necessary because the influences of the activity concentration f and
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the attenuation factors are not separable in (9.6), and therefore no closed form
solution exists to find f from the observed pixel counts. However, once an
approximate image of f is reconstructed using (9.10), it is straightforward to
deduce a first-order attenuation correction factor a(x, y) that can be applied to
improve the image appearance and quantification.

Suppose we knew the linear attenuation coefficient μ(x, y; E) on the plane
of interest (perhaps by measuring it using CT) and imagine that we could
distribute radioactivity uniformly—that is, f (x, y) = 1—throughout this object.
From (9.6) we can then compute the expected measurements nk(�, θ ) that would
be theoretically produced by this object and then reconstruct an estimate of
this object using (9.9). Let us denote the reconstructed image of this artificial
uniform field by a(x, y). We know that the values of a(x, y) will be less than unity
since attenuation has been applied numerically. It will also be ‘‘cup shaped,’’
having lower values in the deep interior due to the higher overall attenuation.
Since we have incorporated the attenuation factors (inverse square law and linear
attenuation coefficient) in computing the measurements, the reconstructed image
a(x, y) will be degraded by the same factors as the true activity distribution that
we are trying to reconstruct. In the case of the simulation, we know the ‘‘truth’’
f (x, y) = 1 can be achieved by simply dividing a(x, y) by itself.

As a first-order correction, we can therefore apply the same correction factor
to our actual reconstructed image, yielding the attenuation compensated image

f̂c(x, y) = f̂ (x, y)
a(x, y)

. (9.13)

Although (9.13) looks on the surface to be a valid correction method—and it
is better than nothing—it is only an approximation because the inverse Radon
transform is not theoretically exact for this problem since the observation
equation (without approximation) is not a pure line integral. The notion of
computing the expected observations is a very powerful concept, however,
and it forms the basis of iterative reconstruction methods (see Section 9.2.3) in
which attenuation correction can be incorporated iteratively and with theoretical
justification.

Any attenuation correction approach requires knowledge of the distribution
of the linear attenuation coefficients. This distribution is usually obtained from
a transmission dataset. That dataset may come from either a CT (e.g., in a
combined SPECT/CT system) or from scanning line sources (e.g., long-lived
radioactive sources arrayed as lines that scan across the patient, integrated
into the SPECT system). With CT, the measured Hounsfield units must be
converted to attenuation coefficients at the emission energy of the radiotracer
(e.g., 140 keV for Tc-99m). This conversion is typically a bi- or tri-linear
function. The big advantages of CT are speed, low noise, and—in the case of
combined SPECT/CT systems—perfect registration between the emission and
transmission images. With scanning line sources, there is usually less need for
any numerical conversion (because a radionuclide with approximately the same
energy photons as the emission radiotracer is chosen), but transmission images
from scanning lines sources are significantly noisier than those from CT, and the
noise propagates into the attenuation-corrected emission images. (The spatial
resolution of transmission images from scanning line sources is poorer than that
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from CT, but this is not as big a problem because the final (corrected) SPECT
image has SPECT, not CT, resolution anyway.)

9.2.2 PET Image Formation

Coordinate System As noted above, modern commercial PET systems usually
operate in 3-D mode. For simplicity’s sake, here we consider only 2-D PET,
the reconstruction of axial cross sections from data collected within isolated
axial detector rings. In the case of a fully 3-D projection dataset, it is possible
(and, indeed, common) to reorient the data into contiguous 2-D sinograms, for
example, via Fourier rebinning. If we start with contiguous 2-D datasets, we
need to consider only one detector ring, which can be taken to be in a fixed
z plane. Geometry within this plane is considered relative to a conventional
cross-sectional x-y coordinate system, as in CT and SPECT.

Lines of Response As with planar scintigraphy and SPECT, PET counts the
number of detected photons, but these are now based on annihilation coincidence
detections (ACDs) rather than single gamma ray detections. As shown in
Figures 9.9 and 9.10, the line joining any two opposing detectors for which
an ACD could be identified is called a line of response (LOR) or coincidence
line. Over time, regions of high activity will generate more coincidence lines or

Figure 9.9
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coincidence events or counts along LORs passing through them than will regions
of low activity. The total number of coincidence counts along any given LOR
represents an integration of the total activity along that line. We note that it is not
possible to know the position along an LOR where the annihilation took place
(except for TOF-PET, which is not part of our development here). Therefore, the
measured number of counts on a particular line represents an integration of the
activity on that line. That is, like SPECT, PET measures line integrals of activity.

Imaging Equation Consider what happens at the site of a positron annihilation.
Two gamma rays are generated, and they fly off in opposite directions. As in
SPECT, the gamma rays will have potentially different experiences. A gamma
ray can be absorbed in the body, be scattered, miss the detector ring, or hit a
detector in the ring (and we consider only 2-D PET here). As in the development
of our imaging equation for planar scintigraphy (which was also used in SPECT),
we ignore scattering and therefore assume that photons travel in straight lines.
Unlike planar scintigraphy and SPECT, each PET detector has a fixed spatial
extent, and must be considered in pairs.

Consider a distribution of radioactivity within the body (or sample)
described by a radiotracer activity concentration f (x, y, z). Consider a differential
volume dxdydz lying halfway between the two detectors on a line connecting the
center of the detectors. For simplicity, we assume each detector is at a distance
R from this point. Since the radioactivity of this differential source is given by
(8.4), the photon fluence rate at a point (xd, yd) on either detector (ignoring
attenuation for now) due to this differential source dA = f (x, y, z) dx dy dz is

dφ(xd, yd) = dA
4πR2 . (9.14)

Since photons in PET come in pairs, for each photon that hits one detector we
can expect a simultaneous hit on the opposite detector. But if either photon fails
to reach the detector because of attenuation the event will not be counted by
the PET system. This corresponds to a reduction in photon fluence rate due to
attenuation.

To determine the factor associated with this reduction in fluence, we can
carry out a brief ‘‘thought experiment.’’ Since for each annihilation both photons
must reach their target in order to be counted, the attenuation going both ways
matters. That is, the attenuation from s = 0 to s = R and s = 0 to s = −R both
can contribute to a reduction in the count. In fact, since the two paths are
colinear, the total attenuation seen by this pair of photons is the same that
would be experienced by a single photon originating at s = −R on a trajectory
through s = 0 and then on to s = +R. The photon fluence rate with attenuation
included can therefore be written as

dφ(xd, yd) = dA
4πR2 exp

{
−
∫ R

−R
μ(s; E)ds

}
. (9.15)

It is the attenuation along the entire path that determines the loss factor
for coincidence detection. That is, it does not matter where on this line the
differential source is placed; the effect of attenuation on coincident counts will be
the same.
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Now consider moving the differential source to position s �= 0 within the
imaginary tube connecting the detectors (but still remaining on the central axis
between the detectors). Now one detector is farther away from the differential
source and will experience lower fluence simply due to the inverse square law.
This leads to a slightly modified equation

dφ(xd, yd) = dA
4π (R + |s|)2 exp

{
−
∫ R

−R
μ(s′; E)ds′

}
, (9.16)

where (xd, yd) must be selected such that the line passing through (xd, yd) and
the source position will also hit the opposite detector.

Now consider moving the source back to s = 0 but then move it off
the central axis. Simple geometric considerations dictate that, for this source
position, lines of coincidence between these two detectors cannot exist across
the whole face of either detector. This amounts to a further reduction in
effective photon fluence rate between these detectors from this shifted source. It
is complicated to find this reduction factor for even simple detector geometries
and not necessary for our purposes. Rather, we simply acknowledge that if
we model the activity concentration as constant across the tube connecting the
two detectors, its effective activity cannot be the product of the activity at the
central point times the cross-sectional area of the tube; it will be less than that.
For simplicity, we will use the notation Ãh for effective cross-sectional area of
the tube lying between the two detector. With this assumption, the differential
radioactivity under consideration then becomes a function of position along
the tube

dA(s) = Ãhf (x(s), y(s), z)ds , (9.17)

where ds is a differential element in the direction of the line parameterized by
(x(s), y(s)) connecting the detectors [see (9.4) and (9.5)]. Then the total fluence
at (xd, yd) is given by the integral over the tube by combining (9.17) and (9.16),
yielding

φ(xd, yd) = Ãh

∫ R

−R

f (x(s), y(s))
4π (R + |s|)2 exp

{
−
∫ R

−R
μ(s′, E)ds′

}
ds , (9.18)

where we have dropped the explicit dependence of f on z since this 2D analysis
can be carried out for each z independently.

Considering the area Ah of the detector and image acquisition time T,
we can write the expected number of coincidence detections for the LOR at
(�, θ ) as

n(�, θ ) = εTAhÃh

∫ +R

−R

f (x(s), y(s))
4π (R + |s|)2 exp

{
−
∫ R

−R
μ(x(s′), y(s′); E)ds′

}
ds ,

(9.19)

where we have also incorporated an additional (unitless) detector efficiency
term ε. The exponential factor in (9.19) does not depend on s, so we can remove
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it from the integral over s. We will also make the approximation that the field
of view containing radioactivity is very small with respect to R, which implies
that |s| � R, and the inverse square law can also be removed the integrand.
This leads to our final imaging equation for PET:

n(�, θ ) = εTAhÃh

4πR2

∫ R

−R
f (x(s), y(s))ds exp

{
−
∫ R

−R
μ(x(s′), y(s′); E)ds′

}
. (9.20)

Equation (9.20) is similar to (9.6) for SPECT, but the fact that the integrals of
activity concentration and linear attenuation are separate provides an opportu-
nity for attenuation correction in PET that is not possible in SPECT, as we will
see below.

Image Reconstruction For our development here, we focus on 2-D recon-
struction. In practice, much PET data are acquired in 3-D mode (as noted
above) because of its higher sensitivity. 3-D data can be reconstructed via 3-D
approaches, but it is common to reorient the 3-D projection data into 2-D
projection datasets (via a variety of techniques, including Fourier rebinning). In
2-D, coincidence counts can be organized into parallel-ray or fan-beam projec-
tions. Here, we consider only parallel-ray projections, as shown in Figure 9.10.
From (9.20), we see that although we desire to reconstruct activity con-
centration f (x, y), the attenuation μ(x, y) also appears in the PET imaging
equation.

Let us start by ignoring attenuation, as we did in SPECT. Accordingly, we
have an approximate imaging equation given by

n(�, θ ) ≈ K
∫ R

−R
f (x(s), y(s)) ds , (9.21)

where

K = εTAhÃh

4πR2 exp

{
−
∫ R

−R
μ(x(s′), y(s′); E)ds′

}
. (9.22)

So, if we define the scaled measurements

g(�, θ ) = n(�, θ )
K

, (9.23)

then we see that a PET scanner measures the Radon transform of the radiotracer
activity concentration f (x, y),

g(�, θ ) ≈
∫ R

−R
f (x(s), y(s)) ds . (9.24)

Therefore, we can use the reconstruction methods such as CBP from Chapter 6
to obtain an approximate reconstruction of f (x, y).
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Attenuation Correction Unlike SPECT, PET has a straightforward approach
for handling attenuation. Suppose μ(x, y) is exactly known. Then, using (9.20),
we can form attenuation-corrected measurements as

gc(�, θ ) = n(�, θ )
K

exp

{∫ R

−R
μ(x(s′), y(s′); 511 keV) ds′

}
. (9.25)

We see by combining this equation with (9.20) that gc(�, θ ) is exactly the integral
of activity along the line L(�, θ )

gc(�, θ ) =
∫ R

−R
f (x(s), y(s)) ds . (9.26)

Corrected measurements can now be used to obtain a more accurate image of
activity concentration. Here is the CBP formula that could be used, for example:

f̂ (x, y) =
∫ π

0

∫ ∞

−∞
gc(�, θ )c̃(x cos θ + y sin θ − �) d�dθ . (9.27)

As in both CT and SPECT, c̃(�) is an approximate ramp filter, defined using
an appropriate window function [see (9.11)]. Although CBP ignores both the
blurring caused by the physical size of the detectors (larger than x-ray CT) and
the statistical noise made prominent by the relatively low photon counts, it
remained the routine method in PET reconstruction for many years.

We see from (9.25) that it is only the line integrals of μ(x, y) that are
required to correct the PET counts, not an actual image of μ(x, y). So actual
reconstruction of μ(x, y) need not be carried out; instead, it is sufficient to
simply measure the line integrals of attenuation on each LOR in order to be
able to compute the corrected measurements gc(�, θ ). As noted above, it is
now standard to acquire CT data along with the PET data, using a combined
PET/CT system. The CT data are converted to μ(x, y) (at 511 keV) via a
nonlinear transformation, from which the line integrals of μ(x, y) (at 511 keV)
are obtained. We note that in PET/MRI systems, the MR data cannot be readily
converted to μ(x, y). Instead, current approaches rely on preexisting databases
that convert MR-identified anatomic structures to μ(x, y) (at 511 keV) via
segmentation and atlas-based methods.

9.2.3 Iterative Reconstruction

CBP was for many years the most commonly used reconstruction algorithm in
SPECT and PET, and it is still often used. It can be efficiently implemented and
is relatively robust to those physical factors present in ECT imaging that corrupt
the imaging process—for example, limited detector resolution, Compton scatter,
attenuation (at least in SPECT), and noise. However, use of CBP is optimal
(and, indeed, analytically correct) only if the imaging equation is an accurate
depiction of reality, which we know from the preceding discussion for both
PET and (especially) SPECT is not the case because of the corrupting physical
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processes. In both SPECT and PET, it is possible to model these physical
processes in an attempt to reflect reality. Given these accurate, and elaborate,
imaging models, a number of algorithms have been developed to produce better
reconstructions than CBP. Broadly speaking, these algorithms fall into a class of
algorithms called iterative reconstruction algorithms.

In an iterative reconstruction algorithm, an initial ‘‘guess’’ of the distri-
bution of radioactivity is made, quite frequently by using CBP. Let us denote
this initial guess by f (0)(x, y). If this were the true activity concentration in
the body (or sample), then we should expect to see specific projection values
as a result, say g0(�, θ ). These expected measurements can be computed given
a description of the imaging geometry and instrumentation, for example, our
imaging equation (9.20) with (9.23). Computing the expected measurements
given a source object is called solving the forward problem or forward pro-
jection. This new ‘‘forward-estimated’’ sinogram can now be compared with
the measured sinogram g(�, θ ). If the acquisition and reconstruction process
is correctly modeled, and if the initial guess were correct, then these sino-
grams would match. Otherwise, it is assumed that there are errors in the
initial guess and that it should be modified, yielding a second guess f (1)(x, y).
This concept of iteratively improved object estimates is the essence of iterative
reconstruction.

There are many different iterative reconstruction algorithms that have been
developed and put into practice over the years. They differ primarily in how
they modify the estimated distribution in response to differences between the
estimated and observed projection values. Regardless of the details, in the end
each algorithm produces a sequence of estimated cross sections, f (i)(x, y), i =
0, 1, 2, . . ., the final one of which (after some iteration stopping rule is satisfied)
is the reconstruction that is used clinically. In essence, iterative reconstruction is
based on successive estimates, with each successive estimate yielding a forward-
estimated sinogram that is closer to the measured sinogram. We now present
a very basic algorithm, called the Algebraic Reconstruction Technique (ART),
which uses the Kaczmarz method for solving matrix equations, to illustrate this
concept.

Algebraic Reconstruction Technique (ART) Suppose the activity concentration
(object) is represented by pixel values fj, j = 1, . . . , m. Assuming that pj(x, y)
j = 1, . . . , m are indicator functions describing each pixel location and shape,
then the object can be represented by

f (x, y) =
m∑

j=1

fjpj(x, y) . (9.28)

Now we ask what will be the observations given just the radioactivity in pixel j?
To find the answer we only need to substitute fjpj(x, y) as f (x, y) into (9.6) and
(9.8) for SPECT or (9.20) and (9.23) for PET to determine determine g(�, θ ) for
this source. For a particular line L(�i, θi), the observation can be written gi = aijfj,
where aij represents the response to a unit activity concentration located in pixel
j. If there is activity in more than one pixel, then each pixel will contribute by
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superposition to the measurements, yielding the discrete observation equation

gi =
m∑

j=1

aijfj . (9.29)

The general solution is easier to see if we represent each collection of val-
ues as vectors. Accordingly, we set g = (g1, . . . , gn) and f = (f1, . . . , fm) and
ai = (ai1, . . . , aim). Then

gi = ai · f , (9.30)

where · denotes inner product, and

g = Af , (9.31)

where A = [aij] is a matrix that concisely describes how to transform all the image
pixel values into all the measurements. We note that (9.30) is a mathematical
representation of the forward projection process mentioned above.

Given this notation and conceptual setup, we observe that there is a
straightforward solution if the matrix A is invertible, that is,

f = A−1g . (9.32)

However, the number of measurements is generally larger than the number of
unknowns and A cannot be assumed to be square. Given more measurements
than unknowns, however, an estimate f̂ of the object can be found by the least
squares approach in linear algebra, and can be written as

f̂ = (ATA)−1ATg , (9.33)

where the T superscript denotes matrix transpose. This approach is known
as the pseudoinverse estimate of f, and the equation is known as the normal
equation. It is a practical solution only on very small problems; otherwise, there
is a significant burden in computing the required matrix inverse. Here is where
the iterative solution comes in handy.

The Kaczmarz method solves (9.31) using the following iteration

f̂
(k) = f̂

(k−1) − (ai · f̂
(k−1) − gi)
ai · ai

ai , (9.34)

which is carried out for each observation gi and then repeated until convergence.1

This iteration uses one measurement at a time to update f̂ and does not require a
matrix inverse; hence, it is computationally tractable. Notice that the quantity in
the parenthesis in (9.34) includes an implementation of the forward projection
process (the inner product) applied to the current image estimate, which is

1Convergence in iterative reconstruction is the state that is attained when further iterations do not
materially improve the reconstructed image.
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then compared by subtraction to the actual observation. Thus, if the computed
measurements agree with the measurements for all measurements, there will be
no change in the object and the solution has been found. In general, a more
modest criterion, such as an iteration producing only a very small change to f̂,
is a more reasonable stopping criterion.

Maximum Likelihood by Expectation Maximization (ML-EM) The ART
method captures the underlying concept of iterative reconstruction in
mathematics quite elegantly. However, it is not used in practice, primarily
because it does not consider the random factors that are inherent in both SPECT
and PET systems. We see how the matrix A can, in principle, incorporate
many deterministic factors such as detector size, shape, and efficiency, and
object attenuation, but it is not immediately clear how one would incorporate
the Poisson nature of photon counting and such factors as scattering and
random coincidences. The maximum likelihood by expectation maximization
(ML-EM) methods address this issue; they have become the most popular
class of reconstruction algorithms in clinical use in emission tomography
because they are capable of incorporating all of these deterministic and
probabilistic factors.

The ML-EM method starts with an imaging equation that directly expresses
the number of photon counts that are expected in a detector. For example, (9.6)
and (9.20) will work for SPECT and PET, respectively. We assume the same
pixel basis as in (9.28) and finite number of observations as in ART above, and
derive from the geometry the coefficients aij that will transform the pixel having
activity concentration fj in it to the measurement gi. We can also add a factor to
be determined from experiment (and thereafter assumed to be known) reflecting
the extra counts ri that are expected to arise in detector i due to scattering and
random coincidences, leading to the discrete imaging equation

ni(f) =
m∑

j=1

aijfj + ri . (9.35)

In Sections 9.3.2 and 9.3.3, we discuss the estimation of the extra counts ri.
We know that the quantity ni(f) represents the mean number of counts,

whereas the actual observed count is the realization of a Poisson random variable
with this mean. The form of the Poisson probability mass function can now be
used to set up a likelihood function, which assumes that the actual observations
ni, i = 1, . . . , n are known—that is, they have been observed during image
acquisition—and the image values are the unknowns. The maximum likelihood
(ML) estimate is defined as the collection of image pixel values f (or fj,
j = 1, . . . , m) that together maximize the likelihood function (or the logarithm
of the likelihood function). Although various algorithms have been defined to
try to find the ML solution, the most popular and computationally convenient
method is the ML-EM method, which is inherently iterative.

The ML-EM algorithm seeks to find the image pixel values f that maximize
the logarithm of the Poisson likelihood objective function, which is given by

L(f) =
m∑

i=1

ni ln ni(f) − ni(f) . (9.36)
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It can be shown that the following ML-EM iteration

f (k+1)
j =

f (k)
j

aj

n∑
i=1

aji
ni

ni(f
(k))

(9.37)

converges to the ML solution. Here, f(k) is the k-th estimate of the image, and

aj =
n∑

i=1

aij , j = 1, . . . , m (9.38)

are the sensitivity factors that characterize the sensitivity of each voxel to the
collection of measurements. (If aj = 0 for some j, then the geometry of the
system cannot estimate fj, and this pixel should be excluded from the model.)
The ML-EM algorithm (9.37) makes use of the forward model through ni(f

(k)),
although the comparison with the observations is done using a ratio rather than
a difference. We see that if ni = ni(f

(k)) for all i, then the image estimate remains
unchanged because of the definition of the sensitivity factors in (9.38).

In the past, ML-EM approaches suffered from lengthy reconstruction times
and difficulty in converging to a useful solution, particularly in the presence
of significant noise. (Difficulties in convergence lead to increased numbers of
iterations, increasing overall reconstruction time.) Hudson and Larkin made
a major breakthrough when they developed an algorithm—ordered subsets
expectation maximization (OSEM)—that utilizes ‘‘ordered subsets’’ to acceler-
ate iterative reconstruction. In this approach, observations are grouped into an
ordered sequence of subsets or blocks. For example, if a full set of projections
consists of 360 views and there are 15 subsets, each subset would consist of
24 views. Of major importance, these subsets represent mutually exclusive and
collectively exhaustive use of the projection data, and they are treated indepen-
dently in parallel. One iteration of the algorithm is a single pass through all the
subsets. However, the reconstructed image is updated after every subset, which
accelerates convergence.

Ordered subsets are an extension of iterative reconstruction. In Hudson
and Larkin’s original implementation, they used Shepp and Vardi’s expectation
maximization approach. Like any standard EM algorithm, this consists of
a backprojection–projection–backprojection sequence. At each iteration, the
reconstruction from the previous iteration is the starting point. In OSEM, the
standard EM algorithm is applied to each of the subsets in turn. Such an
approach can be applied to both SPECT and PET imaging. In SPECT, the
subsets may correspond to natural groupings of projections—for example, each
head in a triple-head system. In PET, projection data may be reorganized after
acquisition to define blocks or subsets in a similar fashion. OSEM has become
the preferred approach to reconstruction in emission tomography (including
both SPECT and PET).

9.3 Image Quality in SPECT and PET
From a physics point of view, there are five major factors that affect image
quality and the quantification of absolute radioactivity in emission tomography.
These include finite spatial resolution (e.g., the in-plane and axial spatial
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resolution of a SPECT or PET scanner); attenuation of photons by tissue;
detection of scattered photons; accidental coincidence counting of random
(unpaired) photons in coincidence, applicable only to PET imaging; and ‘‘noise’’
resulting from the statistical nature of radioactive decay.

9.3.1 Spatial Resolution

As first introduced in Chapter 3, all imaging systems have a limited ability
to resolve small objects. The spatial resolution of an emission tomography
system can be thought of as that distance by which two small point sources
of radioactivity must be separated to be distinguished as separate in the image
(see again Figure 3.6). The spatial resolution of a SPECT system is mainly
determined by the resolution in the projection data, which itself is determined by
the factors discussed in Section 8.4.1, and the effects of reconstruction, especially
the specific filter used, since the approximate ramp filter given in (9.11) usually
includes a low-pass filter W(�) to reduce noise. The spatial resolution of a PET
system is mainly determined by the physical cross-section dimensions of each
detector element and the effects of reconstruction. In addition, because PET
uses the annihilation site, rather than the emission site of the positron per se,
positron range (i.e., the distance the positron travels before annihilation) also
limits resolution. In particular, positron range depends on the initial energy
of the positron. Positrons are emitted with a range of energies, leading to a
distribution of positron ranges. The effective spatial resolution of a PET scanner
can be modeled as the convolution of the scanner’s intrinsic point spread
function (PSF) with the positron range distribution.

In practice, we can model SPECT and PET resolution as a cascade of LSI
systems [see (2.46)]. The development is identical to that for CT resolution, as
fully derived in Section 6.4.1. The final expression for the relation between the
reconstructed (but blurred) image and the object, identical to (6.56), is

f̂ (x, y) = f (x, y) ∗ h(r) , (9.39)

where r =
√

x2 + y2.
Here (as in CT), h(r) represents the (cascaded) PSF and h(r) for SPECT

includes (1) the (1-D, in-plane) projection PSF [i.e., (8.14), with y set to 0, and
x = �] and (2) w [identical to w in (6.48)]; h(r) for PET includes (1) a positron
range function, (2) a rect function for detector width [identical to s in (6.48)],
and (3) w.

Finite spatial resolution in SPECT and PET results in two important, related
effects. First, the image is blurred, with the degree of blurring dependent on
the spatial resolution. This blurring prevents the delineation of edges of larger
structures and may not allow the visualization of smaller ones as distinct
objects. Second, neighboring areas are smeared and averaged together, reducing
the measured value in the areas with greater radioactivity, and increasing it in
the areas with lesser radioactivity (i.e., reducing contrast). Said another way,
referring back to (3.1), the reduction in fmax and the increase in fmin reduces
modulation (or contrast). In this fashion, finite spatial resolution produces an
underestimation of radioactivity in small structures with greater radioactivity,
with progressive underestimation as the structures get smaller. The effect is
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not eliminated until the object size is approximately three times the resolution
of the imaging system. These effects, which also apply to the axial resolution
(sometimes mistakenly called ‘‘slice thickness’’) of a tomographic scanner, are
referred to as partial volume effects.

9.3.2 Attenuation and Scatter

The photons detected in nuclear medicine imaging are electromagnetic radiation.
As such, they undergo two major types of interactions in tissue—photoelectric
effect and Compton scattering—as discussed in Chapter 4. The photoelectric
effect results in complete absorption of the photon, reducing observed count rate,
while scattered photons are still detected. Since attenuation is a combination
of absorption (by the photoelectric effect) and scatter (by Compton scattering),
correction schemes can either treat these processes independently or jointly.

As first discussed in Section 5.4.3 in the context of projection radiography,
large-angle scatter produces a low-level background ‘‘haze’’ in the image, which
reduces contrast [see (5.41)]. This reduction in contrast arises from the addition
of this scatter background, rather than a reduction in fmax or an increase in fmin
per se, as discussed above in the context of resolution effects and in (3.1). Event
C in Figure 9.11 depicts a scatter coincidence in PET.

Absorption produces a gradual, progressive underestimation of radioactivity
from the edge to the center of the body, by about a factor of five to as much as
50, depending on body size, photon energy, and SPECT versus PET detection
(since comparison of (9.6) and (9.20) indicates that, for SPECT, the photon only
has to travel through part of the body, whereas for PET, the sum of the two
annihilation photons’ travel distance is always the complete body thickness).
The same physics and mathematics that make ‘‘perfect’’ attenuation correction
at least theoretically achievable in PET, but not in SPECT, make the effects of
attenuation itself more dramatic in PET than in SPECT. This is counterintuitive
given the difference in photon energies of the commonly used radionuclides
for PET and SPECT. In PET, the main photon energy and linear attenuation
coefficient (for water) are 511 keV and 0.095 cm−1, respectively, while for
SPECT they are 140 keV and 0.145 cm−1. (Note that the difference in energy
is a factor of 3.7, but the difference in attenuation coefficients is only about
50 percent.) The underlying basis for higher attenuation in PET is the fact that

Figure 9.11
Coincidence counting in
PET. B represents a true
coincidence, A and D
random or accidental
coincidences, and C
scattered coincidence.
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both photons must escape the patient and be detected in coincidence, meaning
that the total attenuation path length is longer for coincidence imaging than for
SPECT. This distinction increases exponentially with patient size. For example,
with PET, a 30 cm diameter patient requires an average attenuation correction
factor of 16, whereas a 40 cm diameter patient requires a correction factor of 50.
For comparison, the attenuation correction factor in cardiac SPECT imaging,
where the photons pass through 20 cm of tissue, is just 20.

As discussed above and formalized in (9.25) and (9.27), in PET an exact
correction for attenuation can be made, while such is not the case in SPECT.
In both SPECT and PET, scatter is usually estimated at the projection level
by use of a model of the scattering process that incorporates characteristics of
the scanner and the patient. This estimate is used to correct for scatter in the
reconstruction process.

9.3.3 Random Coincidences

In PET, random or accidental coincidences are possible. These occur when one
annihilation photon from one electron-positron annihilation event, and another
annihilation photon from a different electron-positron annihilation event are
detected in coincidence. Events A and D in Figure 9.11 depict random or
accidental coincidences.

The random coincidence count rate is given by the product of the coincidence
time window and the ‘‘singles’’ (individual) count rates from the two opposing
detectors in coincidence,

R = 2τS+S− , (9.40)

where 2τ is the coincidence time window width and S+ and S− are the individual
count rates of opposing detectors.

As the activity in the field of view increases, the true coincidence rate
increases linearly (ignoring dead-time effects), but the random coincidence rate
increases as the square of the increase in activity. Sensitivity may be increased
by increasing the width of the coincidence time window (up to the point when
the full coincidence time spectrum has been included), but only at the expense
of acquisition of more random coincidences. A great challenge in coincidence
imaging is to balance sensitivity (true coincidences) with random coincidences in
optimizing the time window setting. Some manufacturers specify the window in
terms of the time resolution of the system; others do so in terms of twice the time
resolution, which is usually the actual window width, and therefore the more
traditional specification. The timing window, which typically ranges between 2
and 20 ns, is primarily determined by the ‘‘speed’’ of the detector material.

In practice, random or accidental coincidences are estimated from the
observed projection data through use of (9.40) and then incorporated in the
reconstruction process. As an alternative, an offset coincidence time window (in
which the window is intentionally offset by a large time lag, such that any and
all observed coincidences must be random) can be used to directly measure the
random coincidence rate.

9.3.4 Contrast

In the process of considering the effects of finite spatial resolution and scatter,
we noted their influence on image contrast in SPECT and PET. In both cases,
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our consideration of contrast followed that first introduced in (3.1), and recast
specifically for planar imaging in (8.25). In SPECT and PET, the definition of
contrast remains the same, but fmax and fmin are from reconstructed images. The
definition of local contrast also remains the same, with the values of foreground
intensity and background intensity taken from the reconstructed images at the
appropriate locations.

9.3.5 Noise and Signal-to-Noise Ratio

It is important to remember that deterministic effects influence only the signal
component of an image’s signal-to-noise ratio; in other words, they influence
only quantitative accuracy. Noise arises from the random statistical nature
of radioactive decay, as well as potentially from the imaging hardware and
certain image processing operations, and influences the noise component of
the SNR; in other words, it influences precision. The noise in projection data
in SPECT and PET is identical to the situation in planar scintigraphy and
follows the development given in Section 8.4.5. However, the reconstruction
process changes the noise magnitude and correlation in a fashion similar to
the way that reconstruction changes the noise in CT compared with projection
radiography.

In practice, estimating the noise in a reconstructed SPECT or PET image
is difficult. In order to present a generic formulation, we make the same
assumptions we made to derive an expression for variance in CT: The measured
line integrals are statistically independent, and the object is sufficiently uniform
that the line integrals are essentially equal. With these simplifying assumptions,
the derivation of the variance in a reconstructed SPECT or PET image is identical
to that presented in Section 6.4.2, is independent of (x, y) location, and is given
by (6.72).

In PET, a powerful concept called noise equivalent count rate (NEC) has
been developed to reflect these concepts and include PET-specific issues (such as
random coincidences). The NEC is given by:

NEC = T2

T + S + 2R
, (9.41)

where T is the true coincidence count rate, S is the scatter count rate, and R is the
random coincidence count rate. NEC can be thought of as the equivalent true
count rate of an ideal system (i.e., one with no scatter or random coincidences)
that results in the same SNR as an actual system with given scatter and random
coincidence count rates.

Ultimately, key performance parameters such as lesion detectability or
quantitative accuracy and precision depend on the signal-to-noise ratio and
total error. Since both contrast and noise are defined the same way in CT and
SPECT/PET, the SNR formulation presented for CT in (6.73) applies, and the
final SNR formulation is the same as (6.74).

9.4 Summary and Key Concepts
Cross-sectional—i.e., tomographic—imaging in nuclear medicine is accom-
plished with SPECT and PET. SPECT usually utilizes a rotating Anger camera
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or cameras; PET utilizes a dedicated imaging system containing a ring or multi-
ple rings of detectors. In this chapter, we presented the following key concepts
that you should now understand:

1. Emission computed tomography includes single photon emission computed
tomography (SPECT) and positron emission tomography (PET).

2. SPECT is based on an ensemble of projection images, each of which is
usually a conventional planar scintigram.

3. PET has no projection analog and is based on coincidence detection of
paired gamma rays (‘‘annihilation photons’’) following positron-electron
annihilation.

4. SPECT is typically performed with rotating Anger scintillation cameras (with
multicamera systems being the most common); specialized geometry systems
now exist for enhanced sensitivity, especially for cardiac imaging.

5. PET is always performed with a dedicated PET scanner; such scanners are
always multislice and typically operate in 3-D mode.

6. Multimodality SPECT and PET systems are common; these systems incor-
porate CT (or MRI) to facilitate anatomic localization and attenuation
correction.

7. The basic SPECT imaging equation is, in essence, identical to that in planar
scintigraphy, except for a change in notation that facilitates consideration
of reconstruction; reconstruction can follow the approach outlined for CT.

8. The activity and attenuation terms in the basic SPECT imaging equation are
not separable; thus, there is no closed-form analytic solution for attenuation
correction in SPECT.

9. The basic PET imaging equation is similar to that for SPECT, with one
important difference: the use of coincidence detection leads to an attenuation
term whose limits of integration span the entire body; thus, PET has a
closed-form solution for attenuation correction.

10. Iterative reconstruction is a newer, more computer-intensive approach that
implicitly takes the random nature of decay into account and can incorporate
models of attenuation, scatter, and blur.

11. Image quality in SPECT and PET is limited by resolution, scatter, and noise.
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Problems
SPECT

9.1 Consider a 2-D cross section consisting of three separate compartments,
R1, R2, and R3, as shown in Figure P9.1.

Figure P9.1
Geometry of a radioactive
cross section. See
Problem 9.1.
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(a) Suppose a solution containing a 511 keV gamma ray emitting radionu-
clide with concentration 0.5 mCi/cm3 fills R2. The object is imaged
using a (2-D) SPECT scanner. Find expressions for gSPECT(�, 0◦) and
gSPECT(�, 180◦). (Ignore the inverse square law.)

(b) Suppose that the radionuclide in part (a) is replaced with a positron-
emitting radionuclide with the same concentration and the object is
imaged using a (2-D) PET scanner. Find expressions for gPET(�, 0◦) and
gPET(�, 180◦).

For parts (c) and (d), let μ1 = 0.3 cm−1, μ2 = 0.4 cm−1, and μ3 =
0.2 cm−1.

(c) Calculate gSPECT(0, 0◦) and gSPECT(0, 180◦).
(d) Calculate gPET(0, 0◦) and gPET(0, 180◦).

9.2 Consider a slice of an object, as shown in Figure P9.2, with two compart-
ments filled with radioactive liquids emitting gamma photons with energy
150 keV.

Figure P9.2
Two-compartment object.
See Problem 9.2.
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The linear attenuation coefficients of the liquids are given by μ1(150 keV)
= 0.2 cm−1, μ2(150 keV) = 0.4 cm−1, μ1(511 keV) = 0.1 cm−1, and
μ2(511 keV) = 0.3 cm−1. The concentrations f (dps per unit volume)
of the liquids are given by f1 = 0.2 mCi/cm3 and f2 = 0.4 mCi/cm3.
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The object is imaged using a SPECT scanner. Assume that there are ideal
collimators having 100% efficiency.

(a) Find the projections g(�, 180◦) and g(�, 90◦). Neglect inverse square
law effects.

(b) The liquids are replaced by two positron emitting liquids of same
concentrations. If the system is now imaged by a PET scanner, find
g(�, 0◦), assuming collimators have 100% efficiency.

(c) Describe how to compensate for attenuation in PET reconstruction.
Is the same approach applicable in SPECT? Explain with imaging
equations.

(d) Explain how the answers in part (a) and (b) would change if real
collimators are used instead of ideal collimators.

9.3 Suppose there are two kinds of radiotracers, P and Q. At time 0, there are
N0 = 1 × 1015 atoms of each of them.

(a) After 1 hour, there are 1
3 N0 of P and 2

3 N0 of Q remaining. What are
the half-lives of P and Q?

(b) What is the radioactivity AP and AQ at time 1 hour in units of curies?

A square phantom with width 6 cm has a circle with radius 1 cm inside, as
illustrated in Figure P9.3. The circle is filled with radiotracer Q, with the
amount of radioactivity AQ in (b) everywhere, and the square excluding
the circle is filled with radiotracer P, with the amount of radioactivity AP

in (b) everywhere. The phantom is put into a SPECT system.

Figure P9.3
A square phantom.
See Problem 9.3.

3 cm

2 cm

1 cm

Ap

AQ

�square�1 cm�1

�circle�2 cm�1

(c) What is the local contrast of the projection g(�, 180◦) if no attenuation
is present? (Let the peak value in the circle be used as the intensity of
the object, which applies to (d) as well.)

(d) What is the answer to (c) if attenuation is present? Let the linear
attenuation of the square excluding the circle be μsquare = 1 cm−1 and
that of the circle be μcircle = 2 cm−1.

(e) Take attenuation into account and estimate whether the absolute value
of the local contrast (|C|) of the projection g(�, 180◦) would be bigger
or smaller than that of g(�, 0◦). Explain.

9.4 Consider a 2-D object consisting of two triangle compartments, as shown in
Figure P9.4. Suppose a solution containing a 511 KeV gamma ray emitting
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radionuclide with concentration f = 0.5 mCi/cm3 fills the lower triangle.
The linear attenuation coefficients in the two regions are μ1 = 0.1 cm−1

and μ2 = 0.2 cm−1. Assume perfect detection in all cases and ignore the
inverse square law effect.

(a) We image the radioactivity using a 2D SPECT scanner. Compute the
projected radioactivities gSPECT(�, 0◦) and gSPECT(�, 180◦). The camera
is located on the +y-axis looking down when θ = 0◦.

(b) Now assume the radionuclide in part (a) is replaced by a positron
emitting radionuclide with the same concentration. Assume the linear
attenuation coefficients in the two regions are the same as in part (a).
If using a 2D PET scanner, compute gPET(�, 0◦) and gPET(�, 180◦).

(c) Explain why attenuation is not a big problem in PET.

Figure P9.4
An object with triangular
compartments. See
Problem 9.4.
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9.5 Ignoring the inverse square law and attenuation, an approximate recon-
struction for SPECT imaging is given by

f̂ (x, y) =
∫ π

0

∫ ∞

−∞
g(�, θ )c̃(x cos θ + y sin θ − �)d� dθ ,

where c̃(�) = F −1
1D {|�|W(�)} and W(�) is a rectangular windowing filter

that cuts off at � = �0. Suppose we use M projections (θ1, θ2, ..., θM)
uniformly spaced over the range [0, π ), and N + 1 (odd) ray paths per
projection. Assume the spacing between detectors is T, and gij = gθj (iT).

A discrete approximation to the reconstruction of f̂ (x, y) can be written as

f̂ (x, y) = πT
M

M∑
j=1

N/2∑
i=−N/2

gijc̃(x cos θj + y sin θj − iT) .

(a) The observation gij is proportional to the number of photons hitting
the detector i at angle θj, Nij, that is, gij = kNij. Assume Nij is a Poisson
random variable with mean Nij and is independent for different i
and j. Give the mean and the variance of the reconstructed image,
mean[f̂ (x, y)] and var[f̂ (x, y)].

(b) Show that

π

M

M∑
j=1

T
N/2∑

i=−N/2

[c̃(x cos θj + ysinjθ − iT)]2

can be approximated as
2π�3

0
3 .
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Now, like in CT, we assume that Nij ≈ N.

(c) Find var[f̂ (x, y)] using the result in (b).

(d) Define SNR = mean[f̂ (x,y)]√
var[f̂ (x,y)]

. Assume that we double the photon counts,

that is, N
′ = 2N. Before doubling, the SNR is SNR1; and after dou-

bling, the SNR is SNR2. What is the ratio SNR2
SNR1

?

PET

9.6 Suppose a PET detector comprises four square PMTs (arranged as a 2 by
2 matrix) and a single BGO crystal with slits made in such a way that it
is divided into an 8 by 8 matrix of individual detectors. Assume that the
PMTs and the detectors cover the exact same square area and that each
PMT is 2 in by 2 in in size. This geometry is shown in Figure P9.5. The
response of a PMT to an event occurring in a particular subcrystal depends
on the distance from the center of the PMT to the center of the subcrystal,
r, as follows

PMT Response = exp[−r/τ ] ,

where τ = 1 inch.

(a) Find a general expression for the response in PMT(i, j) to an event in
crystal C(k, l).

(b) Find the numerical responses in each to an event in crystal C(4, 6).
(c) Ignoring the possibility of noise, develop a scheme to uniquely identify

the crystal in which an event occurred.
(d) Characterize a worst-case scenario in which the smallest possible

additive noise in one PMT’s signal causes an error in event localization.

Figure P9.5
Detector geometry for
Problem 9.6.

C(5, 2)

PMT(2, 1) PMT(2, 2)

PMT(1, 1) PMT(1, 2)

C(4, 6)

C(1, 1)

9.7 Both NaI(Tl) and BGO can be used as PET detectors. The linear attenuation
coefficient of BGO at 511 keV is 0.964 cm−1 as opposed to 0.343 cm−1
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for NaI(Tl). BGO does not convert gamma ray photons to light photons
as efficiently as NaI(Tl), and is in fact roughly 13% as efficient.
In this problem, suppose two detectors are designed, one from NaI(Tl) and
one from BGO. Assume both are designed to stop 75% of the 511 keV
photons that strike the crystal.

(a) Find the detector thicknesses for NaI(Tl) and BGO.
(b) A light burst from NaI(Tl) has a higher intrinsic SNR than that from

BGO. Find the ratio of intrinsic SNRs, NaI(Tl) to BGO.

9.8 You decide to build a PET scanner from a dual-head SPECT camera you
own. It has two 30-cm square Anger cameras mounted facing each other
1.5 m apart.

(a) Would you use the low-energy collimators, the high-energy collima-
tors, or no collimators? Explain.

(b) What significant piece of electronics would you have to add to the
SPECT circuitry to make this work as a PET scanner?

(c) Explain how you would use the X and Y signals coming out of the
opposing Anger cameras. Would you use the Z-pulses? Why or why
not?

(d) You will have to rotate the Anger cameras at some point during the
scan. What is the minimum number of angular positions of the two
cameras that would be required in order to get full angular coverage
for PET reconstruction?

(e) Consider the radiotracer concentration in the body. Would you expect
to require a higher, lower, or about the same dose in this make-shift
PET scanner versus a real PET scanner? Explain your rationale.

9.9 Consider the two-dimensional cross section shown in Figure P9.6 consist-
ing of three separate compartments R1, R2, and R3.

Figure P9.6
Object geometry for
Problem 9.9.

y

x
R3R1 R2

3 cm 1 cm 2 cm

6 
cm

(a) Suppose a solution containing a 511 keV gamma ray emitting radionu-
clide with concentration 0.3 mCi/cm3 fills only R2; R1 and R3 contain
nonradioactive solutions. Let the linear attenuation coefficients (at
511 keV) in the three regions be μ1 = 0.2 cm−1, μ2 = 0.3 cm−1, and
μ3 = 0.1 cm−1, respectively. Suppose we image the radioactivity using
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a (2-D) SPECT scanner outside the object. Compute the projected
radioactivities gSPECT(�, 90◦) and gSPECT(�, 270◦).

(b) Now assume the radionuclide in (a) is replaced by a positron emitting
radionuclide with the same concentration. Assume the linear atten-
uation coefficients in the three regions are the same. This time the
body is imaged using a (2-D) PET scanner. Compute gPET(�, 90◦) and
gPET(�, 270◦).

(c) Explain how to compensate for attenuation in a PET scanner in order
to reconstruct an accurate image of the radionuclide concentration.
Can you do the same for a SPECT scanner?

9.10 Suppose a PET scanner has 1,000 detectors packed tightly around a circle
of diameter of 1.5 m.

(a) What is the approximate size (width) of each detector? Explain the
tradeoff between using deep (long) and shallow (short) detectors.

(b) What is the purpose of coincidence detection in PET? What is a
nominal time interval defining a coincidence ‘‘event window’’ for
PET? Explain why is it undesirable to make the event window (1)
smaller or (2) longer.

(c) Assume there is no ‘‘wobbling’’ or ‘‘dichotomic’’ motion of the PET
gantry. What is the line integral sampling interval (which has the
symbol T in CT) in the center of the scanner? Assuming the usual
sampling ‘‘rule of thumb’’ from CT, how many pixels would be in a
typical PET image. Explain why motion of the PET gantry is desirable.

(d) Explain why resolution of the PET scanner is typically worse away
from the center of the scanner.

9.11 A PET-CT system is shown in Figure P9.7. There are N0 positron anni-
hilations at the origin of the circle whose gamma rays travel on the line
L(0, 0◦). N+ of these positron annihilations reach detector A and N− reach
detector B.

Figure P9.7
See Problem 9.11.

3 cm

Detector A

Detector B

2 cm1 cm

I1 I2 I

1 cm

0

�circle

�square
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(a) Write an equation for the number of coincidence events Nc arising
from positron annihilations at the center of the circle that will be
detected as a function of N0, N+, and N−.

For parts (b)–(d): Suppose that the radioactivity is the same everywhere
and the value of g(�1, 0◦) is 2/3 of the value of g(0, 0◦).

(b) Write an equation representing the relationship between μsquare and
μcircle.

(c) What is the ratio g(�2, 0◦)/g(0, 0◦)?
(d) What is the local contrast on the 0◦ projection? (Take the peak of the

circle as the object intensity.)
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P A R T

IV
Ultrasound Imaging

Overview
In the preceding two parts of the book, we considered those imaging modalities
that rely on ionizing radiation to create the signals. We saw that these modalities
produce images of structure and function through a variety of mechanisms, all
based on ionizing radiation. The modalities are of high clinical utility—that is
why they are so commonly used—but the use of ionizing radiation carries some
risk. At the low doses used in medical imaging, the main biological risk is cancer;
the probability of inducing cancer from a diagnostic imaging examination is
very, very low, but it is not zero. Sometimes this is of concern, such as when
imaging in utero.

Here, we examine a modality considered to be fully noninvasive and risk
free: ultrasound imaging. In projection radiography and computed tomography,
we were interested in the transmission of a beam of radiation through the
patient; the medical signal of interest was produced by the variable attenuation
of this beam by body tissues. In contrast, with ultrasound, we are interested in
the reflection of a beam of sound by internal structures within the patient. The
medical signal of interest here is produced by the variable reflectance of this
sound beam by different body tissues.

A basic ultrasound imaging system consists of a transducer and associated
electronics, including a display. The transducer itself is both a transmitter and
receiver of ultrasound energy. In practice, the electronics ‘‘steer’’ the beam so
that (typically) an arc is covered within the patient, producing a 2-D image on
the display. Many modern systems have 3-D capability whereby they produce
successive 2-D arcs on different planes which, when pieced together, form a
3-D volumetric image. Therefore, in its most basic form, ultrasound imaging
systems can be used to directly visualize the shape and size of various anatomical
structures of interest.

The most common ultrasound procedures involve imaging the developing
fetus in utero and echocardiography for heart imaging. A representative echocar-
diogram is shown in Figure IV.1(a). Here, the transducer is positioned at the tip
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Figure IV.1
Two common and easily
recognizable clinical
ultrasound examinations.
(a) Echocardiogram,
showing the four
chambers of the heart.
(b) Fetal ultrasound,
showing a normal fetus at
the third trimester of
gestation. Image
(a) courtesy of Philips
Healthcare. Image
(b) courtesy of GE
Healthcare.

(a) (b)

or apex of the heart, pointing in such a way as to cut through all four heart
chambers. Cross-sectional images of the beating heart provide the physician
with a lot of diagnostic and functional information about the health of the heart
as a pump. The fact that the method is noninvasive and readily performed in
a doctor’s office helps explain the popularity of 2-D echocardiography. Since
the transducer is held by hand during most ultrasound procedures, the demand
for well-trained, experienced ultrasonographers is quite high, as the details of
acquisition, including the view angle, significantly influences both the field of
view and the image quality.

Because it is completely safe for both mother and baby, ultrasound imaging
is used extensively in obstetrics. You have all probably seen images of a
fetus—looking quite baby-like—produced by ultrasound; such an image is
shown in Figure I.1(c). Figure IV.1(b) shows another such image, taken during
the third trimester. If the angle of the view is just right, you can even tell the
baby’s gender.

We will learn later that a key quality of ultrasound images is its pronounced
texture, which is produced by a combination of the small-scale structures
within the body’s tissues and a physical phenomenon associated with wave
imaging called speckle. The two images in Figure IV.2 show these variations in
texture as well as the anatomical shapes of (a) a breast mass and (b) a kidney.
With training, physicians can use texture differences to characterize tissues as

Figure IV.2
Detailed ultrasound
examinations of (a) a
breast mass and (b) a
kidney. Images courtesy
of GE Healthcare. (a) (b)
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Figure IV.3
Ultrasound guidance for a
liver biopsy. (a) Planning
mode with a graphic to
aid insertion and
(b) needle visualization
after insertion. Images
courtesy of Dr. Avneesh
Chhabra, Johns Hopkins
University, Baltimore,
MD.

(a)

(b)

Figure IV.4
Mitral valve regurgitation
depicted using Doppler
ultrasound. Image
courtesy of Philips
Healthcare.
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healthy or diseased, thereby providing another dimension beyond simple
anatomical differences upon which to base a diagnosis.

Another important property of ultrasound imaging is that it is real-time in
nature—and has been so since its inception. Because of this property and the fact
that it is completely safe, ultrasound is widely used for image-guided surgical
interventions. An example showing a simple planning graphic overlaid on an
ultrasound image in preparation for a liver biopsy is shown in Figure IV.3(a).
After the biopsy needle is inserted, ultrasound imaging can be used to verify and
adjust its position as shown in Figure IV.3(b).

In addition to depicting varying sound reflectance, ultrasound is capable of
portraying the velocities of moving bodies and substances, such as blood within
vessels. This so-called Doppler imaging technique can provide a quantitative
measure of blood flow. The combination of anatomical and functional infor-
mation ultrasound is able to provide—in a fully noninvasive manner—makes
it a popular imaging modality. An image showing the flow through and around
the mitral valve of the heart is shown in Figure IV.4. The left image shows a
parasternal long-axis cross section of the mitral valve and the right image shows
an overlay of the blood flow velocities in that region (within the sector outlined
in white). Doppler images are always shown in color where black indicates no
flow, red indicates flow towards the transducer, and blue indicates flow away
from the transducer. Because images are only printed in grayscale in this book,
the overlaid colors within the outlined sector clearly depicting mitral valve
regurgitation cannot be see here. Examples are readily found on the internet.



The Physics of
Ultrasound

C H A P T E R

1010
10.1 Introduction
Ultrasound is sound with frequencies higher than the highest frequency that can
be heard by human beings. This means that any sound above about 20 kHz is
considered to be ultrasound. For reasons that we will provide in this chapter and
in Chapter 11, medical ultrasound systems operate at much higher frequencies
than this defining frequency, typically between 1 and 10 MHz, although there
are specialized systems operating in ranges up to 70 MHz. The principles of
ultrasound propagation, regardless of the exact frequency range, are the same
as those of ordinary sound propagation and are defined by the theory of
acoustics. In particular, ultrasound moves in a wavelike fashion by expansion
and compression of the medium through which it is moving, and ultrasound
waves travel at certain speeds, depending on the material through which they
are traveling. In addition, ultrasound waves can be absorbed, refracted, focused,
reflected, and scattered.

Ultrasound provides a noninvasive technique for imaging human anatomy.
A transducer, which converts electrical signals to acoustic signals, generates
pulses of ultrasound, which are sent through a patient’s body. Organ boundaries
and complex tissues produce echoes (by reflection or scattering) that return back
to and are detected by the transducer, which converts the acoustic signal to an
electrical signal. The ultrasound imaging system then processes the echoes and
presents a grayscale image of human anatomy on a display. Each point in the
image corresponds to the anatomic location of an echo-generating structure,
and its brightness corresponds to the echo strength. The dominant diagnostic
areas in which ultrasound is used are obstetrics, oncology, cardiology, and
gastroenterology.

The use of ultrasound in diagnostic imaging dates back to the mid-1950s.
Rapid expansion of its use began in the early 1970s with the advent of
two-dimensional real-time ultrasonic scanners. Additional milestones were the
appearance of phased array systems in the early 1980s, color flow-imaging
systems in the mid-1980s, three-dimensional imaging systems in the 1990s, and

335
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nonlinear imaging systems in the 2000s. Manufacturers offer several types of
ultrasonic medical imaging systems, each one having interchangeable transducers
and the ability to operate in a variety of modes. This is because different parts
of the human anatomy have different imaging requirements.

In this chapter, we study the physics of ultrasound and its interaction with
biological tissues. This background is necessary for a complete understanding of
medical ultrasound imaging systems, which will be discussed in the next chapter.

10.2 The Wave Equation
Acoustic waves are pressure waves that propagate through matter via compres-
sion and expansion of the matter. A wave can be generated by compressing a
small volume of tissue and then releasing it. The elastic properties of the material
cause the compressed volume to expand past its point of equilibrium, making
neighboring volumes compress. As this process continues through successive
volumes of tissue, a wave is generated.

As an acoustic wave propagates, small particles of the material—e.g., its
molecules—move back and forth in order to generate the compressions and
expansions of the acoustic wave. In medical ultrasound, where waves propagate
only in soft tissues, these particles move back and forth in the same direction
that the acoustic wave is traveling. When this happens, the acoustic wave
is called a longitudinal wave. Harder materials also support shear waves, in
which the particles move at right angles to the direction of propagation of the
acoustic wave, but these types of waves do not need to be considered in medical
ultrasound imaging.

10.2.1 Three-Dimensional Acoustic Waves

The compressibility κ and density ρ of a material, combined with the laws of
conservation of mass and momentum, directly imply the existence of acoustic
waves. (B = 1/κ is called the bulk modulus of a material.) These waves travel
at a speed of sound c, given by

c =
√

1
κρ

. (10.1)

Table 10.1 gives the speed of sound (as well as other information) for various
materials and biological tissues. A good rule of thumb is that sound travels
about 1,540 m/s in tissue and 330 m/s in air.

There are a variety of ways to mathematically characterize an acoustic
wave. First, it is important to realize that an acoustic wave is inherently a 3-D
phenomenon—that is, it has spatial dependencies in all three directions. For
example, the sound generated in ordinary speech spreads out in all directions so
that people can hear the speaker from many orientations. An acoustic wave also
depends on time—that is, it has temporal dependencies. In ordinary speech, for
example, a sudden exclamation or shout dies away momentarily. So, whatever
the physical quantity that is used to describe the wave, we realize that it must
depend upon three spatial variables, x, y, z, and time, t.
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TABLE 10.1

Acoustic Properties of Various Materials

Material
Density,
ρ [kg m−3]

Speed,
c [m s−1]

Characteristic
Impedance, Z
[kg m−2 s−1]
( × 106)

Absorption
Coefficient, α

[dB cm−1]
(at 1 MHz)

Approximate
Frequency
Dependence
of α

Air at STP 1.2 330 0.0004 12 f 2

Aluminum 2,700 6,400 17 0.018 f
Brass 8,500 4,490 38 0.020 f
Castor oil 950 1,500 1.4 0.95 f 2

Mercury 13,600 1,450 20 0.00048 f 2

Polyethylene 920 2,000 1.8 4.7 f 1.1

Polymethyl-
methacrylate

1,190 2,680 3.2 2.0 f

Water 1,000 1,480 1.5 0.0022 f 2

Blood 1,060 1,570 1.62 [0.15]
Bone 1,380–1,810 4,080 3.75–7.38 [14.2–25.2]
Brain 1,030 1.55–1.66 [0.75]
Fat 920 1,450 1.35 [0.63]
Kidney 1,040 1,560 1.62 —
Liver 1,060 1,570 1.64–1.68 [1.2]
Lung 400 0.26 [40]
Muscle 1,070 1.65–1.74 [0.96–1.4]
Spleen 1,060 1.65–1.67 —
Water 1,000 1,484 1.52 [0.0022]

As noted above, as an acoustic wave propagates in a given material, small
particles of the material move back and forth in order to generate the compres-
sions and expansions of the acoustic wave. A traditional treatment of acoustics
would begin by deriving a mathematical expression for the particle displacement
�u(x, y, z, t) associated with the compression and expansion of the acoustic wave.
The particle velocity, �v(x, y, z, t), the temporal derivative of particle displace-
ment, is another common choice for describing an acoustic wave. Since we are
constraining our discussion to longitudinal waves, it is actually only necessary to
describe the magnitudes of particle displacement and velocity—u(x, y, z, t) and
v(x, y, z, t), respectively—since the orientation of these quantities is always iden-
tical to the direction of wave propagation. However, we are actually going to
take this a step farther. Since the compression and expansion of a small volume
are associated with a local change in the material’s pressure, an acoustic wave
can also be described in terms of a spatially dependent, time-varying pressure
function p(x, y, z, t), called the acoustic pressure. Acoustic pressure is zero in the
absence of an acoustic wave, so it should be considered to be the variation of
pressure caused by the acoustical disturbance around the ambient pressure.

In longitudinal waves, it is straightforward to relate the acoustic pressure to
the underlying particle velocity. They are, in fact, linearly related by

p = Zv , (10.2)
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where

Z = ρc (10.3)

is called the characteristic impedance. The particle speed v and the speed of
sound c are not the same quantity and are generally not equal. This is a common
point of confusion and source of computational mistakes. The term impedance
arises by analogy to electrical circuits or electromagnetic transmission lines.
In particular, acoustic pressure is analogous to voltage, while particle speed is
analogous to current. Since density has units kg/m3 and speed has units m/s,
the characteristic impedance Z has units kg/m2s, which is given the name rayls,
after Lord Rayleigh.

Throughout this chapter and the next, we use acoustic pressure to describe
longitudinal acoustic waves. Where necessary (e.g., in deriving boundary con-
ditions), we refer to the velocity or displacement. From the physical properties
of matter, it turns out that acoustic pressure p must satisfy the following
three-dimensional wave equation:

∇2p = 1
c2

∂2p
∂t2 , (10.4)

where ∇2 is the 3-D Laplacian operator given by

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (10.5)

In general, a wave equation is a partial differential equation relating spatial
partial derivatives of pressure to the temporal partial derivative of pressure.
Solving this equation is difficult in general, but our needs will be satisfied if we
consider two special cases: plane waves and spherical waves.

10.2.2 Plane Waves

If an acoustic wave varies in only one spatial direction and time, it is called a
plane wave. For example, if p(x, y, z, t) were constant for any choice of x and
y given a fixed z and t, then the resulting pressure function p(z, t) = p(x, y, z, t)
describes a plane wave moving in the +z or −z direction. In this case, plugging
p(z, t) into (10.4) yields the one-dimensional wave equation:

∂2p
∂z2 = 1

c2

∂2p
∂t2 . (10.6)

Notice that a one-dimensional wave equation exists for any direction of propa-
gation, not just the z direction. In the following, it will be convenient to think
of the z direction in the sense of a rotated coordinate system—that is, z is
the direction of plane wave propagation not a fixed ‘‘laboratory’’ coordinate
direction.

The general solution to (10.6) can be written as

p(z, t) = φf (t − c−1z) + φb(t + c−1z) , (10.7)
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which can be verified by direct substitution into (10.6). The function φf (t −
c−1z) is interpreted as a forward-traveling wave, since the basic waveform
φf (c−1z)—that is, the spatial pressure function at t = 0—is shifted in the
positive z direction as t increases. The function φb(t + c−1z) is interpreted
as a backward-traveling wave for an analogous reason. The only require-
ment of the functions φf (·) and φb(·) is that they be twice differentiable,
although even this assumption can be relaxed by using generalized derivatives.
Since each function φf and φb satisfies the wave equation independently, one
of them might be identically zero, so we can have only a forward travel-
ing wave in a given medium, for example. In Chapter 11, we will use the
plane wave to approximate the acoustic wave produced by certain types of
ultrasound transducers.

An important example of a function that satisfies the one-dimensional wave
equation is the sinusoidal function

p(z, t) = cos k(z − ct) . (10.8)

Viewed as a function of t only (holding z fixed), we see that the pressure
around a fixed particle varies sinusoidally with (radial) frequency ω = kc. This
corresponds to a (cyclic) frequency of

f = ω

2π
= kc

2π
, (10.9)

which has units of Hertz (Hz) or cycles per second. Viewed as a function of
z only (holding t fixed), we see that the pressure at a particular time varies
sinusoidally with (radial, spatial) frequency k, a quantity that is known as the
wave number. The wavelength λ of this sinusoidal wave is the spacing between
crests or troughs at any given time and is given by

λ = 2π

k
, (10.10)

which has units of length. Solving (10.9) for k and substituting the resulting
expression into (10.10) yields the important relationship between wavelength,
speed of sound, and frequency

λ = c
f

. (10.11)

Truly sinusoidal waves cannot exist in nature because they need infinite
space and infinite time. However, medical ultrasound systems use waveforms
that are approximately sinusoidal when viewed locally over a short period of
time. For example, it is common for ultrasound imaging systems to operate at
3.5 MHz, which corresponds to a wavelength of 0.44 mm when c = 1, 540 m/s.
Although it cannot be made entirely clear at this point why this would be
the case, the wavelength of the acoustic wave is approximately equal to the
achievable resolution of the system (at least in the direction of the propagating
wave). Therefore, we should understand that submillimeter resolution might be
achievable in ultrasound imaging.
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EXAMPLE 10.1
Suppose a steady-state sinusoidal wave with frequency 2 MHz is traveling in the +z
direction in the liver.

Question What is its wavelength?

Answer From Table 10.1, we find that c = 1, 570 m/s in liver. Therefore, the wave-
length is λ = 1, 570 ms−1/(2 × 106 Hz) = 0.785 mm.

Another important example of a function that satisfies the 1-D wave
equation is

p(z, t) = δ(z − ct) , (10.12)

where δ(·) is the unit impulse (delta) function (see Section 2.2.1). Since δ(·) is
a generalized function, it satisfies the wave equation only through the use of
generalized derivatives. Like sinusoidal waves, the impulse function cannot exist
in practice. In this case, the impulse plane wave is supposed to have infinite
extent orthogonal to the direction of propagation and an infinitesimally thin
extent in the direction of propagation, neither of which can be achieved in
practice. Nevertheless, the impulse plane wave is useful for approximating the
short pulses that are used in medical ultrasound systems, in order to better
understand the overall properties of these systems.

EXAMPLE 10.2
An ultrasound transducer is pointing down the +z axis. Starting at time t = 0, it generates
an acoustic pulse with form

φ(t) = (1 − e−t/τ1 )e−t/τ2 .

Question Assume the speed of the sound is c = 1, 540 m/s. What is the forward
traveling wave down the +z axis? At what time does the leading edge of the impulse hit
the interface 10 cm away from the transducer?

Answer The forward traveling wave down the +z axis is

φf (z, t) = (1 − e−(t−z/c)/τ1 )e−(t−z/c)/τ2 .

It will take 0.1 m/(1, 540 m/s) = 64.9 μs for the leading edge of the ultrasound impulse
to travel 10 cm and hit the interface.

10.2.3 Spherical Waves

In an isotropic material, a spherical wave can be generated by a small, local
disturbance in the pressure. A spherical wave depends only on time t and the
radius r =

√
x2 + y2 + z2 from the source of the disturbance, which is assumed

to be at (0, 0, 0). Using (10.4), evaluating the Laplacian (viewing r as a function
of x, y, and z), and manipulating the resulting equation (see Problem 10.4), the
pressure p(r, t) of a wave traveling in the radial direction can be shown to satisfy

1
r

∂2

∂r2 (rp) = 1
c2

∂2p
∂t2 , (10.13)

which is known as the spherical wave equation.
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The general solution to the spherical wave equation is

p(r, t) = 1
r
φo(t − c−1r) + 1

r
φi(t + c−1r) , (10.14)

which can be verified by direct substitution. The wave φo(t − c−1r) is an outward-
traveling wave, and φi(t + c−1r) is an inward-traveling wave. Generally, there is
no source that will create an inward-traveling wave, so the most general solution
we need to consider here is

p(r, t) = 1
r
φo(t − c−1r) . (10.15)

As in the 1-D plane wave solution, φo(·) should be twice differentiable, but
otherwise it is an arbitrary function. This solution looks very much like the
forward-traveling wave in the solution to the 1-D wave equation (10.7), except
for the factor of 1/r, which causes the outward spherical wave to lose amplitude.
This loss is simply due to the increasing overall surface area of the wave as it
propagates radially outward from its source.

10.3 Wave Propagation
10.3.1 Acoustic Energy and Intensity

An acoustic wave carries energy with it. Particles in motion have kinetic energy,
and those that are poised for motion have potential energy. To characterize
these energies in a wave, we define the energy per unit volume, leading to the
kinetic energy density

wk = 1
2

ρv2 , (10.16)

and the potential energy density

wp = 1
2

κp2 . (10.17)

The acoustic energy density is defined as the sum of these two:

w = wk + wp . (10.18)

This quantity captures the idea of a change in energy at a point in space as a
wave passes through it.

To capture the idea of energy that moves with the wave, we define the
acoustic intensity as

I = pv , (10.19)

which is also called the acoustic energy flux. Notice that by using the analogy to
electric circuits, I is analogous to electric power, which gives a strong intuitive
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connection to the present application. In particular, by substituting (10.2) into
(10.19), we find that

I = p2

Z
, (10.20)

which is analogous to the expression in electric circuits, V2/R, that gives the
power in a resistor. There is power in acoustic waves. Unlike the case of the
resistor, which converts electrical power to thermal energy, the acoustic wave
simply carries the power along with it as it propagates (unless there is acoustic
attenuation, as described in Section 10.3.4). In fact, it can be shown that the
acoustic energy density and the acoustic intensity are related by the equation of
energy conservation

∂I
∂x

+ ∂w
∂t

= 0 , (10.21)

which describes the propagation of power and energy in an acoustic wave.

10.3.2 Reflection and Refraction at Plane Interfaces

Figure 10.1 depicts a plane wave incident upon a plane interface with incidence
angle θi (measured from the nearest surface normal). Assuming that the wave-
length of the sound is small with respect to the spatial extent of the interface,
the reflected and transmitted wave directions will obey the laws of geometric
optics:

θi = θr (10.22)

and

sin θi

sin θt
= c1

c2
, (10.23)

where c1 and c2 are the speeds of sound in medium 1 and medium 2, respectively.
Equation (10.23) is known as Snell’s law.

Figure 10.1
An incident plane wave
reflects some energy and
transmits the rest at a
plane interface.
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EXAMPLE 10.3
Suppose medium 1 is fat and medium 2 is liver, and a plane wave is incident upon their
interface with incidence angle θi = 45◦.

Question What are the reflection and transmission angles θr and θt, respectively?

Answer θr = θi = 45◦. Since c1 = 1, 450 m/s and c2 = 1, 570 m/s,

sin θt = 1, 570 sin 45◦

1, 450
= 0.7656 .

Solving this yields θt = 49.96◦. It makes intuitive sense that the transmission angle should
be larger than the incidence or reflection angle, since c2 > c1.

It may be that the quantity c2 sin θi/c1 is greater than 1.0. In this case, the
inverse sine does not exist, and we conclude that all the energy is reflected. For
a given pair of materials with speeds c1 and c2 in which c2 > c1, all incident
angles above the so-called critical angle θc, given by

θc = sin−1(c1/c2) for c2 > c1, (10.24)

will result in total reflection.

10.3.3 Transmission and Reflection Coefficients at Plane
Interfaces

In the previous section, we examined the geometric properties of plane waves
at plane intersections. Now we consider the energy characteristics in this same
situation. Since all three waves—that is, the incident, reflected, and transmitted
waves—meet at the interface, the tangential particle motion caused by the
incident wave must coincide with the sum of the tangential particle motions of
transmitted and reflected waves. That is,

vi cos θi = vr cos θr + vt cos θt .

Since p = Zv [see (10.2)], we may replace the velocities in the above expression
to get

cos θt

Z2
pt + cos θr

Z1
pr = cos θi

Z1
pi . (10.25)

Since pressure must be continuous across the interface, we also have

pt − pr = pi . (10.26)

Equations (10.25) and (10.26) are simultaneous linear equations with unknowns
pt and pr, which when solved yield

R = pr

pi
= Z2 cos θi − Z1 cos θt

Z2 cos θi + Z1 cos θt
, (10.27)

T = pt

pi
= 2Z2 cos θi

Z2 cos θi + Z1 cos θt
, (10.28)
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where we have used the fact that θr = θi. The quantity R is called the pressure
reflectivity, and the quantity T is called the pressure transmittivity.

Using the relationship I = p2/Z [see (10.20)], the intensity reflectivity is
given by

RI = Ir

Ii
=
(

Z2 cos θi − Z1 cos θt

Z2 cos θi + Z1 cos θt

)2

, (10.29)

and the intensity transmittivity is given by

TI = It

Ii
= 4Z1Z2 cos2 θi

(Z2 cos θi + Z1 cos θt)
2 . (10.30)

In deriving the intensity transmittivity, the fact that pt and pi are in different
media must be taken into account.

EXAMPLE 10.4
Consider an acoustic wave encountering a fat/liver interface at normal incidence.

Question What fraction of acoustic intensity is reflected back from a fat/liver interface
at normal incidence? Does it matter from which direction the incident energy arrives?

Answer At normal incidence, we have

RI =
(

Z2 − Z1

Z2 + Z1

)2

.

The acoustic impedance of fat is 1.35 × 10−6 kg m−2s−1. The acoustic impedance of liver
is 1.66 × 10−6 kg m−2s−1 (nominal value). For propagation from fat to liver, we have

RI =
(

1.66 − 1.35
1.66 + 1.35

)2

= 0.0106 .

Only about 1% of the incident power is reflected back from the interface; about 99% is
transmitted through. From the expression above, it does not matter from which direction
the incident wave originates; the same fractions are calculated in either direction. (Is this
also true for nonnormal incidence?)

10.3.4 Attenuation

In practice, the amplitude of a real acoustic wave decreases as the wave
propagates. Attenuation is the term used to account for loss of wave amplitude
(or ‘‘signal’’) due to all mechanisms, including absorption, scattering, and mode
conversion. Absorption is the process by which the wave energy is converted to
thermal energy, which is then dissipated in the medium. Scattering is the process
by which secondary spherical waves are generated as the wave propagates.
Mode conversion is the process by which longitudinal waves are converted
to transverse shear waves (and back again). In this section, we develop a
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phenomenological expression for attenuation, which includes all mechanisms for
signal loss.

Consider a forward-traveling plane wave p(z, t) in the +z-direction, where
p(0, t) = A0f (t). Then, under ideal circumstances p(z, t) = A0f (t − c−1z). Due to
attenuation, however, we actually have

p(z, t) = Azf (t − c−1z) , (10.31)

where Az is the actual amplitude of the traveling wave and is dependent on the
z-position of the wave. We model the amplitude decay as

Az = A0e−μaz , (10.32)

where μa is called the amplitude attenuation factor and has units cm−1. This
model of attenuation is phenomenological, meaning it agrees well in practice
but is not easily supported by theory. In particular, the pressure function given
in (10.31) no longer satisfies the wave equation.

The unit given to the natural logarithm of an amplitude ratio is nepers (Np),
pronounced ‘‘nay-pers,’’ and the units of μa are sometimes quoted in nepers/cm.
This is because

μa = −1
z

ln
Az

A0
. (10.33)

Since 20 log10
Az
A0

is the amplitude gain in decibels (dB), it is useful to define

the attenuation coefficient α as

α = 20(log10 e)μa ≈ 8.7μa , (10.34)

which has the units dB/cm. Notice that 1 Np = 8.686 dB. Be careful when
calculating the amplitude loss when given an attenuation coefficient α. You
must first convert α to the amplitude attenuation factor μa [via (10.34)], and
then use the amplitude loss equation (10.32).

When attenuation is due solely to the conversion of acoustic energy to ther-
mal energy, the attenuation coefficient is called the absorption coefficient. Most
measurements of attenuation in materials are conducted so that absorption is the
dominant loss mechanism. Some typical absorption coefficients for biological
and nonbiological materials are given in Table 10.1.

The absorption coefficient of a material is generally dependent on frequency
f . A good model for this dependency is

α = af b , (10.35)

where b is just slightly greater than 1 in biological tissues. For example, in
homogenized liver, a = 0.56 and b = 1.12. The rough approximation that
b = 1 is often used, leading to a linear relationship between α and frequency f .
The values of a in Table 10.2 are based on the assumption that b = 1.
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TABLE 10.2

Frequency Dependence of Various
Biological Tissues

a = α/f
Material [dB cm−1 MHz−1]

Fat 0.63
Skeletal muscle

Along fibers 1.3
Across fibers 3.3
Cardiac muscle 1.8

Blood 0.18
Bone 20.0
Lung 41.0
Liver 0.94
Kidney 1.0
Brain

White matter along fibers 2.5
White matter across fibers 1.2
Gray matter 0.5–1.0

EXAMPLE 10.5
Suppose a 5-MHz acoustic pulse travels from a transducer through 2 cm of fat, then
encounters an interface with the liver at normal incidence.

Question At what time interval after the transmitted pulse will the reflected pulse—that
is, the echo—arrive back at the transducer? Taking both attenuation and reflection losses
into account, what will be the amplitude loss in decibels of the returning waveform?

Answer Table 10.1 shows that the speed of sound in fat is 1,450 m/s. The round-trip
travel distance is 4 cm. Therefore, the echo will return after the interval

t = 0.04 m
1, 450 m/s

= 27.6 μs .

Table 10.2 shows that a = 0.63 dB cm−1 MHz−1. Therefore the absorption coefficient at
5 MHz is

α = 0.63 dB cm−1 MHz−1 × 5 MHz

= 3.15 dB cm−1 .

The amplitude attenuation factor is μa = 3.15 dB cm−1/(8.686 dB/Np) = 0.363 Np/cm.
The roundtrip amplitude ratio (ignoring the reflection loss) is therefore

Az

A0
= exp{−0.363 Np/cm × 4.0 cm} = 0.234 .

From the previous example, we know that the intensity reflectivity is 0.0106. The
amplitude reflectivity is therefore

√
0.0106 = 0.103. Putting these facts together yields

dB loss = 20 log10
Az

A0
= 20 log10(0.234 × 0.103) = −32.4 dB .
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10.3.5 Scattering

Many targets within the body are much smaller than the acoustic wavelength. For
these targets, the geometric equations for reflection and refraction do not hold.
Instead, we assume that when these targets are excited by an incident acoustic
plane wave, they vibrate as small spherical bodies, giving rise to spherical waves
whose amplitude is some fraction of the incident wave amplitude.

Consider the plane (attenuated) wave

p(z, t) = A0e−μaz f (t − c−1z)

incident upon a small pointlike target residing at (0, 0, d), as shown in
Figure 10.2. Notice that this wave is traveling in the +z direction. The small
target acts as a spherical wave source, converting a fraction R of the incident
plane wave into a spherical wave centered at (0, 0, d). Called the reflection
coefficient, R is a property of the individual target and the embedding medium.
Treating (0, 0, d) as the origin [which means that r is the radius from (0, 0, d)],
the resulting scattered wave is given by

ps(r, t) = Re−μar

r
A0e−μad f (t − c−1d − c−1r) . (10.36)

Here, we have included attenuation terms for both the incident plane wave and
the scattered spherical wave, in addition to the reflection coefficient and the
natural 1/r decay of the spherical wave. The wave is also delayed in time by
c−1d due to the propagation delay from the true origin to (0, 0, d). This equation
is at the core of our ultrasound imaging equation, presented in Chapter 11.

10.3.6 Nonlinear Wave Propagation

Up to this point, we have assumed that the acoustic waves in an ultrasound
imaging system follow the principle of linear propagation. Basically, we have
assumed that a sinusoidal excitation yields a sinusoidal response—that is, as a
wave travels through the body its shape remains the same. This turns out to be
not quite true, even in the low power regime of diagnostic ultrasound imaging
systems.1 As noted in Chapter 2, linear systems have many desirable properties
that lend themselves to analysis and system design. And most ultrasound imaging
systems are fundamentally designed around the principle of linearity as we shall
see in Chapter 11. However, nonlinearities are present and they should be

Figure 10.2
Basic pulse-echo
experiment.
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1Nonlinearities are most definitely present in high-power ultrasound therapy systems.
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understood since they can be exploited in conjunction with ultrasound contrast
agents and tissue ablation procedures, and to improve resolution.

The nonlinear characteristic of longitudinal wave propagation occurs
because the speed of sound for a given material actually depends on the
acoustic pressure that is present. To a good approximation, the speed of sound
in the nonlinear regime is given by

c = c0 + β
p

Z0
, (10.37)

where c0 is the speed given in (10.1) and Z0 is the acoustic impedance given
in (10.3) (both assuming a nominal tissue density ρ0 determined in the absence
of acoustic excitation). Here, p is the acoustic pressure at a given location
and time—that is, p = p(x, y, z, t)—in general. The constant β is called the
coefficient of nonlinearity and it depends on the acoustic medium. In tissue,
β is typically in the range 3–6, lower in water and blood and higher in fatty
tissues, and it is always positive so that tissue points having higher pressure (or
equivalently higher particle velocity) yields a higher acoustic wave speed.

The practical result of this acoustic nonlinearity is to distort the acoustic
waveform as it propagates. The linear wave equation predicts that a wave will
propagate unchanged (ignoring attenuation), as depicted by the dashed wave in
Figure 10.3(a). However, when points having higher acoustic pressure send the
wave on faster (due to higher c), this causes different isosurfaces of constant
pressure to move at different speeds, with higher pressures arriving at distant
locations first. At any given spatial point, the observed waveform is therefore
distorted from its original shape. In Figure 10.3(a), the solid waveform has its
higher pressures (crests) move faster than its lower pressures (troughs), which
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Figure 10.3
Illustration of nonlinear acoustic wave propagation. (a) An initial single cycle sinusoidal
pulse (left solid curve) propagates with no shape change under the linear wave equation
(right dashed curve) but gets distorted under nonlinear propagation (right solid curve
curve). (b) Nonlinear propagation causes the frequency content of the original pulse
(dotted curve) to gain higher frequency harmonics (solid curve) as it propagates.
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causes the waveform to become more and more like a sawtooth, even though it
started out as a sinusoid.

As the waveform begins to distort due to nonlinear propagation, harmonic
frequencies begin to develop, as shown by the solid curve in Figure 10.3(b). If
the signal were perfectly periodic then the harmonics would be characterized by
the growth of coefficients in a Fourier series at perfect integer multiples of the
fundamental frequency. This phenomenon is called harmonic generation. If the
fundamental frequency were at 3 MHz, for example, over time there would be
evidence of signal components at 6 MHz, 9 MHz, 12 MHz, etc. Figure 10.3(b)
shows such growth at periodic multiple of the fundamental, but due to the
finite character of the pulse, there is also evidence of some frequency spread
around each of the multiples. Therefore, the frequencies that are present in a
propagating nonlinear wave depend on the shape of the initial wave including
its amplitude, its fundamental frequency, and its duration.

It is straightforward to see how nonlinear propagation can be exploited
when differences in the coefficient of nonlinearity β can help to differentiate
tissues or materials. For example, harmonic generation in a suspension of
microbubbles is very substantial. Therefore, microbubbles make excellent con-
trast agents for functional imaging in conjunction with nonlinear ultrasound.
As another example, in ablation procedures—e.g., using microwaves, lasers, or
radio frequency electrodes—tissue is heated in order to destroy cancer cells. It
turns out that β in tissue is dependent on temperature, which makes it possible
to monitor temperature using harmonic (nonlinear) ultrasound imaging tech-
niques. Finally, a somewhat unexpected benefit of the nonlinear propagation
property of ultrasound is that it can be used to improve resolution. We will see
how this is possible in Chapter 11.

If one thinks carefully about the development of the nonlinear waveform
distortion, it becomes apparent that at some time it is possible that the propa-
gation of the crest of a waveform could outpace a part of the waveform having
lower acoustic pressure. This would seem to imply that there are spatial points
having two acoustic pressures simultaneously, which is clearly impossible. In
fact, when such a situation develops, the wave takes on a discontinuity and
is known as a shock wave, which at large propagation distances, converges
to a sawtooth waveform. For three reasons, it is uncommon for shock waves
to develop in medical ultrasound imaging: the coefficient of nonlinearity in
tissues is relatively small; the acoustic pressures in imaging systems are relatively
small; and the absorption is relatively large, especially as frequency increases,
which tends to fight the growth of the high frequencies that are characteristic of
nonlinear propagating waveforms.

10.4 Doppler Effect
The Doppler effect, also known as the Doppler shift, is the change in frequency
of sound due to the relative motion of the source and receiver. The Doppler
effect we most commonly experience is that of the siren of an emergency vehicle.
The pitch of the siren is higher as the vehicle approaches and becomes lower as
the vehicle passes and moves away.

The idea behind the Doppler effect for a moving source and stationary
observer is illustrated in Figure 10.4(a). Here, the object O, which is emitting
sound and is therefore the source, moves to the right, away from the transducer
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Figure 10.4
Basic ideas behind the
Doppler effect: (a) a
moving source O and
stationary observer T,
(b) a stationary source T
and moving observer O,
and (c) a stationary
source/receiver T and
moving scatterer O,
which also acts as both a
receiver and a source.
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T, which is receiving the sound and is therefore the observer. The frequency fT of
the sound received by T can be derived by considering the separation of the wave
crests that are emanating from the moving source. If the source is producing a
sinusoid with frequency fO, then the crests occur at the interval 1/fO —that is,
the period. In one period, the crest will propagate a distance of c/fO, where c
is the speed of sound in the medium. In this same interval the source moves a
distance of v/fO, where v is the speed of the source, and at this moment another
crest will be produced by the source. So, the physical separation of crests—that
is, the wavelength—observed by T is (c + v)/fO. Therefore, T will receive (i.e.,
hear) an acoustic wave having frequency

fT = c
c + v

fO . (10.38)

This situation is generalized for an arbitrary observer velocity by recognizing
that the frequency shift depends only on the component of source velocity in
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the direction of the observer (relative to where the source was when it generated
the sound that is being received). Accordingly, the general expression for the
sound frequency fT observed by a stationary observer from a moving source
with frequency fO is

fT = c
c − v cos θ

fO , (10.39)

where θ is the angle between the vector pointing from the source to the receiver
and the vector pointing from the source in its direction of its motion. Specifically,
if xT and xO give the position of the transducer and object, respectively, and if v
is the velocity (vector) of O, then θ is the angle between vectors v and the vector

u = xT − xO , (10.40)

as shown in Figure 10.4. In the situation depicted in Figure 10.4(a), cos θ = −1,
and (10.39) reduces to (10.38).

The Doppler frequency fD is the difference between the observed frequency
and the source frequency. For the moving source situation in Figure 10.4(a), the
Doppler frequency is given by

fD = fT − fO . (10.41)

Substituting (10.39) into (10.41) yields

fD =
(

v cos θ

c − v cos θ

)
fO , (10.42)

after some algebra. Since v is ordinarily much smaller than c, this can be
approximated as

fD ≈
(

v cos θ

c

)
fO . (10.43)

The sign of the Doppler frequency indicates whether the source is moving
toward or away from the observer. In the example shown in Figure 10.4(a),
cos θ = −1, so fT < fO, and fD < 0. Thus, negative Doppler frequencies mean
that the source is moving away from the observer. This is consistent with our
impression that the pitch of an emergency vehicle’s siren is lower as the vehicle
moves away.

In medical ultrasound, the Doppler effect will be observed in pulse-echo
mode, which requires that the above situation be extended. In pulse-echo mode,
the transducer acts as both the source of the sound and the receiver of the
Doppler-shifted echo returning from the object. Often this is done with a
transducer that has two separate crystals located in the same housing, each
performing one of these functions. The sound that returns to the transducer
has been both received by the moving object and retransmitted by the moving
object, thereby forming the echo that propagates back to the transducer. Thus,
the object acts as both a moving receiver and a moving source, in order to create
the echo. To fully understand what is happening, we therefore need to consider
a second scenario in which there is a stationary source and a moving receiver;
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in this case, the transducer and object have switched their transmit and receive
roles with respect to the previous scenario.

Following the preceding discussion, we now consider the transducer T as
a stationary source, transmitting an acoustic wave with frequency fS, and the
object O as a moving receiver, as shown in Figure 10.4(b). The wavelength of
the source in the medium is λ = c/fS; but as far as the moving observer (the
object) is concerned, the acoustic speed of the medium appears to be different
than c because the object encounters wave crests and troughs at a lower or faster
rate than a stationary observer would. In particular, the speed of sound appears
to be lower if the object moves away from the transducer and higher if the object
moves toward the transducer. Using the same definition of θ as before, it can be
shown that the moving object observes a frequency

fO = c + v cos θ

c
fS . (10.44)

In Figure 10.4(b), cos θ = −1, so fO < fS, which is consistent with our intuition
that the observed frequency should be less than the source frequency when the
source and observer are moving apart.

Applying the fundamental definition of the Doppler frequency—the differ-
ence between the observed frequency and the source frequency—the Doppler
frequency in the present scenario is given by

fD = fO − fS . (10.45)

Using (10.44), we find

fD =
(

v cos θ

c

)
fS . (10.46)

The Doppler frequency is negative in the case depicted in Figure 10.4(b), but
if the object is moving toward the transducer, the Doppler frequency will be
positive.

In pulse-echo mode, the echo received by T will be shifted by both the
effects of a moving receiver and a moving source; this will yield essentially
twice the Doppler frequency than in either case alone. To see this, we start by
assuming that the transducer T generates an acoustic wave having frequency fS.
The object O, moving with velocity v at an angle θ relative to u, receives a wave
having frequency fO, as in (10.44). The object reflects or scatters this received
wave acting like a moving source with frequency fO, and this yields a receive
transducer frequency given by (10.39). Substituting (10.44) into (10.39) yields

fT = c + v cos θ

c − v cos θ
fS (10.47a)

=
(

1 + 2v cos θ

c − v cos θ

)
fS , (10.47b)

where the second equation follows after some algebra.
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The Doppler frequency in pulse-echo mode is

fD = fT − fS =
(

2v cos θ

c − v cos θ
fS

)
. (10.48)

Since ordinarily c � v, the Doppler frequency in this case is well-approximated
by

fD = 2v cos θ

c
fS . (10.49)

Again, for the example depicted in Figure 10.4(c), cos θ = −1 and therefore
fD < 0. To a good approximation, the Doppler frequency in the case of a
pulse-echo scenario is twice that of either a moving source or moving receiver
situation. In addition, a negative Doppler frequency means that the object is
moving away from the transducer.

If the angle θ of movement of the scatterers were known and not equal to
90◦, then it is possible in principle to measure fD and invert equation (10.49) in
order to deduce the speed v of the scatterers. This is the principle of so-called
Doppler-shift velocimeters. It is also possible to simply listen to |fD| as a function
of time; this is the principle behind Doppler motion monitors, which are popular
in fetal monitoring. Finally, it is also possible to measure fD as a function of
spatial position and to display its magnitude and sign in an image. This is the
principle of Doppler imaging.

EXAMPLE 10.6
Suppose it is known that a 5-MHz transducer axis makes an angle of 30◦ relative to the
direction of motion of blood in a vessel.

Question If the Doppler frequency is measured to be +500 Hz, what is the velocity of
the blood? Is it moving toward or away from the transducer?

Answer Since fD > 0, the blood is moving toward the transducer. The velocity is given
by

v = cfD

2fS cos θ

= +500 Hz × 1, 540 m/s
2 × 5 × 106 Hz × cos 30◦

= 0.0889 m/s .

10.5 Beam Pattern Formation and Focusing
In Section 10.3.5, we used a plane wave confined to a cylinder to study scattering.
As it turns out, the acoustic energy of a real transducer is not confined to a
cylinder but instead tends to spread out in a cone. The spatial distribution of the
acoustic intensity of a transducer undergoing steady-state sinusoidal excitation
is called the field pattern of the transducer.
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In this section, we first study the field patterns created by the sinusoidal
vibrations of a flat plate. This models flat transducers, which are elements of
phased arrays (see Section 11.2.2), for example. We then study the field patterns
created by focused transducers, which are composed of either curved plates or
flat plates with lenses.

10.5.1 Simple Field Pattern Model

Treating the acoustic wave as if it were confined to the cylinder extended
from the transducer’s (flat) face is called the geometric approximation. It is
only valid—and even then only approximately—very near to the face of the
transducer. At a farther distance, the so-called Fresnel approximation holds
and beyond that the Fraunhofer approximation applies. Before developing a
mathematical treatment of these approximations, it is useful to begin with a
very simple model that captures many of the characteristics of field patterns
from a geometric point of view.

Suppose a transducer has a ‘‘diameter’’ of D and is pointing down the z-axis,
as shown in Figure 10.5. Then, the geometric region begins at the transducer
face and extends in range out to D2/4λ (circular transducer) or D2/2λ (square
transducer). The Fresnel region extends beyond this point out to range D2/λ;
the Fraunhofer region is beyond this range. In the Fraunhofer region, also called
the far field, the beam is spreading. At range z, the beamwidth is approximately
w = λz/D. To summarize these observations, the beamwidth w(z) of a flat
transducer at range z is approximately given by

w(z) =
{

D, z ≤ D2/λ ,
λz/D, z > D2/λ

. (10.50)

This approximation ignores the ‘‘waist’’ occurring in the Fresnel region but is
still very useful.

In the following section, we will develop the mathematics leading to the
beamwidth formula in the far field or Fraunhofer region. As we will see, the
width λz/D is approximately where the signal strength drops off by a factor of
two from the peak strength, which is on the z-axis. We will also see that as we
go further off the z-axis, the acoustic energy continues to drop until it hits zero,
and then it rises again, then drops, and so forth. The acoustic energy confined
between the first zeros on either side of the z-axis is called the main lobe. The
‘‘spokes’’ of energy confined between the other zeros are called side lobes. Most
of our discussion is directed at the main lobe. The side lobes are ignored in
developing imaging concepts, but when they have significant energy, they can
be a source of artifacts.

Figure 10.5
Simple field pattern
geometry.
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EXAMPLE 10.7
Consider a flat 1-cm transducer operating at 2 MHz in water.

Question What is the approximate beamwidth at a 5 cm range? What about at a 20 cm
range?

Answer The wavelength in water at 2 MHz is λ = c/f = 1, 484 m/s/2 × 106 s−1 =
0.742 mm. The range at which the beam transitions from geometric to far field is z =
D2/λ = (10 mm)2/0.742 mm = 134.8 mm. Since 5 cm = 50 mm < 134.8 mm, the range
of interest remains in the geometric region. Therefore, the beamwidth is approximately
w = D = 1 cm. A range of 20 cm, however, exceeds the transition range. In this case,
the beamwidth is approximately

w = λz
D

= cz
Df

= 1, 484 m/s × 0.2 m
2 × 106 s−1 × 0.01 m

= 1.48 cm .

10.5.2 Diffraction Formulation

The diffraction formulation is used to derive a more accurate model for the
field pattern of a transducer comprising a vibrating flat plate. This formulation
requires a series of simplifying acoustic approximations and also requires that we
ignore the electronics, the electrical-mechanical interface to the transducer, and
the mechanical-acoustical interface to the medium. Despite these simplifications,
the diffraction formulation gives a reasonably accurate formula for the field
pattern, especially in the far field, or Fraunhofer zone.

Narrowband Pulse It is useful to model the pressure signal of a transmitted
pulse as a narrowband pulse, which can be written as

n(t) = Re{ñ(t)e−j2π f0t} , (10.51)

where ñ(t) = ne(t)ejφ is the complex envelope and ne(t) is the envelope. The enve-
lope of a narrowband pulse is the low-frequency (so-called baseband) signal
that ‘‘rides’’ the crests of the narrowband pulse. A narrowband pulse and its
envelope are shown in Figure 10.6. We require that the envelope is long with
respect to the period 1/f0 in order that n(t) be considered narrowband. This is
true for the narrowband pulse depicted in Figure 10.6 and is generally a good
approximation in medical ultrasound imaging systems, although the number of
high-frequency signal periods within the envelope is usually much fewer (on the
order of three to five, typically).

Our analysis is made easier by presuming that the input to the acoustical
system is the complex signal

n(t) = ñ(t)e−j2π f0t . (10.52)
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Figure 10.6
A narrowband pulse and
its envelope.

Envelope

Narrowband pulse

Time

With this model, the true input is given by

n(t) = Re{n(t)} , (10.53)

and the envelope of the input is given by

ne(t) = |n(t)| , (10.54)

where | · | gives the complex modulus. Since the acoustical system itself is a real
physical system, the output must also be real. Therefore, the true output of the
system driven by a complex input is just the real part of the complex output.
Likewise, the envelope (baseband signal) of the output is just the complex
modulus of the complex output. The primary reason that we use this complex
formulation is that the output of an ultrasound system is typically the envelope,
not the narrowband signal, and this formulation makes it easier to write the
equations describing the envelope.

Received Signal with Field Pattern The geometry we consider is shown in
Figure 10.7. The plate is assumed to be vibrating in the z direction, and each
point (x0, y0, 0) on the plate is assumed to produce an independent acoustic
wave. The linear superposition of all these waves comprises the field pattern of
the flat plate. Because the plate vibrates in the z direction, each point on the
plate acts like an acoustic dipole rather than a monopole (spherical source).
Accordingly, the acoustic wave produced by each point is not a spherical wave
but is instead given by

p(x, y, z, t) = z

r2
0

n(t − c−1r0) , (10.55)

Figure 10.7
Geometry for field pattern
analysis.
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where r0 =
√

(x − x0)2 + (y − y0)2 + z2 is the distance between the point on the
plate and (x, y, z), an arbitrary point in space. A complex narrowband excitation
n(·) is assumed; hence, the true signal is recovered by taking the real part, and
the envelope is recovered by taking the modulus. In a direction parallel to the
z-axis, this pressure wave has exactly the form of a spherical wave propagation
pattern, but in an orthogonal direction, the pressure is zero (because z = 0).

The total pressure at (x, y, z) is the superposition of all (dipole) sources on
the transducer face

p(x, y, z; t) =
∫ ∞

−∞

∫ ∞

−∞
s(x0, y0)

z

r2
0

n(t − c−1r0)dx0 dy0 ,

where s(x, y) is the transducer face indicator function, given by

s(x, y) =
{

1, (x, y) in face,
0, otherwise.

(10.56)

Now suppose that a spherical wave scatterer of strength R(x, y, z) is at
(x, y, z). Then, a spherical wave will be sent back to the transducer, and the
pressure at face point (x′

0, y′
0) will be

ps(x′
0, y′

0; t) = R(x, y, z)
1
r′
0

p(x, y, z; t − c−1r′
0) , (10.57)

where r′
0 is the distance from (x, y, z) to (x′

0, y′
0, 0). Since the transducer is

sensitive only to the dipole pattern, the response at each point on the face
must be weighted by the dipole pattern. Accordingly, the received electrical (still
modeled as complex) waveform due to a single scatterer at (x, y, z) is

r(x, y, z; t) = K
∫ ∞

−∞

∫ ∞

−∞
s(x′

0, y′
0)

z
r′
0

ps(x′
0, y′

0; t)dx′
0 dy′

0 , (10.58)

where K is an arbitrary gain factor accounting for the transmit and receive
sensitivity of the transducer and any preamplification hardware. Substituting all
previous expressions gives

r(x, y, z; t) = KR(x, y, z) (10.59)

×
∫ ∞

−∞

∫ ∞

−∞
s(x′

0, y′
0)

z

r′2
0

×
∫ ∞

−∞

∫ ∞

−∞
s(x0, y0)

z

r2
0

n(t − c−1r0 − c−1r′
0)dx0 dy0 dx′

0 dy′
0 .

Plane Wave Approximation At this point, we use the first of a series of
approximations. The plane wave approximation maintains that the envelope of
the excitation pulse arrives at all points in a given z-plane simultaneously. This
statement can be written mathematically as

n(t − c−1r0 − c−1r′
0) ≈ ñ(t − 2c−1z)e−j2π f0(t−c−1r0−c−1r′0) , (10.60)
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which can also be written as

n(t − c−1r0 − c−1r′
0) ≈ n(t − 2c−1z)ejk(r0−z)ejk(r′0−z) . (10.61)

Using this approximation, the receive equation (10.59) simplifies so that the
quadruple integral separates into two identical double integrals. Defining the
field pattern as

q(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
s(x0, y0)

z

r2
0

ejk(r0−z)dx0 dy0 , (10.62)

the complex received signal for a single scatterer located at (x, y, z) is

r(x, y, z; t) = KR(x, y, z)n(t − 2c−1z)[q(x, y, z)]2 . (10.63)

Assuming superposition holds, the total response for a distribution of scatterers is

r(t) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
r(x, y, z; t)dx dy dz (10.64)

=
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
KR(x, y, z)n(t − 2c−1z)[q(x, y, z)]2dx dy dz . (10.65)

For completeness, we include a round-trip attenuation factor, yielding the basic
pulse-echo signal equation,

r(t) = K
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)n(t − 2c−1z)e−2μaz[q(x, y, z)]2dx dy dz . (10.66)

The importance of this equation as the basis of an imaging equation will become
clear in the next chapter. For now, it is important to continue examining the
field pattern to see how it might be approximated in order to better understand
it and to make this triple integral more tractable.

Paraxial Approximation The paraxial approximation assumes that we are
primarily interested in the pattern near the transducer axis, in which case r0 ≈ z.
This approximation can be applied only to the amplitude terms, not the phase
terms. Accordingly, applying this approximation to (10.62) yields

q(x, y, z) ≈ 1
z

∫ ∞

−∞

∫ ∞

−∞
s(x0, y0)ejk(r0−z)dx0 dy0 . (10.67)

Notice that this is the same result that we would get assuming that all the
elements of the transducer acted as spherical wave generators and receivers
instead of dipoles.

Fresnel Approximation The Fresnel approximation simplifies the phase term
in (10.67) by first noting that

r0 =
√

(x − x0)2 + (y − y0)2 + z2

= z

√
1 + (x − x0)2

z2 + (y − y0)2

z2 . (10.68)
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Then, if z is large enough, two terms of the binomial expansion are sufficient to
approximate the square root as

r0 ≈ z
[
1 + 1

2

(
(x − x0)2

z2 + (y − y0)2

z2

)]

≈ z + (x − x0)2

2z
+ (y − y0)2

2z
. (10.69)

Applying this to the phase term in (10.67) yields

q(x, y, z) ≈ 1
z

∫ ∞

−∞

∫ ∞

−∞
s(x0, y0)e

jk
(

(x−x0)2

2z + (y−y0)2

2z

)
dx0 dy0 . (10.70)

This is in the form of a convolution in x and y; hence, we write the Fresnel beam
pattern as

q(x, y, z) = 1
z

s(x, y) ∗∗ ejk(x2+y2)/2z , (10.71)

where ∗∗ denotes 2-D convolution [see (2.38) and (2.39)].
Substituting (10.71) into (10.66) yields

r(t) = K
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)n(t − 2c−1z)

e−2μaz

z2 (10.72)

×
[
s(x, y) ∗∗ ejk(x2+y2)/2z

]2
dx dy dz .

If n(t) is sufficiently short, both the attenuation and 1/z2 factors may be moved
outside the integral by setting z = ct/2. This gives a received (complex) signal

r(t) = K
e−μact

(ct)2

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)n(t − 2c−1z) (10.73)

×
[
s(x, y) ∗∗ ejk(x2+y2)/2z

]2
dx dy dz ,

where the constant 4 has been absorbed by K.

EXAMPLE 10.8
An ultrasound transducer is placed in the x-y plane, pointing down in the z-axis. The trans-
ducer face is of dimension 1 mm × 10 mm, as shown in Figure 10.8. The transducer is
working at 2 MHz and the speed of sound is 1,540 m/s.

Question At a range of 15 cm, where are the peaks of the first sidelobes along the x-
and y-axes?

Answer The wavelength of the ultrasound wave is

λ = c/f = 1, 540 m/s/2 × 106 Hz = 0.77 mm .
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Figure 10.8
A transducer in the x-y
plane, pointing in the
z-axis.

x

y

10 mm

1 mm

For the ultrasound field in x-z plane, the transducer has width 1 mm, so the far
field approximation holds for z ≥ D2/λ = 1.2 mm. For the ultrasound field in y-z
plane, the transducer has width 10 mm, so the far field approximation holds for
z ≥ D2/λ = 129.8 mm= 12.98 cm. So at range of 15 cm, the far field approximation
holds for both directions. The widths of the main lobes along the x- and y-axes are

wx = λz/Dx = 11.55 cm ,

wy = λz/Dy = 1.16 cm .

Therefore, the peaks of the first sidelobes along the x- and y-axes are approximately at

px = ±1.5wx = 17.32 cm ,

py = ±1.5wy = 1.73 cm .

Fraunhofer Approximation The Fresnel approximation for r0 in (10.69) can
be expanded as

r0 ≈ z − xx0

z
− yy0

z
+ x2 + y2

2z
+ x2

0 + y2
0

2z
. (10.74)

Using this form in (10.67) yields the following alternate expression for the
Fresnel field pattern,

q(x, y, z) = 1
z

ejk(x2+y2)/2z
∫ ∞

−∞

∫ ∞

−∞
s(x0, y0)ejk(x2

0+y2
0)/2z e

−jk
(

x0x
z + y0y

z

)
dx0dy0 .

(10.75)

To see how to further approximate q(x, y, z), we define

D = 2
√

max
x0,y0∈face

(x2
0 + y2

0) , (10.76)

which is essentially the diameter (or maximum lateral dimension) of the trans-
ducer. If z ≥ D2/λ, then the term exp[jk(x2

0 + y2
0)/2z] is approximately 1. This

approximation is called the Fraunhofer approximation and only applies in the
far field or Fraunhofer region. Under this approximation, the double integral in
(10.75) is revealed as the Fourier transform of s(x, y), evaluated at the spatial
frequencies u = x/λz and v = y/λz. Therefore, the Fraunhofer approximation
to the field pattern is written as

q(x, y, z) ≈ 1
z

ejk(x2+y2)/2zS
(

x
λz

,
y
λz

)
, z ≥ D2/λ , (10.77)
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where

S(u, v) =
∫ ∞

−∞

∫ ∞

−∞
s(x, y)e−j2π (ux+vy)dx dy . (10.78)

Using (10.77) in (10.66), and making similar approximations as was done
in the Fresnel approximation, yields

r(t) = K
e−μact

(ct)2

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)n(t − 2c−1z)ejk(x2+y2)/z (10.79)

×
[
S
(

x
λz

,
y
λz

)]2

dx dy dz .

The Fraunhofer approximation holds well for ranges greater than about
D2/λ, where D is the maximum lateral dimension of the transducer. For
example, a 1-cm transducer operating at 2 MHz hits the far field at a range of
about 13 cm. If the transducer is square, then the width of the beam is about
λz/D in the far field. Therefore, at z = D2/λ, the width of the field is D, equal to
the width of the transducer. Doubling the range doubles the width of the beam,
so that (in this example) at 26 cm, our beamwidth is 2 cm. Suppose we desire
a lateral resolution of about 0.5 cm. Roughly, the geometric region holds until
about D2/λ—that is, up to the onset of the far field. Therefore, a transducer with
D = 0.5 cm satisfies our criteria up to about 3 cm. Unfortunately, at 6 cm range,
the beamwidth has increased to about 1 cm; at 12 cm range, the beamwidth
has gone up to about 2 cm; and at 24 cm the beam width has gone to about
4 cm. Therefore, although the smaller transducer has better resolution up to its
own far field than a larger transducer, the far field comes much sooner (i.e., at
a distance much closer to the transducer), and the beam exceeds the dimensions
of the larger transducer fairly quickly.

10.5.3 Focusing

Virtually all transducers used in medical ultrasound are focused to at least
some degree. Here, focusing means to shape the beam into a narrower beam
than is achieved using a flat vibrating plate. Focusing can be accomplished by
manufacturing the transducer crystal in a curved shape, by applying a lens to a
flat crystal, or by electronic focusing using multiple transducer crystals arranged
either in a linear array or a set of concentric rings. Electronic focusing will be
described in Chapter 11, as will the materials and construction of ultrasound
transducers. In this section, we explore the physics of focusing using curved
vibrators or lenses.

Consider the geometry shown in Figure 10.9. Here, the curved surface has
radius d, and an acoustic pulse emitted simultaneously from the surface would
arrive at the point (0, 0, d) simultaneously. The focal depth is therefore designed
to be at the range z = d. In order to analyze the field pattern for this geometry, it
is convenient to assume that the actual pulse (or waveform) is generated from a
flat plate at z = 0 and that we can control the timing of the pulses as a function
of position (x0, y0). Our goal is to generate the transmit waveform first at the
farthest point (xm, ym, 0) (or set of points) and last at the origin in such a way
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Figure 10.9
Geometry for the analysis
of field patterns from
focused transducers.
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Figure 10.10
Approximate field pattern
for a focused transducer.

D2/l

D
d ld z

D

that a round trip from the flat transducer to the focal point and back again
takes the same amount of time across the entire face. This simulates the curved
transducer as well as flat transducers with lenses, as we shall see.

It can be shown from the geometry (see Problem 10.16) that the time delay
required for the pulse generated at point (x0, y0, 0) is approximately

τ ≈ 1
dc

[r2
m − (x2

0 + y2
0)] , (10.80)

where r2
m = x2

m + y2
m. Applying this time delay to the complex signal, and

carrying out the plane wave and Fresnel approximations using analogous steps
as above, yields the following Fresnel field pattern at the focal distance z = d:

q(x, y, d) = 1
d

ejk(x2+y2)/2dS
( x
λd

,
y
λd

)
. (10.81)

The field pattern of (10.81) is identical to that of the Fraunhofer field for
a flat transducer (10.77), except that z is replaced by d. In practical terms,
this means that a relatively large transducer can produce a relatively narrow
beam at the focal depth, as depicted in Figure 10.10. We will see in the next
chapter that a narrower beam improves spatial resolution. The penalty for
this improved resolution is that the beam diverges more rapidly than with an
unfocused transducer. Therefore, although the resolution is better at or around
the focal depth, it can be considerably worse at smaller and larger distances than
with an unfocused transducer.

10.6 Summary and Key Concepts
Ultrasound imaging is based on the use of ultrasound, whose behavior is
characterized by the 3-D wave equation. Ultrasound imaging is of interest
because it is truly noninvasive, and the systems are typically quite portable.



Problems 363

In this chapter, we presented the following key concepts that you should now
understand:

1. Ultrasound is sound with frequencies above 20 kHz.

2. Ultrasound systems generate and detect ultrasound via a transducer, which
converts electrical signals to acoustic signals and vice versa.

3. Ultrasound images are based on the reflection and scattering of ultrasound
by body tissues; the returning echoes are detected and displayed.

4. Acoustic waves are pressure waves that propagate through materials via
compression and expansion of the material; these waves can have different
geometries or patterns.

5. A plane wave is the most common wave pattern, which is represented
by a simple geometric approximation, the Fresnel approximation, or the
Fraunhofer approximation, depending on the distance from the transducer.

6. Plane waves are reflected, refracted, or attenuated/transmitted by/through
plane interfaces.

7. Ultrasound waves can experience nonlinear propagation effects, which cause
harmonic frequencies to develop as the wave propagates.

8. The Doppler effect is the change in frequency of sound due to the relative
motion of the source and/or receiver.

9. The beam that is formed by a transducer can be focused to be narrower.

Further Reading
Cobbold, R.S.C. Foundations of Biomedical Ultra-

sound. New York, NY: Oxford University
Press, USA, 2006.

Kremkau, F.W. Diagnostic Ultrasound: Principles
and Instruments, 7th ed. Philadelphia, PA: W. B.
Saunders, 2005.

Macovski, A. Medical Imaging Systems. Englewood
Cliffs, NJ: Prentice Hall, 1983.

Pierce, A.D. Acoustics: An Introduction to its Physi-
cal Principles and Applications. New York, NY:
McGraw-Hill, 1989.

Wells, P.N.T. Biomedical Ultrasonics. New York,
NY: Academic Press, 1977.

Problems
The Wave Equation

10.1 Show that the function w1(z, t) = ξ (z − ct), where ξ (τ ) is a twice differen-
tiable function, is a solution of the one-dimensional wave equation (10.6).
Moreover, show that the same is true for the function w2(z, t) =
ξ (z − ct) + ξ (z + ct). What is the physical meaning of the wave function
w2(z, t)?

10.2 Show that the wavelength of a sinusoidal plane wave modeled by (10.8)
is given by λ = 2π/k.

10.3 Consider the situation in Example 10.2 and let τ1 = τ2 = 5 μs.

(a) At what time does the peak of the wave with maximum pressure hit
the interface?
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(b) After the wave hits the interface, a backward traveling wave will
be generated. Write down an expression for the backward traveling
wave.

(c) When will the peak of the backward traveling wave arrive at the
transducer face?

10.4 Derive the spherical wave equation (10.13) for a source at the origin.
Start with the full three-dimensional wave equation (10.4) and assume
that the amplitude of particle displacement depends only on the radius r
and on time t.

10.5 Show that the function w(r, t) = ξ (r − ct)/r, where ξ (τ ) is a twice differ-
entiable function, is a solution of the spherical wave equation (10.13).

10.6 Prove the validity of the general solution to the spherical wave equation

p(r, t) = 1
r

f (t − c−1r) + 1
r

g(t + c−1r) ,

by direct substitution into (10.13).

Wave Propagation

10.7 Prove that for a plane wave in which v(0, t) = Re{Vejωt} and p(0, t) =
Re{Pejωt}, that the average power in the acoustic wave at x = 0 is
Iav = (1/2)Re{VP∗} where ∗ denotes complex conjugate.

10.8 (a) Solve Equations (10.25) and (10.26) to find the expressions for
pressure reflectivity R and pressure transmittivity T given by
Equations (10.27) and (10.28), respectively.

(b) Derive the expressions for intensity transmittivity and reflectivity
given in Equations (10.29) and (10.30), respectively.

10.9 An acoustic dipole can be modeled by two point sources (monopoles)
residing close together but vibrating exactly out of phase. Suppose
point source 1 is located at (0, 0, −d) and point source 2 is located
at (0, 0, d), where d is very small. Further suppose that source 1 is
generating the narrow-band signal f (t), leading to a spherical pressure
wave given by p(r1, t) = f (t − c−1r1)/r1 and source 2 is generating the
narrow-band signal −f (t), leading to a spherical pressure wave given by
p(r2, t) = −f (t − c−1r2)/r2, where the two radii r1 and r2 are measured
from their respective sources.

(a) Show that the measured pressure in the far field is approximately
p(r, t) = zf (t − c−1r)/r2.

(b) Sketch isopressure lines in the x-z plane for the above field pattern.

10.10 Consider an outward propagating spherical wave.

(a) Write down a general expression of an attenuated spherical wave
whose source is located at the origin.

(b) If there is a small target located at (x, y, z), derive an expression for
the scattered wave.

(c) Generalize the above result to a spherical wave generated at a
arbitrary location (x0, y0, z0).
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10.11 (a) Derive the intensity reflectivity and transmittivity from the pressure
reflectivity and transmittivity.

(b) Show that T − R = 1.
(c) Explain why TI �= 1 − RI in general and find the correct relationship

between TI and RI.

Doppler Effect

10.12 Consider a stationary source that generates plane wave with frequency
f0. Assuming that a receiver is moving towards the source with speed v
and that the speed of sound in the medium is c, prove that the frequency
observed is fR = (c + v)f0/c. What if the receiver moves away from the
source?

10.13 Using the above derivation, discuss the Doppler effects in the following
situations when the receiver moves towards and away from the source:

(a) c > v.
(b) c = v.
(c) c < v.

Ultrasound Field Pattern

10.14 Suppose the Fourier transform of a real signal ne(t) is Ne(ϕ). Find the
Fourier transform of ñ(t) = ne(t)ejφ and n(t) = Re{ñ(t)e−j 2π f0t}.

10.15 An ultrasound imaging system is equipped with two square transducers.
One operates at 5 MHz, and the other one operates at 12 MHz. The
5-MHz transducer is 2.0 cm by 2.0 cm and the 12-MHz one is 0.4 cm
by 0.4 cm. The imaging system is tested in a medium having a speed of
sound of 1,560 m/s at both frequencies.

(a) What are the absorption coefficients α5 MHz and α12 MHz of the medium
at the frequencies of the transducers?

(b) What ranges are considered as far field for each transducer?

10.16 A transducer can be focused by curving the crystal to conform to the
shape of a sphere, as shown in Figure P10.1. To analyze the field pattern,
however, it is convenient to assume that the transducer is flat but that
we can independently control the time delay of each element on its face.
Assume that the point (xm, ym, 0) is the point farthest out on the flat face.

(a) Show that the time delay for a point (x0, y0, 0) on the flat face is
approximately

τ ≈ 1
dc

[r2
m − (x2

0 + y2
0)] ,

where r2
m = x2

m + y2
m and d is the desired focal depth.
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(b) Use the steady-state approximation and show that at z = d the Fresnel
field pattern is

q(x, y, d) = 1
d

ejk(x2+y2)/2dS
( x
λd

,
y
λd

)
,

where S(u, v) is the 2-D Fourier transform of s(x, y).
(c) Discuss the merits of focusing.

Figure P10.1
Geometry of curved
transducer for
Problem 10.16.
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10.17 A portion of a linear array is shown in Figure P10.2. Note that h > w.
The array is composed of five transducers (called elements), whose faces
are contained in the x-y plane and vibrate in the z direction. Assume the
far-field (Fraunhofer) approximation in all of the parts below.

(a) What is the far-field pattern q0(x, y, z) of the central element taken
by itself?

(b) Find the range z0 at which the first zeros of this pattern (in the
x direction) coincide with x = −s and x = +s?

(c) What condition must the separation s satisfy in order that z0 is in the
far-field of the central element?

(d) Find the far-field pattern q(x, y, z) of the five elements operating in
unison.

(e) What is the beamwidth (out to the first zeros) of this pattern at range
z0 in both the x and y directions. (Think carefully about this one
before you proceed blindly ahead; it is easier than it appears at first
glance.)

Figure P10.2
A portion of a linear
array for Problem 10.17.
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Ultrasound Imaging
Systems

C H A P T E R

1111
11.1 Introduction
In this chapter, we study the principles of ultrasound imaging systems. After
projection radiography systems, these are the most widely used medical imaging
systems in the world. In some hospitals, ultrasound imaging accounts for one-
third of all imaging procedures. In part, this is because at diagnostic intensities,
ultrasound poses no known risk to the patient. Another factor is that these
are among the least expensive medical imaging systems and are portable and
therefore easily moved from bedside to operating room. A typical imaging
system is shown in Figure 11.1.

11.2 Instrumentation
A block diagram of a typical ultrasound imaging system is shown in
Figure 11.2. The vast majority of medical ultrasound imaging systems use the
same transducer for both generation and reception of ultrasound; this is the
so-called pulse-echo mode of operation. The transducer is coupled to the body
using an ‘‘acoustic gel,’’ and a brief pulse-like acoustic wave is generated. This
wave propagates into the body, where it encounters reflecting surfaces and small
scatterers. These objects reflect or scatter the sound, a part of which returns
to the transducer. The transducer then converts the acoustic wave sensed at
its face to an electrical signal that can be amplified, stored, and displayed. In
this section, we will describe each of the components required to carry out this
basic imaging paradigm. This sets the stage for the development of an imaging
equation, the analysis of image quality, and an introduction to pulsed Doppler
and three-dimensional imaging systems in subsequent sections.

11.2.1 Ultrasound Transducer

Transducer Materials Medical transducers use piezoelectric crystals to both
generate and receive ultrasound. These crystals have the property that an induced
electric field produces a strain (mechanical displacement), which in turn causes

367
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Figure 11.1
A typical ultrasound
imaging system. (Courtesy
of GE Healthcare.)

Figure 11.2
Block diagram of an
ultrasound imaging
system.
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an acoustic wave. They also satisfy the reciprocal property that a mechanical
displacement creates an electric potential, which means that they can also sense
an acoustic wave. These concepts are illustrated in Figure 11.3.

Lead zirconate titanate, or PZT, is the piezoelectric material used in nearly
all medical ultrasound transducers. It is a ceramic ferroelectric crystal exhibiting
a strong piezoelectric effect. These crystals can be manufactured in nearly any
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Figure 11.3
Piezoelectric behavior of
an ultrasound transducer
crystal.
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shape, and their axes of polarization (see Figure 11.3) can be oriented in nearly
any direction, as shown in Figure 11.4. The most common transducer shapes are
the circle, for single-crystal transducer assemblies found in Doppler monitoring
systems, and the rectangle, for multiple-transducer assemblies such as those
found in linear and phased arrays, as described later.

An ideal transducer material, when used in pulse-echo mode, should be
both an efficient producer and sensitive receiver of ultrasound waves. The
transmitting constant d of a transducer is the strain produced by a unit electric
field and has units of meters per volt. The receiving constant g is the poten-
tial produced by a unit stress and has units of volt-meters per Newton. For
PZT, d = 300 × 10−12 m/V and g = 2.5 × 10−2 V/(N/m). By comparison, for
quartz (a natural piezoelectric material), d = 2.3 × 10−12 m/V and g = 5.8 ×
10−2 V/(N/m). This implies that quartz is two orders of magnitude less efficient
in production of ultrasound as PZT but comparable in its reception efficiency.
Polyvinylidene fluoride (PVDF), a polymer film, also has piezoelectric properties
and is commonly used as a probe when measuring the acoustic properties of
other transducers. For PVDF, d = 15 × 10−12 m/V and g = 14 × 10−2 V/(N/m).
Clearly, PVDF has poor efficiency as a transmitter of ultrasound but is much
more efficient on reception than either PZT or quartz.

Resonance Transducers Transducer crystals exhibit resonance—that is, they
tend to vibrate sinusoidally after electrical excitation has ended. The frequency
of this vibration is called the fundamental resonant frequency fT of a transducer.
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In most systems, different transducers having resonant frequencies in the range
1–20 MHz can be ‘‘plugged’’ into the ultrasound scanner. The difference in
resonant frequency between the different transducers has a profound influence
on image quality, as we shall see.

The resonant frequency of a transducer is largely determined by the thickness
of its piezoelectric crystal. When the front face of the transducer is moved
forward (by the electrically induced strain, for example), an acoustic wave is
initiated forward into the medium (perhaps a human body) and backward into
the transducer crystal itself. The backward-traveling wave will hit the back face
of the transducer and reflect toward the front face again. Resonance is set up
when the returning wave strikes the front face at the time when the wave reaches
a ‘‘crest,’’ thus reinforcing the wave. This condition occurs when

fT = cT

2dT
, (11.1)

where cT and dT are the speed of sound in the transducer and the thickness
of the transducer, respectively. Since λT = cT/fT , the resonance condition is
equivalently given by

λT = 2dT .

EXAMPLE 11.1
The thickness of the piezoelectric crystal determines the resonant frequency of a trans-
ducer.

Question Consider a transducer made of a PZT crystal, which has a speed of sound
of cT = 8, 000 m/s. If we want the transducer to work at a frequency of 10 MHz, what
should the thickness of the crystal be?

Answer The relation between the thickness of the crystal and the resonant frequency is
given by

fT = cT

2dT
,

where fT = 10 MHz and cT = 8, 000 m/s. So the thickness of the crystal should be

dT = cT

2fT
= 0.4 mm.

Damping and Matching The piezoelectric crystal comprising a resonance
transducer is plated with conductive electrodes on each side and mounted
within an assembly called a probe, as illustrated in Figure 11.5. The transducer
is usually shock excited, meaning the electrical signal resembles an impulse—that
is, it has a very large peak voltage and a very short duration. Once excited,
the transducer will resonate until the in-transducer wave loses energy, which
causes a damping of the acoustic wave. In-transducer acoustic energy is lost in
three ways: to the body, out the back of the transducer, and due to absorption
within the crystal. The reflection coefficient between PZT and tissue is large,
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Figure 11.5
A simple ultrasound
probe.

Coaxial
cable

Housing

Acoustic
backing

Piezoelectric
crystal

Matching layer
and acoustic window

Electrodes

and the absorption coefficient of PZT is small. Therefore, to remove excessive
vibrations, the transducer is backed with an epoxy material with an impedance
that is nearly matched to PZT but with a high absorption coefficient. This
permits acoustic energy to be transmitted out the back of the crystal, thus
damping the remaining resonant acoustic wave inside the crystal.

Acoustic energy must also be permitted to exit through the front of the
tissue and into the body. Since the acoustic impedance of tissue is about 20 times
smaller than that of the piezoelectric crystal, there is a very large reflectivity at
the crystal/tissue interface. Unless aided in some way, only a small fraction of
the acoustic energy would escape into the tissue. It turns out that a thin layer
of material, called a matching layer, between the crystal and the tissue will help
transmit the pulse. The material should have a thickness that is one-quarter of
the wavelength of the resonant pulse (as measured in the matching layer) and
an acoustic impedance Zm that is the geometric mean of that of the crystal Zc

and the tissue Zt, that is, Zm = √
ZcZt. The reader should be reminded that the

matching layer must be coupled to the skin so that there is no air between the two,
which is the reason that acoustic gel is used when applying the probe to the body.

In the case of a typical resonance transducer, all factors (i.e., backing and
matching layer) are controlled so that the outgoing acoustic pulse has a well-
defined center frequency but damps out after about three to five cycles. A typical
transmit pulse is shown in Figure 11.6.

Broadband Transducers Some imaging scenarios require a shorter pulse, such
as one that is only one half of a cycle of a sinusoidal pulse. In other cases, it
might be necessary to use the same transducer to generate one pulse at 3 MHz
and the next at 5 MHz. These demands cannot be met by the typical resonant
transducer since it is designed to generate a narrowband pulse (meaning that is
has a narrow range of frequencies) at a specific center frequency. In these cases,
a broadband transducer is required.
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Figure 11.6
Typical transmit pulse
from a resonance
ultrasound transducer.

0 2 4
Time (microseconds)

6 8
�500
�400
�300
�200
�100

0
100
200
300
400
500

R
el

at
iv

e 
A

m
pl

it
ud

e

One way to build a broadband transducer is to simply increase the damping
on the back of the crystal. In this case, a shock excitation would generate an
initial pulse that would be quickly dissipated; what exits out the front and
into the tissue is then a shorter pulse, which has a correspondingly higher
bandwidth. A typical transducer in commercial use today will have somewhere
between 50% and 100% bandwidth as measured from its center frequency. For
example, a 3-MHz transducer with a 100% bandwidth would excite the tissue
in the frequency range 1.5–4.5 MHz under shock excitation.

Any transducer with greater than 80% bandwidth is considered to be a
broadband transducer. There are other more efficient designs for broadband
transducers than the high damping strategy. For example, one design uses many
small piezoelectric crystals embedded like ‘‘plugs’’ within a damping material.
In this way, when all the crystals are excited simultaneously they will produce
a coherent wave while being individually damped by the surrounding material.
These transducers do not need a matching layer or a special additional acoustic
backing, and are therefore more efficient.

Broadband transducers do not need to be shock excited but instead can
be ‘‘driven’’ by an arbitrary waveform. In particular, if excited by any pulse
that is within the bandwidth of the transducer, that pulse will be generated as
an acoustic wave. For example, a 5-MHz transducer with a 100% bandwidth
could in principle serve as a replacement for any narrowband transducer in the
range 2.5–7.5 MHz by exciting the transducer with short sinusoidal pulses (like
those produced by a resonant transducer). These transducers can also generate
a sinusoidal pulse at one frequency and receive the harmonics that are produced
by nonlinear propagation. These are therefore the type of transducers that are
used for harmonic ultrasound imaging (see Section 11.8.1).

11.2.2 Ultrasound Probes

Single-Element Probes The simplest transducer assembly, also called an ultra-
sound probe, is shown in Figure 11.5. This single-element assembly has a
field pattern that is well-modeled using the vibrating plate model developed in
Section 10.5.2. This basic design accommodates either a lens or a curved crystal
for focusing. For imaging, the ultrasound beam must be steered (also called
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Figure 11.7
Mechanical scanner probe
designs.
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scanned or swept) within the body, typically within a plane. Early ultrasound
systems used hand-held single-element probes that were manually scanned within
a body cross section. Modern imaging systems, however, use either mechanical
or electrical means to scan the beam. This is what permits real-time imaging.

Mechanical Scanners Mechanical scanning is accomplished by rocking or
rotating a transducer crystal or set of crystals within the transducer assembly, as
shown in Figure 11.7. In these designs, a transducer crystal is rapidly pulsed as
it moves through the sector being imaged. Each acoustic pulse goes through an
acoustic window and then propagates according to the speed of sound and the
transducer’s field pattern, as studied in Chapter 10. The echoes from any one
scan line are received and processed before the transducer is pulsed again. In the
rocker (or wobbler) design, shown in Figure 11.7(a), the transducer continues
to travel through the same sector in a repeating fashion first clockwise, then
counterclockwise, and so forth. In the rotating design shown in Figure 11.7(b),
a new transducer is ‘‘switched in’’ as it enters the sector, so the scan sequence is
always counterclockwise. Regardless of the specific design, the field of view for
mechanical scanners is always shaped like a slice of pie, and called a sector.

Electronic Scanners Transducer assemblies having multiple elements can be
electronically scanned in order to sweep the field of view. For two-dimensional
(2-D) imaging, the arrangement of the elements in these assemblies is linear, as
shown in Figure 11.8. Each element is rectangular and is focused in the longer
dimension of the element using a lens (or curved elements). The width of each
element and the attached electronics determine the manner in which the array is
used to image the body. In particular, when the elements have widths on the order
of a wavelength and are simply electronically grouped together making several
elements appear as one, then the array is called a linear array probe. On the
other hand, when the elements have widths on the order of a quarter wavelength
and the timing of the firing of the elements are electronically controlled in order
to steer and focus the beam, then the array is called a phased array probe.



374 Chapter 11 Ultrasound Imaging Systems

Figure 11.8
Basic arrangement of
transducer elements in
linear and phased arrays.

Epoxy backing

PZT elements Lens

EXAMPLE 11.2
Consider a mechanical scanner with rotating design as shown in Figure 11.7(b), and
suppose that the ‘‘pie-shaped’’ field of view (i.e., the sector) has an angle of 90◦ at the
transducer.

Question Suppose N pulse-echo experiments are to be acquired for each transducer
element over the 90◦ window. If no echo is received from further than 15 cm in range,
and the speed of sound is c = 1, 540 m/s, what is the maximum rate of revolution of the
transducer?

Answer At a range of 15 cm, it takes

T = 2 × 15 cm
1, 540 m/s

= 195 μs

for the transducer to receive the echo. During this period of time, the scanner probe
cannot rotate more than 90◦, otherwise the transducer leaves the window before it
receives the echo. So the maximum rate of revolution is

r = 1/4
T

= 1, 283 revolutions per second.

11.3 Pulse-Echo Imaging
In the following sections, we develop a mathematical framework for basic
ultrasound imaging. We rely on simplifying assumptions throughout, gener-
ally making bold assumptions at the outset and then refining them as our
understanding grows. In subsequent sections, we will explore three very impor-
tant augmentations to basic imaging: phased arrays (and electronic focusing),
Doppler imaging, and 3-D imaging.

11.3.1 The Pulse-Echo Equation

Analysis of ultrasound imaging systems begins with the pulse-echo received
signal equation developed in Chapter 10. We derived (10.73) using the Fres-
nel approximation and (10.79) using the Fraunhofer approximation. Either
equation can be written more generally as

r(t) = K
e−μact

(ct)2

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)n(t − 2c−1z)q̃2(x, y, z) dx dy dz , (11.2)

where

q̃(x, y, z) = zq(x, y, z) . (11.3)
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Here, q(x, y, z) is the transducer field pattern. Because the input waveform in
(11.2) is complex, the actual received signal is the real part of r(t). The envelope
(which is usually desired instead of the high-frequency signal itself) is found by
taking the complex modulus of r(t).

The time-dependent terms outside the integral in (11.2) cause very severe
signal loss if not compensated. All systems are equipped with circuitry that
performs time-gain compensation (TGC), which is a time-varying amplification,
as shown in Figure 11.2. Nominally, the default gain is set to cancel the gain
terms appearing in (11.2), which requires a gain of

g(t) = (ct)2eμact

K
. (11.4)

In practice, most systems have additional (range dependent) slide potentiometers,
which allow the gain to be determined interactively by the operator. This permits
the user to manually adapt the system to special circumstances requiring either
more or less gain so that subtle features can be seen in the images. In our
development here, we assume the nominal gain compensation, which leads to
the gain-compensated (complex) signal

rc(t) = g(t)r(t) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)n(t − 2c−1z)q̃2(x, y, z) dx dy dz . (11.5)

The actual gain-compensated received signal is the real part of rc(t) and its
envelope is the complex modulus of rc(t).

EXAMPLE 11.3
Suppose a system with nominal gain of 80 dB is working at a frequency of f = 5 MHz.
The speed of sound is c = 1, 540 m/s, and the coefficients for attenuation are a =
1 dB cm−1 MHz−1, and b = 1.

Question What is the nominal TGC?

Answer The attenuation coefficient is

α = af b = 5 dB cm−1.

The amplitude attenuation factor μa is

μa = α/8.7 = 0.575 Np cm−1.

The nominal gain of the system is 80 dB. So the amplitude gain of the system is
K = 10, 000. Based on this information, the required TGC is

g(t) = (ct)2e+μact

K
= 2.37 × 106t2e88,550t.

The TGC plotted in log scale is shown in Figure 11.9.

Suppose our transducer has a resonant frequency of 5 MHz; then the
transmitted signal has most of its spectral energy concentrated around 5 MHz.
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Figure 11.9
Time-gain compensation.

0 0.2 0.4 0.6 0.8 1

 10�3

10�10

10�5

100

105

1010

1015

1020

1025

1030

1035

1040

Time (seconds)

T
im

e-
ga

in
 c

om
pe

ns
at

io
n 

(l
og

 s
ca

le
)

For example, a typical system might have around a 60 percent fractional
bandwidth, meaning that a nominal 5 MHz system uses frequencies in the range
3.5–6.5 MHz. Because the system (transducer, body, amplification electronics)
is modeled as linear, the received signal will have its spectral energy concentrated
around 5 MHz. For imaging purposes, however, it is the signal strength of the
returning echoes that is important, and the strength of a narrowband signal
is captured by its envelope. Therefore, the first step in an ultrasound imaging
system after amplification is envelope detection or demodulation.

Inexpensive ultrasound systems use a simple envelope detection procedure
given by the two-step procedure depicted in Figure 11.10. The absolute value
of the received signal is accomplished using a rectifier. The low-pass filter can
be accomplished using a simple R-C circuit. Electrical engineers will recognize
this as a simple AM demodulation scheme. Mathematically, it is simpler to
model the envelope detection phase using the received complex signal. Since the
received complex signal is a narrowband signal, it can be modeled as

r(t) = re(t)ejφe−j2π f0t .

Mathematically, the envelope of this signal is extracted by taking its modulus
(complex magnitude). Cascading gain compensation and envelope detection
yields the (real) signal

ec(t) =
∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)n(t − 2c−1z)q̃2(x, y, z) dx dy dz

∣∣∣∣ . (11.6)

Figure 11.10
Envelope detection.
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Equation (11.6) can be further simplified by recalling from Section 10.5.2
that n is a narrowband signal, which can be written as [see (10.51)]

n(t) = ne(t)ejφe−j2π f0t . (11.7)

Substitution of (11.7) into (11.6) yields

ec(t) =
∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)ne(t − 2c−1z)

× ejφe−j2π f0(t−2c−1z)q̃2(x, y, z) dx dy dz

∣∣∣∣ . (11.8)

Phase terms that do not depend on x, y, or z disappear because of the modulus
operator, leaving

ec(t) =
∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)ne(t − 2c−1z)ej2π f02c−1zq̃2(x, y, z) dx dy dz

∣∣∣∣ .

(11.9)

We use the fact that k = 2π f0/c to get

ec(t) =
∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)ne(t − 2c−1z)ej2kzq̃2(x, y, z) dx dy dz

∣∣∣∣ . (11.10)

We will see in Section 11.5 that the signal ec(t), called the A-mode signal, is the
fundamental signal in all of ultrasound imaging. It is used directly in A-mode,
M-mode, and B-mode imaging.

11.4 Transducer Motion
So far in our analysis, our transducer has remained motionless, pointed down the
z-axis. To acquire images, however, the transducer must move. In this section,
we analyze the imaging equations that result when our transducer is allowed to
move in the (x, y) plane.

Imagine moving the transducer in the z = 0 plane. The object does not
move, but the transducer’s field pattern does. This is like shining a flashlight on
a different part of a visual scene, but since ultrasound imaging is a pulse-echo
modality the transducer movement not only insonifies a different part of the
body, but it also acquires echoes only from the part that insonified. Accordingly,
with the transducer placed at (x0, y0, 0) (still pointing parallel to the z-axis), the
A-mode signal is

ec(t; x0, y0) =
∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)ne(t − 2c−1z)

× ej2kzq̃2(x − x0, y − y0, z) dx dy dz

∣∣∣∣ . (11.11)

Since the envelope of the transmit pulse is fairly brief, it is nearly correct to
say that a signal returning at time t must have originated at range

z0 = ct/2 , (11.12)
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where c is the speed of sound in the body. Notice that the ‘‘2’’ is needed to
account for the round-trip delay (to get to range z and back). Equation (11.12)
is known as the range equation and is fundamental in relating range to time in
pulse-echo imaging.

Since the range equation relates z0 and t, ec can be thought of as a function
of x0, y0, and z0 instead of x0, y0, and t. Therefore, ec can be thought of as
an estimate of the reflectivity function as a function of spatial position. We
formalize this notion by setting

R̂(x0, y0, z0) = ec(2z0/c; x0, y0) . (11.13)

Combining (11.11) and (11.13) yields

R̂(x0, y0, z0) (11.14)

=
∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)ej2kzne(2(z0 − z)/c)q̃2(x − x0, y − y0, z) dx dy dz

∣∣∣∣ .

The Geometric Assumption To get some insight into (11.14), let us make the
drastic assumption that

q̃(x, y, z) = s(x, y) . (11.15)

This is equivalent to assuming that the transducer energy travels down a cylinder
having the same shape as its face. In this case, (11.14) reduces to

R̂(x, y, z) = K

∣∣∣∣R(x, y, z)ej2kz ∗ s̃(x, y)ne

(
z

c/2

)∣∣∣∣ , (11.16)

where s̃(x, y) = s(−x, −y) and ∗ is 3-D convolution.
If we ignore the term ej2kz in (11.16), then all terms are real, and the modulus

bars are not needed. In this case, we see that the estimated reflectivity is the true
reflectivity convolved with a blurring function, or impulse response, given by
the product of the face shape and the envelope shape. This 3-D shape is known
as the resolution cell of an ultrasound imaging system. It might seem that better
estimates of R could be obtained if the pulse were very short and the face were
very small—that is, if the resolution cell were small. Unfortunately, in reality, if
the face gets small, the beam actually spreads (as discussed in Section 10.5.2);
this is the problem with the geometric approximation. Also, if the pulse shortens,
it is no longer narrowband, and problems with frequency-dependent attenuation
arise. As always, there are compromises between these various factors that lead
to well-balanced ultrasound systems.

Now we turn to the factor ej2kz, which we ignored in the above discussion. It
turns out that this term is the cause of speckle, the dominant artifact appearing
in ultrasound images. To explain speckle, we note that the phase term ej2kz

multiplies the true reflectivity distribution R(x, y, z). Since the resolution cell is
far larger than π/k, ej2kz can be expected to have many periodic cycles within
a resolution cell. At any given time, a scatterer within the resolution cell will
have a specific phase according to its z position. This phase can be modeled as
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a random variable, uniform over [0, 2π ). Integration over the entire resolution
cell adds a large collection of complex numbers R(x, y, z)ej2kz, where the phase
of each is random. The modulus of this integral is a Rayleigh random variable,
whose mean is dependent on the underlying reflectivity distribution.

Since resolution cells overlap in time [which is equivalent to range via
(11.12)] and generally in azimuth (lateral position) in an image, the received
signals are correlated; therefore, the Rayleigh random variables produce a
spatially correlated random pattern, which multiplies the underlying desired
image of reflectivity. This pattern, called a speckle pattern, appears as a splotchy
granulation, oscillating from bright to dark across the image, with granule
size that depends on the size of the resolution cell, the spatial distribution of
scatterers, and the frequency of the pulse. Speckle is an undesirable, but generally
dominant, feature in all medical ultrasound images.

Fresnel and Fraunhofer Approximations In order to further simplify (11.14)
(but without using the drastic geometric field pattern approximation), we can
replace q̃ with an expression for the actual transducer field pattern. Here, we
consider the Fresnel and Fraunhofer approximations, two approximations that
were developed in Section 10.5.2.

The Fresnel approximation for q̃ is found from (10.71) and (11.3). Substi-
tuting the resulting expression for q̃ into (11.14) yields

R̂(x0, y0, z0) =
∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)ej2kzne

(
z0 − z
c/2

)

×[s′(x − x0, y − y0, z)]2 dx dy dz

∣∣∣∣ , (11.17)

where

s′(x, y, z) = s(x, y) ∗∗ ejk(x2+y2)/2z . (11.18)

Unfortunately, (11.17) cannot be simplified further, and it does not yield an
intuitively satisfying or practically useful expression describing the relationship
between R and R̂.

The Fraunhofer approximation for q̃ is found from (10.77) and (11.3).
Substituting the resulting expression for q̃ into (11.14) yields

R̂(x0, y0, z0) =
∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(x, y, z)ej2kzne

(
z0 − z
c/2

)

×e
jk
(
(x0−x)2+(y0−y)2

)
/z
[
S
(

x0 − x
λz

,
y0 − y

λz

)]2

dx dy dz

∣∣∣∣∣ . (11.19)

We can now make two observations. First, the term exp{jk ((x0 − x)2+
(y0 − y)2

)
/z} is approximately unity near the transducer axis (where x ≈ x0 and

y ≈ y0) and far in range (where Fraunhofer applies). Therefore, we can replace
it with the value 1. Second, the expression [S(·, ·)]2 changes slowly with respect
to z, while ne is only a brief pulse in z. Therefore, function [S(·, ·)]2 can be
viewed as being indexed by z—that is, a different [S(·, ·)]2 is used for each range
considered. Incorporating these two observations as approximations, we see
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that (11.19) can be approximately written as the following (three-dimensional)
convolution:

R̂(x, y, z) =
∣∣∣∣∣R(x, y, z)ej2kz ∗

[
S
(

x
λz

,
y
λz

)]2

ne

(
z

c/2

)∣∣∣∣∣ . (11.20)

The resulting image is a local blurring of the object, where the blurring function
(the resolution cell) gets wider with increasing depth. This system is not shift
invariant but is approximately so within a narrow range of depth.

From (11.20), we get a feeling for the visual characteristics of ultrasound
images. First, because of the term ej2kz, speckle is still present in both the Fresnel
and Fraunhofer approximations. Second, we see that the range resolution
remains constant as a pulse propagates through the tissue. Third, we see that
the lateral (azimuth) resolution degrades with range (except when focusing is
used). Finally, we see that the lateral shape of the resolution cell usually has
sidelobes, caused by the form of S(·, ·), which typically looks like a sinc function
(see Section 2.2.4) in a direction parallel to the transducer’s face. Sidelobes will
cause artifacts in the resultant images, especially when there is a strong reflector
in a sidelobe whose normal direction is aimed directly at the transducer.

11.5 Ultrasound Imaging Modes
11.5.1 A-Mode Scan

The starting point for ultrasound imaging systems is the envelope detected (gain-
compensated) signal, ec(t) in (11.11); this signal is called the A-mode signal or

Figure 11.11
(a) A typical A-mode
display and (b) its
relationship to the
anatomy.
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amplitude-mode signal. By firing the transducer repeatedly a succession of these
signals can be displayed on an oscilloscope. This display is called the A-mode
scan (or A-mode display); an example is shown in Figure 11.11. The time
between successive firings is called the repetition time (or interval), and is
denoted by the symbol TR. This interval should be long enough so that the
returning echoes have died out but fast enough to capture any motion that
might be present and of medical interest. For example, the A-mode display is
useful when looking at heart valve motion.

11.5.2 M-Mode Scan

An M-mode scan is obtained by using each A-mode signal as a column in an
image, with the value of the A-mode signal becoming the brightness of the
M-mode image. Successive A-mode signals are displayed in successive columns,
wrapping around when the last column is reached. Motion of objects along
the transducer axis is revealed by bright traces moving up and down across the
image, as shown in Figure 11.12. This mode is most often used to image
the motion of the heart valves, and it is therefore usually displayed along
with the ECG signal.

11.5.3 B-Mode Scan

A B-mode scan is created by scanning the transducer beam in a plane. One way
to do this is to move the transducer in the x direction while its beam is aimed
down the z-axis, as shown in Figure 11.13. Periodically firing pulses produces a
succession of A-mode signals that are keyed to the x-position of the transducer.
The B-mode image is created by brightness-modulating a computer display
along a column using the corresponding A-mode signal. Given knowledge of the
position of the transducer at the time of a pulse, it is a relatively simple matter
to plot the correct line on a computer display and build up a full scan over time.

Scanning a single transducer was the dominant B-mode imaging method in
early ultrasound imaging. Instead of relying upon a fixed method of translation,
however, these early scanners had mechanical arms to hold the transducer and
used potentiometric position sensors to determine the position and orientation

Figure 11.12
An M-mode scan is
shown on the bottom part
of this image. For
positioning purposes, a
line over which the
M-mode data are
acquired is shown on the
B-mode image above.
Courtesy of GE
Healthcare.
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Figure 11.13
A simple B-mode scanner.
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of the transducer at any time. The operator could often ‘‘fix’’ certain directions
or orientations in order to produce a tomographic scan containing data from
only one cross-sectional slice.

One important advantage of these manual-scan systems is that the trans-
ducer can be angled to hit the same point in the body from different directions.
If a specular reflector exists at a point, a strong echo can be obtained from
the direction normal to its surface. Therefore, images can be built up by taking
the maximum echo from a given point within the body. When multiple views
of the same tissue are included in a single B-mode image, it is referred to as
compound B-mode scanning. Unfortunately, images made in this way often suf-
fer from severe artifacts due to refraction. The sound beam refracts differently
depending on the incidence angle to a surface; hence, what the electronic system
computes as different measurements at the same point of tissue beyond the surface
is often wrong. As a result, small intensity scatterers are often plotted at different
points on the screen, producing object-dependent blurring. To reduce this blur-
ring effect, these early systems often plotted only the largest amplitude returns—
those corresponding to specular reflectors only.1 These early images often looked
like anatomical sketches, depicting only the outline of organs and tumors.

A further disadvantage of these early systems is that they were not real-
time. Modern systems are generally real-time and images are acquired with the
transducer probe held in one position. Three types of B-mode scanners now
dominate: linear scanners, mechanical sector-scanners, and phased array sector-
scanners, as shown in Figure 11.14. In practice, most B-mode images display the
reflectivity value at a given point by acquiring data from a single orientation.
However, phased arrays with electronic steering capability have made real-time

Figure 11.14
Three B-mode scanner
types.

Linear array

Phased array
Mechanical

sector scanner

1Also, the earliest systems used storage oscilloscopes and therefore could plot only binary images
(i.e., images with only two shades of gray).



11.5 Ultrasound Imaging Modes 383

compound imaging possible, and although the small angular separation of the
two source positions (within the probe itself) does not add significantly to the
specular echo diversity, it does have the benefit of reducing speckle. This mode
of operation will be described in Section 11.8.2.

The linear scanner has a collection of transducers arranged in a line, thus
mimicking the linear translation of a single transducer but without requiring
motion. Generally, several transducers are tied together on transmit and receive
to synthesize a larger aperture transducer which can be focused and can generate
more power. The linear scanner requires a large flat area with which to maintain
contact with the body; thus, abdominal imaging is its primary use, with obstetrics
being a common use.

Sector scanners come in both mechanical and phased array varieties. The
mechanical sector scanner simply pivots a transducer about an axis orthogonal
to the transducer’s axis (typically through the body of the transducer, as shown
in Figure 11.14). Defining the pivot point as the origin, a collection of rays
emanating from the origin can be imaged. Since the rays diverge with depth, the
tissue is likely to be oversampled near the origin and undersampled far away.
Since all medical ultrasound imaging systems use focused transducers, however,
the lateral resolution will be best near the focal region and worse both nearer
and farther away from the transducer.

The phased array sector scanner has a collection of very small transducer
elements arranged in a line. The overall total linear dimension of a phased array
sector scanner is much smaller than that of a linear scanner. The ultrasound
beam is electronically steered over a sector by applying differing time-delays (or
phases) to the individual transducers. One very important advantage of this type
of system is that the receive focus can be varied over time with the expected
position of returning pulses, thus providing a dynamic focus. A disadvantage
of these systems is that spurious sidelobes (called ‘‘grating lobes’’) of acoustic
energy are generated by the phasing action and can lead to image artifacts.

Both types of sector scanners require conversion of polar coordinate data
(the A-mode signals returning from along rays) to rectangular coordinates
(the image memory driving the computer display). The process of converting
from polar coordinates to rectangular coordinates is called scan conversion.
Proper scan conversion reduces sampling artifacts (moiré effects, see Section 3.6)
without excessive low-pass filtering (and resultant loss of resolution).

EXAMPLE 11.4
A linear transducer array is operating at 2 MHz in water. The face of each transducer
element is 1 mm wide in the x direction and 10 mm in the y direction.

Question If we want geometric approximation to be valid up to 10 cm in range, how
many transducers have to be grouped together?

Answer The wavelength in water at 2 MHz is λ = c/f = 1, 484 m/s/2 × 106 s−1 =
0.742 mm. The range at which the beam transitions from geometric to far field is
z = D2/λ = D2/0.742 mm = 10 cm. We have

D = √
100 × 0.742 = 8.61 mm .

So, at least nine transducer elements must be grouped together.
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Depth of Penetration Ultimately, although there are many other factors
involved, attenuation limits the depth of penetration of ultrasound systems.
Suppose our transducer/preamplifier can handle at most an L dB loss (80 dB is
typical). From Example 10.5,

20 log
Az

A0
= −L , (11.21)

where Az is interpreted as the pressure amplitude after traversing a distance of z.
From (10.33) and (10.34),

α = −1
z

20 log
Az

A0
(11.22)

and from (10.35) with b = 1 we have

α ≈ af . (11.23)

The total range that a wave can travel before being attenuated below the system
threshold is

z = − L
af

. (11.24)

The depth of penetration dp can be only half this distance since a round-trip is
required, giving

dp = L
2af

. (11.25)

A short table of dp, assuming a = 1 dBcm−1MHz−1 and L = 80 dB, is given in
Table 11.1.

Pulse Repetition Rate A new pulse can be generated only after all echoes from
the previous pulse have died out. After imaging tissues at the maximum depth
of penetration, all potential remaining echoes are below the level of detection.
Therefore, the pulse repetition interval TR has a lower bound given by the
round-trip time to the depth of penetration:

TR ≥ 2dp

c
. (11.26)

TABLE 11.1

Typical Depth of Penetration for Given
Frequencies

Frequency (MHz) Depth of Penetration (cm)

1 40
2 20
3 13
5 8

10 4
20 2



11.5 Ultrasound Imaging Modes 385

The pulse repetition rate is defined as

fR = 1
TR

. (11.27)

Assuming a = 1 dB cm−1 MHz−1 and L = 80 dB, the minimum pulse
repetition interval is 0.267 ms. In other words, in this case fR = 3, 750 pulses
per second can be generated without danger of confusing the returning pulses
with the wrong transmitted pulse.

B-Mode Image Frame Rate Suppose N pulses are required to generate an
image (linear or sector). Then, the image frame rate F is

F = 1
TRN

. (11.28)

Continuing the example from above, if N = 256, then F = 14.6 frames/second.
Typical frame rates in commercial ultrasound systems are between 10 and 100
frames/second.

A moving picture shown at 15 frames/second creates a great deal of flicker,
and this would be unacceptable in an ultrasound system. Scan conversion solves
this problem. The A-mode data are read into a dual-ported memory as fast
as they come in. Simultaneously, the scan converter is reading out the data at
a higher rate in order to generate around 60 frames/second for the computer
display. Aside from flicker, however, it may be desirable to capture motion
occurring faster than what can be viewed at 15 frames/second. A standard
feature in most modern ultrasound systems is the capability to reduce the field of
view—for example, by reducing the angle of the sector or the linear extent of a
linear scanner—so that it may be scanned more rapidly (because N is reduced).

EXAMPLE 11.5
An ultrasound imaging system is operating in B-mode and requires 256 pulses to generate
an image. Assume that the transducer is sensitive to at most 80 dB loss.

Question If the material being imaged has a speed of sound c = 1, 540 m/s and
a = 1 dB cm−1MHz−1, what should the working frequency be to achieve a frame rate of
15 frames/second?

Answer Given the frame rate and the number of pulses needed to generate an image,
we can compute the pulse repetition rate as

TR = 1
FN

= 0.26 ms .

Since

TR ≥ 2dp

c
= L

afc
,

we have

f ≥ L
acTR

= 1.99 MHz .
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11.6 Steering and Focusing
Phased arrays use electronic steering and focusing to achieve a B-scan without
transducer movement. They do this using a small linear array of transducer
elements (typically between 64 and 128), with total dimension of around
1 cm (height of each element) by 3 cm. The width of each element is about
1/4 wavelength, which is typically 0.2–0.75 mm wide. The extreme rectangular
shape of each element allows mechanical focusing to keep the sound largely in
the image plane but guarantees that each element will have a nearly circular
field pattern within the image plane. On transmit, a directed beam is achieved
by timing the firing of each element so that the sound each produces adds
coherently in the desired direction and incoherently otherwise. On receive, the
array is made direction-sensitive by delaying the received signals and summing
them coherently. In the following two sections, we expand on these ideas and
bring some elementary trigonometry to bear in the analysis of phased array
systems.

11.6.1 Transmit Steering and Focusing

As shown in Figure 11.15, adding a separate delay element to each transducer
of a phased array makes it possible to steer the transducer’s acoustic beam. To
analyze this situation further, assume that T0 (transducer 0) generates a pulse at
t = 0. We want to determine what firing times are necessary for the remaining
transducers in order to generate a plane wave heading off in direction θ . At time
t, the leading edge of the pulse generated by T0 has traveled distance r0(t) = ct.
Therefore, the line L(t, θ ) representing the wavefront in the direction θ at time t
is [by analogy to (2.10)] given by

L(t, θ ) = {(x, z)| z cos θ + x sin θ = r0(t)} . (11.29)

By simple geometry, the distance between Ti (the ith transducer) and this line is

ri(t) = r0(t) − id sin θ . (11.30)

Figure 11.15
Geometry for steering a
phased array.
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Figure 11.16
Timing diagram for (a)
steering and (b) focusing.(a)
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To generate a pulse that will also have a leading edge on L(t, θ ), the pulse must
be generated at time

ti = r0(t) − ri(t)
c

= id sin θ

c
. (11.31)

The sequences of pulses generated at these times are depicted in Figure 11.16(a).
In practical terms, we cannot have negative times, so the resulting times must
be shifted to positive time. Assume that there are 2N + 1 transducer elements
centered at the origin, and let tmin = min{ti, i = −N, . . . , N}. Then, the time
delays are given by

τi = ti − tmin, i = −N, . . . , N . (11.32)

Typically, the phased array will be focused, which is just a refinement of
steering, as shown in Figure 11.17. To analyze steering and focusing together,
let the focal point be at coordinate (xf , zf ); Ti is at coordinate (id, 0). Therefore,
the range from Ti to the focal point is

ri =
√

(id − xf )2 + z2
f . (11.33)

Figure 11.17
Geometry for steering and
focusing a phased array.
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Figure 11.18
A linear transducer array
with an on-axis focal
point.
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Assume as before that T0 fires at t = 0. Then, Ti must fire at

ti = r0 − ri

c
=

√
x2

f + z2
f −

√
(id − xf )2 + z2

f

c
(11.34)

to reach the focal spot at the same instant, and the delays are also given by
(11.32). Figure 11.16(b) depicts the pulse timings that would be used to generate
a focused beam. The difference between these delays and those of steering alone
is that the delays are not simply a multiple of a base delay and the transducers
need not be fired in the same order as their geometric order. A typical depth
for the focal spot would be zf = dp/2; in this way, the narrowest portion of the
beam would be at one-half the depth of penetration.

EXAMPLE 11.6
A phased array transducer with 127 elements is operating in water. Adjacent transducer
elements are separated by d = 0.8 mm (see Figure 11.18).

Question We desire a focal point at z = 5 cm on the z-axis. Suppose the outermost
transducers fire at t = 0, when does the center element fire?

Answer The distance between the focal point and the centers of the outermost trans-
ducers is

r63 =
√

(63d)2 + (5 cm)2 = 7.1 cm.

The difference between r63 and r0 is r63 − r0 = 2.1 cm. In water, the speed of sound is
1,484 m/s, so the center element fires at

τ0 = 2.1 cm
1, 484 m/s

= 14.15 μs.

11.6.2 Beamforming and Dynamic Focusing

Although the acoustic energy from a phased array pulse is timed to provide
coherent summation in a direction or at a point, in fact the energy propagates
quite widely due to the circular wave pattern of each element of the array.
In order to achieve better sensitivity to echoes occurring along the dominant
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Figure 11.19
Geometry for
(a) beamforming and
(b) dynamic focusing
of a phased array.
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(steered) direction, two techniques are commonly employed: beamforming and
dynamic focusing.

Beamforming is analogous to steering in that it increases the transducer’s
sensitivity to a particular direction. As shown in Figure 11.19(a), a plane wave
incident upon the transducer array from a direction θ will hit one transducer at
the end of the array first and then successively hit the remaining transducers. If
the first transducer to be hit, and thereafter each successive transducer, delays
its received waveform so that all the waveforms can be coherently summed,
then the entire array is sensitized to the direction θ . The required receive delays
are identical to the transmit delays specified in (11.31) and (11.32) for the
transmission of a plane wave in direction θ . Likewise, a fixed focal point can
be achieved by adopting the delays used for combined steering and focusing in
(11.32) and (11.34).

Additional sophistication is achieved by using dynamic focusing, which
increases the transducer’s sensitivity to a particular point in space at a particular
time. Suppose that T0 is fired at t = 0 in the direction θ (steered or focused), as
shown in Figure 11.19(b). Assuming that a scattered spherical wave originates
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at position (x, z), then the total distance the pulse travels from T0 to arrive at
transducer Ti is

ri =
√

x2 + z2 +
√

(id − x)2 + z2 . (11.35)

The time difference between the pulse’s arrival at T0 and Ti is

ti =
√

x2 + z2 −
√

(id − x)2 + z2

c
. (11.36)

In fact, as the transmit pulse propagates in the direction θ , the (x, z) position of
the scattering center changes with the position of the pulse. Therefore, the time
differences also change as a function of time. The position of the transmitted
pulse along the θ axis is given by (x, z) = (ct sin θ , ct cos θ ). Therefore, the time
differences are given by

ti(t) =
√

x2(t) + z2(t) −
√

(id − x(t))2 + z2(t)
c

(11.37)

= t −
√

(id)2 + (ct)2 − 2ctid sin θ

c
. (11.38)

To avoid negative time delays, it is necessary to shift these times by subtracting
tmin = −Nd/c. Hence, dynamic focusing is achieved by dynamically altering the
receive time delays according to

τi(t) = t −
√

(id)2 + (ct)2 − 2ctid sin θ

c
+ Nd

c
. (11.39)

EXAMPLE 11.7
Consider a dynamic focusing phased array with 127 transducer elements that are
separated by d = 0.8 mm. A point scatter on the z-axis at a range of 5 cm starts to move
in the +z direction with a speed of v = 5 cm/s at time t = 0.

Question Assuming that the speed of sound is c = 1, 500 m/s, plot the difference
between the delays τ63(t) and τ0(t).

Answer Let

τd(t) = τ63(t) − τ0(t) .

The distance between the scatter and the center of the 63rd transducer at time t is

r63(t) =
√

[(63 × 0.8) mm]2 + [(5 + 5t) cm]2 .

The distance between the scatter and the center of the middle transducer at time t is

r0(t) = (5 + 5t) cm .

So, the difference in the time delay is

τd(t) = r63(t)
c

− r0(t)
c

= 1
c

[r63(t) − r0(t)] ,

which is plotted in Figure 11.20.
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Figure 11.20
The difference in time
delay between the
outermost and the center
transducer in a dynamic
focusing phased array
with a moving scatterer.
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11.7 Three-Dimensional Ultrasound Imaging
Three-dimensional ultrasound is made possible by either scanning conventional
linear or phased arrays or by using 2-D arrays and electronically scanning a
volume beneath the stationary transducer. The geometries of volumes acquired
in these ways are illustrated in Figure 11.21. The mechanical wobbler design
that we described, is the most common design for 3-D imaging probes. For this
purpose, a mechanical mechanism like that shown in Figure 11.7(a) is used to
rotate an entire array of transducers, such as the one shown in Figure 11.8.
The correct geometry is achieved by rotating the array in Figure 11.8 into the
page by 90◦ in order to position it ‘‘end on’’ in Figure 11.7(a). Given this
geometry, at each angular position of the wobbler, the array can acquire an
entire 2-D image (each shaped like a sector) that is orthogonal to the plane of

Figure 11.21
Geometry of 3-D
ultrasound images.
(a) Rocking a 1-D array
using a mechanical
scanner; (b) rotating a 1-D
array; and (c) a stationary
2-D array that can acquire
a volume without moving
the probe.(a) (b) (c)
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our drawing [see Figure 11.21(a)]. The resulting volume of data is generated
by reconstructing a series of 2-D images and then positioning them into a 3-D
volume according to their rotational position at the time of acquisition.

By rotating the array around its axis, a series of rotated sector scans can
be acquired, as shown in Figure 11.21(b). This type of system is less popular,
in part because it requires more room on the patient’s skin to carry out
this rotation and may therefore not be physically capable of imaging some
parts of the body. 2-D transducer arrays are also available commercially. The
elements are typically square and there are the same number of elements in each
dimension of the square transducer face. In this case, a volume can be acquired
without motion by electronically scanning the beam beneath the transducer, as
shown in Figure 11.21(c). A popular hybrid imaging mode in which only two
orthogonal scans are acquired [like that depicted in Figure 11.21(b)] using a
two-dimensional array (without transducer motion). In this way, orthogonal
images can be collected and displayed in real time. Clearly, the 2-D array also
requires more space on the patient’s skin than a conventional array and may
also not be suitable for some imaging scenarios.

A final 3-D mode not depicted here is a ‘‘free hand’’ mode, in which the
transducer (a 1-D array acquiring a 2-D slice) is moved freely over the patient
while acquiring data. The transducer is tracked using external markers so that
the positions of all acquired slices are known in the laboratory frame, and a
digital representation of the data is reconstructed into a volume by the scanner.
Trackerless freehand systems are also under development. These systems require
the operator to slowly scan the probe in the through-plane direction across
the exposed tissue. A computer algorithm reconstructs a 3-D scene from the
collection of 2-D slices that are observed by tracking the speckle patterns from
frame to frame, which gives cues about the relative positions of the slices in 3-D.

11.8 Image Quality
An ideal ultrasound imaging system would reconstruct and display R(x, y, z), the
spatial distribution of reflectivity. This is not possible for two reasons. First, the
transducer’s impulse response function, defined in part by its field pattern, will
blur out the true reflectivity. Second, the use of envelope detection will create
a noiselike artifact called speckle; this accounts for the somewhat ‘‘blotchy’’
appearance of ultrasound images. There are other reasons, not the least of which
is that some objects reflect, rather than scatter, ultrasound; thus, they do not
even have the desired scattering property that we have called reflectivity.

11.8.1 Resolution

The resolution cell in (11.20) gives the most basic description of image resolution
in ultrasound imaging. The range resolution is dominated by the pulse shape
(envelope), as shown in Figure 10.6, while the lateral resolution is determined
by the field pattern, as shown in Figure 10.5. Looking closely at virtually any
ultrasound image, one can see in the pattern of echoes from small scatterers that
the range resolution is constant, while the lateral resolution changes with range.
This is particularly noticeable in Figure IV.3, for example.
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There are a couple of ways to improve resolution that we have not considered
to this point: through-plane focusing and harmonic imaging. We now give a
brief description of these two approaches.

Through-Plane Focusing A key factor relating to the quality of ultrasound
B-mode images is slice thickness. Whether the transducer is mechanically or
electronically scanned, the resolution of the B-mode image is determined in part
by the pulse duration—which determine resolution range—and the transducer
aperture and in-plane focus properties—which determines resolution in the
azimuth direction. Just like in computed tomography (CT), in which the slice
thickness determined by the through-plane width of the x-ray beam affects the
quality of the reconstructed image, the width of the ultrasound beam in the
through-plane direction—also called the elevation direction—affects the quality
of the reconstructed images.

Up to this point, we have assumed a fixed slice thickness, which is determined
by the shape of the transducer in the elevation direction. In the case of a
rectangular element without a manufactured curvature or an added lens, the
standard nearfield and Fraunhofer approximations (see Figure 10.5) can be used
to approximate the field pattern (and therefore slice thickness) in the elevation
direction. We know that in this case, assuming the frequency of the transducer
is fixed, the only way to change the field pattern is by changing the dimension D
of the transducer. In order to enable this function ‘‘on the fly,’’ we can fabricate
additional arrays of transducer elements in the elevation direction, as shown
in Figure 11.22. With dimensions selected appropriately, the slice thickness can
be controlled as shown. In this case, three dimensions can be selected to yield
thicker or thinner slices at specified ranges. Exciting only the center row 1© yields
the thinnest nearfield but the widest far field, while exciting the three central
rows ( 1©, 2©, and 3©) yields a wider nearfield but narrower farfield. Exciting all

Figure 11.22
Geometry of a 1.5-D
array. (a) There are
multiple arrays in the
elevation direction
(vertical in this diagram).
(b) Different slice
thicknesses are achieved
by exciting different rows
together.
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three rows yields the widest slice thickness in the nearfield but the narrowest in
the far field.

Since we are aware of the possibility to introduce transmit time delays, it
should be clear that with a phased array system, we can improve on the static
scenario above. In particular, by firing all five rows of transducers (in the array
illustrated in Figure 11.22), but starting first with the outer two, then the middle
two and then the central row, we can achieve some degree of focusing of the beam
in the elevation direction. We can choose an arbitrary focal length, and if there
are even more rows available, the quality of the focus can be further improved.
This flexible focal length has been exploited in some systems to provide a more
uniform slice thickness by scanning the plane multiple times, changing the focal
depth in both the elevation (slice thickness) and azimuth (lateral dimension)
to improve resolution at different depths. In the scenario of Figure 11.22, for
example, we might use 1© to fill up pixels that represent the smallest ranges,
2© to fill in intermediate ranges, and 3© to fill in the farthest ranges. With three
scans required to produce a complete B-mode image, one sacrifices frame rate
in order to gain resolution, which might not be feasible in some scenarios.

Harmonic Imaging We saw in Section 10.3.6 that sinusoidal waves can become
more like sawtooth waves as they propagate due to the nonlinear effects of wave
propagation. We also saw that sawtooth waves possess energy at harmonic
frequencies—that is, multiples of the fundamental frequency. Through the use of
broadband transducers, as described in Section 11.2.1, it is possible to generate
waves at a fundamental frequency (also known as the first harmonic) and acquire
echoes comprising the fundamental and second harmonic frequencies.

Now consider the signal that is created by bandpass filtering the echoes at
the second harmonic frequency, that is, filtering out the fundamental frequency.
The resulting signal contains only that part of the echo arising from nonlinear
interactions between the wave and the tissue. This would, on the surface, seem
to offer no gains and perhaps a few disadvantages. Let us review what happens
and why this signal is interesting and sometimes advantageous.

We know that nonlinear effects occur primarily at larger acoustic pressures.
In fact, nonlinear effects occur because the speed of sound increases with
acoustic pressure. Therefore, the main beam, which has the largest acoustic
pressure, will also have the largest nonlinear effect, and the center of the main
beam will have a larger effect than its edges. The side lobes and the grating lobes
(present in phased array systems, as noted in Section 11.5.3) will not contribute
much to the returning harmonic signal. This has the effect of improving
resolution and reducing artifacts and is the primary reason that harmonic
imaging is used. Because the harmonic signal in the through-plane direction
also diminishes more rapidly, the through-plane resolution is also improved.

We know that the effects of nonlinear wave propagation change the prop-
agating acoustic wave from sinusoidal to sawtooth increasingly over range.
Therefore, the harmonic part of a returning echo tends to increase in amplitude
over range. But at the same time, the attenuation of the higher frequency signal
that must return from the scattering site is larger than the fundamental wave due
to frequency-dependent attenuation. On balance, the two effects trade off with
each other quite well, and harmonic images at comparable depth to conventional
B-mode images can be achieved.
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In order to generate sufficient separation of the fundamental and higher
harmonic signals, the initial pulse in harmonic imaging is typically a longer
sinusoidal burst than in conventional imaging. This provides a more narrowband
acoustic pulse at the outset, from which the higher harmonics can be more easily
distinguished. This comes at the cost of slightly poorer range resolution. A clever
way to retain range resolution is to use two successive (conventional, short)
pulses, where the second is the inverse of the first—that is, where the first pulse
goes positive the second pulse will be negative. Then the returning echoes from
the two pulses are subtracted, the fundamental signal is nulled, and all that
remains are the higher harmonics.

In the preceding paragraphs, we have discussed the first harmonic as a
primary target to acquire but also used the more general higher harmonics when
applicable. It is most common to image the second harmonic because it generally
falls conveniently within the bandwidth of a broadband transducer, but it is
possible to image higher harmonics if the transducer is sufficiently broadband.
The primary benefit is improved resolution.

11.8.2 Noise and Speckle

Electronic Noise Although the appearance of speckle is certainly ‘‘noiselike,’’
we have learned that it does not arise from a random process and is therefore not
noise in the sense we use the term in this book. In fact, what little noise there is in
ultrasound systems arises from the very small electronic noise that is present in
the wires and other components of the system. When there is very high gain—for
example, at large ranges where TGC requires such gains in order to compensate
for attenuation—this initially tiny noise can become amplified sufficiently to
become visible in an image. Its appearance is similar to that of speckle, but
because it is statistically independent between pixels, it has a very high spatial
frequency, which is not dependent on the transducer’s frequency or field pattern.
Regions where noise might become apparent in a B-mode image are generally at
large ranges in homogeneous regions where scatterers are not present to obscure
the noise. Thus, noise in ultrasound images is easily distinguished from speckle,
and its main impact is to limit the depth of penetration.

Compound Scanning for Speckle Reduction Compound scanning is the acqui-
sition of the same 2-D scene from one or more different angles within the plane
followed by averaging of the acquired images.2 Images acquired with manual
motion of a single transducer element—as required in the earliest years of
medical ultrasound imaging—were routinely compounded in order to visualize
boundaries that were not favorably oriented for one angle of acquisition (i.e.,
not orthogonal to the transducer axis). As processing of the A-mode signals
improved over the years, imaging nonorthogonal boundaries became less criti-
cal while speckle became more bothersome. Compound scanning has therefore
re-emerged as an important speckle reduction technique.

We know that although speckle looks like noise in an image, it actually
arises from the coherent and incoherent summation of echoes from scatterers

2Technically this approach is called angular compounding since other ways of acquiring separate
images followed by averaging are also called compounding.
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within a resolution cell. This creates a pseudorandom variation of intensity from
pixel to pixel, which looks like noise to us and is desirable to reduce. This leads
to the notion of speckle reduction in ultrasound imaging.

Images acquired from different angles will have resolution cells that are
oriented differently at each point in a B-mode image, and therefore the geometric
relationships of the scatterers will not be the same. As a result, although
the overall appearance of the dominant echoes will be the same in the images,
the speckle pattern will be slightly different. When the images are averaged, the
dominant appearance will be reinforced and the speckle pattern will be reduced.

But how can these different angles be achieved without moving the probe?
We have just studied how phased arrays can steer their beams in order to create
sector-style B-mode images, but we developed the mathematics considering that
the central transducer was always our ‘‘origin.’’ Suppose instead that the central
transducer was assigned to be at the 1/3 or 2/3 position along the array. Then
the phased array transducer acts as if it has been shifted slightly to the left or
right and the angle at which targets are viewed is slightly different than when
the center of the transducer as the origin. This approach is called the displaced
aperture approach to compound imaging using phased arrays. Three or more
images can be acquired in quick succession and averaged, which achieves a small
measure of speckle reduction.

11.9 Summary and Key Concepts
Ultrasound imaging is accomplished with a pulse-echo system based on a
single transducer probe. Such systems have high performance and low cost.
In this chapter, we presented the following key concepts that you should now
understand:

1. The transducer—a primary component of an ultrasound imaging sys-
tem—both generates and receives sound pulses in the pulse-echo mode
of operation.

2. Most transducers are based on a piezoelectric crystal and resonate at a
fundamental frequency characteristic of that transducer.

3. The ultrasound beam must be steered, scanned, or swept across the body to
produce a useful field of view.

4. The basic imaging equation is the pulse-echo equation, which arises from
generalization of either the Fresnel or Fraunhofer approximation.

5. The basic imaging equation can be transformed into an equation describing
the estimated reflectivity of the tissues.

6. Ultrasound imaging modes include A-mode scanning, M-mode scanning,
B-mode scanning, and 3-D ultrasound imaging.

7. Practical B-mode scanning requires steering or beamforming and focusing
of the ultrasound beam.

8. Harmonic imaging can be used with broadband transducers to improve
resolution.

9. Compound imaging can be achieved using phased arrays by averaging
images acquired by aperture displacement.
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Problems
Ultrasound Image Formation and Imaging Modes

11.1 An L × L square transducer, submersed in water, is centered at the origin
and is pointed down the +z-axis. A large layer of homogeneous fat
begins z = z0 and extends to the depth of penetration, so that the only
possible returns are those from the interface between water and fat. The
transducer is capable of rotating toward the x-axis by θ degrees. Assume
that there is no attenuation in the water. Assume that the transmitted
pulse is a gated sinusoid of duration T and height A0.

(a) Assume that z0 is in the far field and derive an expression for the
strength of return as a function of angle. Make approximations where
appropriate and do not forget the sidelobes.

(b) Assume that the transducer and preamplifier are able to detect signals
80 dB down from the transmitted pulse height. Assume also that a B-
mode binary image is generated so that all signals above the detectable
threshold are plotted in black and all signals below the threshold are
plotted in white. Sketch the B-mode image that would result from
this experiment.

11.2 Two identical square transducers with width 1 cm face each other. The
first one is located at the origin and points in the +x direction; the second
one is located at (10 cm, 0, 0) and points toward the origin. The first one
will be used to image the second one. Assume a homogeneous medium
with ρ0 = 1, 000 kg/m3, c = 1, 500 m/s, and α = 1 dB/cm. Assume that
the first transducer fires a perfect geometric beam with peak transmit
acoustic pressure measured at its face of 12.25 N/cm2; assume that the
second transducer is a perfect reflector.

(a) Sketch the A-mode signal. Label the axes carefully and identify the
time-of-return and peak-height (as an acoustic pressure at the face)
of the returning pulse.

(b) At time t = 2 s the second transducer begins to move back-and-
forth along the x-axis with x position x(t) = 10 + sin 2π (t − 2) cm,
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t ≥ 2 seconds. Sketch the M-mode plot for 0 ≤ t ≤ 5 seconds. Label
the axes carefully; identify key points on your plot.

(c) Now suppose the second transducer stops at its original position and
we allow the first transducer to move along the y axis. Sketch the
resulting B-mode image. Label the axes carefully; identify key points
on your plot. Make a sketch of the peak-height of the returning pulse
as a function of the y position of the first transducer.

11.3 You are using a single transducer to examine a heart valve. Assume
that in a given heart cycle the range of the valve is given by z(t) =
16 + 0.5e−t/τ u(t) cm where τ = 10 ms, u(t) is the unit step function, and
the speed of sound is 1,540 m/s.

(a) Sketch z(t) over a couple of heart cycles (assume the heart rate is
1 Hz).

(b) Assume your transducer generates a pulse at t = 0 using a typical
transmit waveform. Carefully sketch the A-mode signal (as a function
of time) that you would observe on an oscilloscope.

(c) Now assume that you repeatedly fire your transducer every 1 ms.
Sketch the M-mode image that would be generated, being careful to
label the axes.

(d) Suppose you wanted to image the motion of this valve by making a B-
mode image of it. Suppose it could be covered by 10 scan lines (given
the beam size at a 16 cm range). Describe what steps you would take
to make this image in real-time. Do you think it is possible?

11.4 An ultrasound transducer is pointing down the z-axis, on which two
point scatterers are located at z1 and z2 in the Fraunhofer field (see
Figure P11.1). The transducer fires a narrowband burst with a rect-shaped
envelope in the +z direction. The envelope is ne(t) = rect((t + T/2)/T)
where T = λ/2c, λ is the wavelength, and c is the speed of sound in the
material. Sketch the estimated reflectivity for

(a) z2 − z1 = λ/2.
(b) z2 − z1 = λ/8.

Figure P11.1
An ultrasound transducer
and two scatterers on
axis. See Problem 11.4.

Narrowband envelope

0 z1 z2

z

Two scatterers

Ultrasound Transducer Array

11.5 A linear ultrasound transducer array has 101 transducers, each having
width d = 0.1 mm, that are separated by h = 0.1 mm. Assume the simple
field pattern geometry of Figure 10.5 and c = 1, 540 m/s.

(a) What is the maximum frequency at which the transducers can operate
and still generate a plane wave at angle θ = 30◦?

(b) How long will it take to sequence through the array in order to
generate the plane wave in part (a)?
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11.6 Consider the phased array in Figure 11.15. Suppose we want to image a
cross section of a patient as shown in Figure P11.2 by acquiring a scan
line every �θ = 1◦. Assume there are 101 transducers operating at a
frequency of 2 MHz and c = 1, 540 m/s and d = 0.6 mm.

(a) Find an expression for the time delay of the ith transducer as a
function of angle of the transmitted plane wave.

(b) How long does it take to scan the entire FOV assuming R = 20 cm?

Figure P11.2
See Problem 11.6.

45	 45	

R
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11.7 Consider a linear array of 100 flat, rectangular, 3.0 Mhz transducers,
each 1.5 mm wide and 2.1 cm deep. Assume, for simplicity, that they are
packed tightly together so that the array is 15 cm long by 2.1 cm deep.
The transducer array is tested in a medium having a speed of sound of
1,500 m/s.

(a) If 14 consecutive transducers on the transducer array are electroni-
cally grouped on each transmit and receive, what depths (or ranges)
are considered to be in the far field?

(b) At what time interval after the transmit pulse will an echo from an
object at range 7 cm arrive back at the transducer array?

(c) A B-mode image is created by successively grouping 14 transducers
on the array, sliding one transducer at a time down the length of the
array. Suppose the depth of penetration is 20 cm. What is the frame
rate for this linear array image?

(d) Describe two ways that the frame rate can be increased.

11.8 A phased array ultrasound transducer consists of three elements (L,C,R)
each of dimensions h = 3 mm and d = 8 mm, as shown in Figure P11.3.
Each element has a square face, s(x, y) = rect(x

h , y
h ). In the first scenario

[Figure P11.3(a)], the transducer has a silicone sheet of thickness s =
2 mm on its front face, which is placed on the skin. The acoustic
impedances Z and the speed of sound c in silicone and in skin are given
in the table below. For parts (a) to (e), assume that only one element, C,
is generating and receiving ultrasound waves. The envelope of the wave
is ne(t) = rect( t

10 μs ) and its frequency is 2 Mhz.
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Silicone Skin

Acoustic impedance (Z) (kg/m2 second) 1.4 ×106 1.5 ×106

Speed of sound (c) (m/s) 1,500 1,550

(a) Sketch the A-mode signal from the time of the transmit pulse through
the time of the echo from the silicone-skin interface. Assume a
geometric field approximation and ignore attenuation and speckle.
Clearly label key times and amplitudes.

In order to reduce the size of the echo from the skin, an acoustic gel
of width g = 3 mm is introduced between the silicone and the skin,
as shown in the figure [Figure P11.3(b)]. The gel is selected such that
Zgel = √

ZsiliconeZskin.

Figure P11.3
See Problem 11.8.
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(b) Find the speed of ultrasound in the gel, cgel, so that there can be no
refraction at the gel-skin interface regardless of the angle of incidence.

(c) Sketch the A-mode signal from the time of the transmit pulse through
the time of the echo from the gel-skin interface. Assume a geometric
field approximation and ignore attenuation and speckle. Clearly
label key times and amplitudes.

(d) Suppose you want your imaging system to be insensitive to the echo
from the skin. What should the sensitivity L (in dB) be?

In parts (e) and (f) ignore the silicone and gel.

(e) Is point F in Figure P11.4 in the near field or far field of the central
transducer?

Figure P11.4
See Problem 11.8.

L C R

d

h

Skin

F

x

z

10 cm

5 cm

(0, 0)



Problems 401

(f) Find the time delays τL, τC, and τR so that, on transmit, the phased
array will focus on the point F.

Ultrasound Imaging System Design and Image Quality

11.9 A 1 cm × 1 cm ultrasound transducer is placed on the z = 0 plane and
pointed in the +z direction. Its sides are parallel to the x and y axes, and
its center is at the origin. The transducer is submerged in a homogeneous
medium with speed of sound c = 1, 540 m/s. The working frequency is
2.5 MHz. A line scatterer parallel to y-axis passing through the point
(0, 0, 5) cm is being imaged.

(a) Write down an expression for the scatterer in mathematical form.
(b) What is the estimated reflectivity?
(c) If a second line scatterer parallel to the first one is placed at the same

range, what is the minimal distance between them for the system to
distinguish them?

(d) Repeat parts (b) and (c) when the scatterer is at range z = 20 cm.

11.10 You are asked to select the best ultrasound imaging parameters for
imaging a deep-lying small structure. Assume that this object is located
at 20 cm depth and is embedded within a homogeneous tissue with
sound speed c = 1, 500 m/s and absorption coefficient α = af , where
a = 1.0 dB/(cm MHz). Also assume that the system is sensitive to at most
a 100 dB signal loss.
You can choose one of three operating frequencies: f = 1 MHz, f =
2 MHz, or f = 5 MHz. Given any frequency, you can choose one of two
transducer diameters: D = 1 cm or D = 2 cm. Assume that all transduc-
ers have flat faces and use the split-range field pattern approximation
(i.e., geometric and far-field approximations in their appropriate ranges).
Which combination of f and D will give the best image of this structure?
Justify your answer.

11.11 An L × L ultrasound transducer is centered at the origin and pointing in
the +z direction. The narrowband signal generated by the transducer has
an envelope

ne(t) = sinc
(

π t
�T

)
.

Two point scatterers with reflectivity of R are located at (0, 0, z0) and
(0, 0, z0 + �z). Ignore attenuation and multiple reflections.

(a) Assume the scatterers are within the region where the geometric
assumption holds and find the estimated reflectivity R̂(x, y, z).

(b) How far should the scatterers be separated in order for the imaging
system to distinguish them?

(c) If the scatterers are in the far field where the Fraunhofer approxima-
tion holds, what would be the estimated reflectivity R̂(x, y, z)?

(d) Derive an expression for the depth resolution in the far field as a
function of z0.
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11.12 An ultrasound imaging system is equipped with two square transducers.
One operates at 5 MHz and the other one operates at 12 MHz. The
5 MHz transducer is 2.0 cm by 2.0 cm and the 12 MHz one is 0.4 cm
by 0.4 cm. The imaging system is tested in a medium having a speed
of sound of 1,560 m/s at both frequencies. The amplitude attenuation
factor of the medium satisfies

μa[cm−1] = 0.04 cm−1 · MHz−1 × f [MHz] .

We want to image objects at ranges up to 20 cm.

(a) Find the system sensitivities L5MHz and L12MHz?
(b) What are the widths of the main lobes at the range of 20 cm? (Using

the simple 3 dB model of a field pattern.)
(c) What is the maximum pulse repetition rate for the system?
(d) Suppose the transducers were scanned back and forth to obtain a

B-mode image. What is the maximum frame rate if 128 lines are used
to form an image?

(e) What will happen to the B-mode image if the speed of sound in the
medium is nonuniform but we still use a uniform speed assumption?

11.13 A 1 cm × 1 cm square ultrasound transducer, submerged in oil, is centered
at the origin and pointed down the +z-axis, as shown in Figure P11.5.
A large layer of fat begins at z0 = 20 cm, and extends to infinity, so that
the only possible echoes are those from the interface between oil and
fat. Suppose the transducer operates at 1 MHz and the density, speed of
sound, and absorption coefficient of oil and fat are:

ρoil = 950 kg/m3, coil = 1, 500 m/s, αoil = 0.95 dB/cm ,

ρfat = 920 kg/m3, cfat = 1, 450 m/s, αfat = 0.63 dB/cm .

Figure P11.5
See Problem 11.13.
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Assume that the transducer is sensitive to at most L = 65 dB pressure
amplitude loss.

(a) What is the depth of penetration inside the oil?
(b) What is the approximate beamwidth at the given oil/fat interface?
(c) Suppose the peak acoustic pressure of the generated pulse is

20 N/cm2. Compute the peak pressure of the returning pulse. Is it
detectable by the transducer system? Does this result conflict with
the answer in part (a)? Explain why or why not.

Now, assume that the interface is not fixed; instead, it is given by
z0(t) = 20 − 5 cos(2π f0t) cm, where f0 = 100 Hz.



Problems 403

(d) Assume that the transducer fires a pulse at t = 0. Sketch the A-mode
signal. Label the axes carefully, and identify the time-of-return of the
returning pulse.

(e) Assume that the transducer fires every 10 ms starting from t = 0.
Sketch the M-mode image that would be generated. Label the axes
carefully.

11.14 Consider a single, flat, square, ultrasound transducer whose sides have
lengths of 0.5 cm and whose resonant frequency is 2.5 MHz. Suppose it
is embedded in a homogeneous medium whose density ρ is 920 kg/m3

and whose acoustic impedance Z is 1.35 × 106 kg/m2s.

(a) What range zf characterizes the range at which the far field begins
for this transducer in this medium?

(b) For a typical system (i.e., make appropriate assumption(s) about the
system), what does the absorption coefficient α of this medium have
to be if the depth of penetration is 20 cm.

(c) What is the lateral resolution (FWHM) of this transducer at a range
z = 10 cm?

(d) Assume that this transducer could be scanned (slid) rapidly in the
x direction and repetitively pulsed in order to create a rectangular-
shaped B-mode image. It is desired to obtain A-mode data separated
by 1 mm in the x direction and to scan a 12 cm wide region. Ignoring
any potential mechanical problems with scanning the transducer,
what is the maximum frame rate that can be achieved for the depth
of penetration given in (b)?

(e) Suppose there is an interface at range 10 cm, normal to the trans-
ducer’s axis, and assume that the second medium (beyond 10 cm)
has density 1,070 kg/m3 and acoustic impedance 1.7 × 106 kg/m2s.
If the acoustic pressure of the initial pulse has amplitude A0 and the
absorption coefficient is α = 1.5 dB/cm in the first medium, what is
the amplitude of the reflected acoustic pressure pulse when it arrives
at the transducer?

11.15 Consider a phased array ultrasound system operating at 2 MHz and
capable of B-mode and M-mode imaging that is located on the starship
Prometheus. We are examining a fetus in utero (in the uterus of a living
woman), which is suspected to be an alien.

(a) Calculate the depth of penetration that can be acheived with an 80 dB
dynamic range. Assume an absorption coefficient α = af dB cm−1,
for a = 1.0 dB cm−1 MHz−1 and f in MHz.

(b) What is the maximum frame rate acheivable, for a 256 × 256 B-mode
image? Assume a speed of sound c = 1, 480 m/s.

(c) We notice a quickly moving fetal heart, located at a depth of z =
10 cm and lateral position x = 5 cm. We wish to focus the pulse at
this location. Assume we have 129 transducer elements, where the
ith (i from −64 to 64) element is located at position xi = i

128 cm and
range z = 0 cm. Calculate an expression for the delay times, τi, and
find the value of τ64. Let τ0 = 0. Delays may be negative.
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(d) An M-mode image is produced from the signal focused on the heart.
Calculate maximum the pulse repetition rate for this image. Alien
hearts oscillate like a sine wave with frequency 500 beats per minute.
Is our M-mode frame rate high enough to sample this periodic signal
without introducing aliasing? How about our B-mode frame rate?
Explain.

11.16 Consider the transducer array shown in Figure P11.6, which has elements
that alternate in frequency between 3 MHz (white) and 6 MHz (grey).
Assume that each transducer is only able to transmit and receive at its own
frequency. Assume L = 90 dB and α = af where a = 1 dB/(cm MHz).
In the figure below, let d = h = 0.4 mm. Assume the speed of sound is
1,540 m/s.

Figure P11.6
See Problem 11.16.
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(a) What is the depth of penetration for the two transducer types?

Suppose both arrays will fire simultaneously, sending out sound in the
direction θ = 20◦. The 6-MHz system will focus at a depth of z = 5 cm,
while the 3-MHz system will focus at a depth of z = 10 cm.

(b) Assuming that T0 fires at t = 0, write an expression for the transmit
delays τ

(3)
i of the 3-MHz system and compute the actual delay τ

(3)
2 in

μs.
(c) Assuming T0 fires at t = 0, write an expression for the transmit delays

τ
(6)
i of the 6-MHz system and compute the actual delay τ

(6)
1 in μs.

(d) Let A(6)
z and A(3)

z be the amplitudes for the 6-MHz and 3-MHz echoes
received from range z, assuming a perfect reflection. The displayed
A-mode signals will be switched from the 6-MHz echoes to the 3-
MHz echoes when A(6)

z reach a signal loss of 30 dB. At what range,
zswitch, does this ‘‘switchover’’ occur?

(e) Find the ratio, A(3)
0 /A(6)

0 , between the transmit amplitudes of the
two systems such that A(6)

z = A(3)
z at z = zswitch, assuming a perfect

reflection.

Harmonic Imaging

11.17 We examine how to use nonlinearities to improve depth of penetration
in ultrasound. The idea is to emit a pulse at 2.5 MHz and measure the
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returning echoes at the second harmonic, 5.0 MHz. Our imaging system
has a dynamic range of L = 80 dB, and the tissue has an amplitude
attenuation factor of μa = af dB cm−1 (for a = 1

8.7 dB MHz−1 cm−1).

(a) Assume a tumor is located at depth d. We emit a f0 = 2.5 MHz pulse
with amplitude A0. What is its amplitude A1 at depth d? Answer in
terms of A0 and d.

(b) Through nonlinear interactions in the tumor, the scattered waveform
is transformed into a sawtooth wave with the same amplitude A1. It
can be expressed as

g(t) = A1
2
π

∞∑
n=1

(−1)n 1
n

sin(2πnf0t).

What is the Fourier transform of this waveform? Your answer will
involve an infinite sum.

(c) What is the amplitude A2 of the sinusoidal component at f1 = 5 MHz
at the site of the tumor? What is its amplitude A3 once it has traveled
back to the transducer (assume a plane wave)? Answer in terms of
A0 and d.

(d) Find the maximum value of d such that the tumor could still be
detected by receiving the 5-MHz signal.

(e) Consider a traditional ultrasound system operating at f1 = 5 MHz.
Calculate its depth of penetration.

(f) Design a convolution filter, h(t), which will remove all but the 5-MHz
component of the signal g(t). It should eliminate frequencies outside
the range of 4–6 MHz, and have unit gain for frequencies within
that interval.



This page intentionally left blank 



P A R T

V
Magnetic Resonance
Imaging

Overview
In this part of the book, we consider magnetic resonance imaging (MRI). Like
computed tomography (CT), MRI produces high-resolution, high-contrast cross-
sectional (tomographic) images through the body. Like ultrasound imaging, MRI
does not involve ionizing radiation. The combination of high image quality and
risk-free imaging has made MRI one of the most widely used medical imaging
modalities.

In MRI, the signals arise from the nuclear magnetic resonance properties of
tissues; these properties are ‘‘stimulated’’ by the application of fixed magnetic
and variable radio frequency fields. Since the pulse sequences that govern
the time- varying application of these fields can be changed by the operator,
MRI—like nuclear medicine—has the potential to create a number of different
images representing different underlying signals. Clever combinations of pulse
sequences can be used to differentiate fat from water, measure water diffusion,
image bone, measure motion, and estimate blood flow. Functional magnetic
resonance imaging, or fMRI, has become a powerful research tool, especially
in understanding brain function and complements its clinical use for anatomic
imaging. In addition, paramagnetic ‘‘contrast agents’’ or ‘‘tracers’’ akin to those
used in radiography and nuclear medicine are being developed to improve image
contrast and measure additional functions. Ultimately, MRI may have the ideal
combination of structural and functional imaging capabilities in a risk-free
modality.

A typical MRI system looks like a CT system, with a large gantry with a
‘‘tunnel’’ through which the patient, lying on a bed, is inserted. This gantry
houses the apparatus for applying the magnetic fields and RF fields, as well
as the receiver coils from which the raw signal data arise. MRI, like CT, is a
cross-sectional or tomographic imaging modality. Image reconstruction, while
conceptually equivalent to that in CT, is derived directly from the nature of the
raw signals in frequency space.
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Figure V.1
MR images of (a) the
head showing the brain,
spinal column, tongue,
and vocal tract; (b) the
knee; (c) the ankle; (d) the
liver; and (e) the lumbar
spine. Images (a), (c), (d),
and (e) courtesy of GE
Healthcare. Image (b)
courtesy of Osirix.

(a) (b) (c)

(d) (e)

In clinical practice, MRI is mainly used to depict anatomy rather than func-
tion. It is capable of producing high-contrast cross-sectional images throughout
the entire body, as shown in Figure V.1 (see also Figures I.1(d) and I.4(b)). But
MRI goes even further by providing different ways to obtain images—through
modification of the underlying pulse sequence—in order to obtain different
tissue contrasts to better reveal pathology.

Figure V.2 shows several image pairs demonstrating that one pulse sequence
might be better at revealing the pathology of the subject than the other.
Figure V.2(a) shows a PD-weighted image of the wrist, revealing a small surface
tear of the triangular fibrocartilage disc. Figure V.2(b) shows a fat-saturated
PD-weighted image showing the same tear and also revealing bone marrow
edema and cystic changes of the scaphoid, lunate, and triquetrum. A stroke
is hard to see on the T2-weighted image in (c), while the diffusion weighted
image in (d) clearly shows it as the bright white region on the left side of the
image. This difference is due to the subtle changes in water concentration in
the tissues that occur in an early stroke. In a multiple sclerosis patient, only the
most apparent white matter lesions can be seen on the T1-weighted MR image
shown in (e), while several lesions are visible as bright spots and streaks in the
white matter in the fluid-attenuated inversion recovery MR image shown in (f).

Because of the capability to provide anatomic images with high contrast in
soft tissues without the use of ionizing radiation or contrast agents, MRI has
displaced CT in many clinical applications.
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Figure V.2
(a) and (b) show two
images of a wrist fracture.
(c) and (d) show two
images of a stroke. (e) and
(f) show two MR images
of a multiple sclerosis
patient. Images (a) and (b)
courtesy of Dr. Avneesh
Chhabra, Department of
Radiology, Johns
Hopkins Hospital. Images
(c) and (d) courtesy of Dr.
David Yousem,
Department of Radiology,
Johns Hopkins Hospital.

(a) (b)

(c) (d)

(e) (f)
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1212
Physics of Magnetic
Resonance

12.1 Introduction
Magnetic resonance imaging (MRI) is made possible by the physical phe-
nomenon called nuclear magnetic resonance (NMR). In this chapter, we provide
an overview of NMR in order to be able to understand MRI. It turns out that it
is not necessary to understand the quantum physics aspects of NMR, although
it is informative to appreciate these origins, if for no other reason than to know
where to look for a deeper understanding of the physical principles of MRI.
We can then rapidly progress from the quantum principles to the macroscopic
principles, which can be understood from the principles of classical physics. It is
macroscopic spin systems and their interaction with electric and magnetic fields
that give rise to the signals from which MR images are made. The behavior
of these spin systems is described by the so-called Bloch equations, which are
phenomenological.1 The Bloch equations tie three important physical properties
of these spin systems—proton density, longitudinal relaxation, and transverse
relaxation—to the generation of signals that can be measured by an MR scanner
and turned into an image, as described in Chapter 13.

12.2 Microscopic Magnetization
Nuclear magnetic resonance is concerned with the nuclei of atoms, but not
with radioactivity as in nuclear medicine. Instead, it is the charge and angular
momentum possessed by certain nuclei that are of interest in NMR. We know
that all nuclei have positive charges because they are composed of only protons
and neutrons. It is also true that a nucleus with either an odd atomic number
or an odd mass number has an angular momentum Φ. (We note that a bold
symbol is used here, and throughout this chapter and the next, to denote a vector
quantity.) Said to have spin, these nuclei are NMR active. We can visualize such a
nucleus as a small ball that is rotating about an axis, as shown in Figure 12.1(a).

1The term phenomenological refers to a process or equation that is based on an observed phe-
nomenon rather than one that is derived from fundamental or ‘‘first’’ principles.

410
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Figure 12.1
Visualizations of (a) the
angular momentum of a
nucleus and (b) the
microscopic
magnetization of a
nucleus.
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Collections of identical nuclei—regardless of the molecular environment in
which they are found—are called nuclear spin systems. The nuclei of 1H, 13C,
19F, and 31P are important in NMR because they are prevalent in biological
systems and thus each can provide a large enough NMR signal to be detected
above the background noise. In whole-body MR imaging of anatomy, however,
we are concerned only with the nuclei of 1H. 1H atoms are present in very high
density within the body (mainly because of the water content in our bodies),
and an 1H nucleus gives a very strong NMR signal. Because the nucleus of the
hydrogen atom is a single proton, it is sometimes said that MRI images protons,
but this is not strictly true because protons are present in other atoms but are
not imaged in conventional MRI.

Each nucleus that has a spin also possesses a microscopic magnetic field.
Although the physical principles for this fact can only be rigorously derived
using quantum physics, we can use a classical approach to argue for this as
well. We envision each nucleus having a positive charge that is spinning around
an axis, as shown in Figure 12.1(b). Since a magnetic field is present whenever
there are circulating charges (as in a loop of wire), the nucleus must possess a
magnetic field. The microscopic magnetic field has a magnetic moment vector
μ, given by

μ = γΦ , (12.1)

where γ is the gyromagnetic ratio and has units of radians per second per tesla.
It is useful to define

γ− = γ

2π
, (12.2)

which has units of Hz per tesla. Some gyromagnetic ratios for common nuclei
used in NMR and MRI are given in Table 12.1.

In general, there is no preferred orientation for nuclei in a given sample of
material. The randomly oriented individual nuclear spins cancel each other out
macroscopically, and the resulting spin system has no macroscopic magnetic
field. However, spin systems do become macroscopically magnetized when they
are placed in a magnetic field, because in this case the microscopic spins tend
to align with the applied external magnetic field. This property of nuclear spin
systems is termed nuclear magnetism.
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TABLE 12.1

Common Gyromagnetic
Ratios

Nucleus γ− [MHz/T]

1H 42.58
13C 10.71
19F 40.05
31P 11.26

The magnitude and direction of an external magnetic field can be represented
as a vector B0, given by

B0 = B0ẑ . (12.3)

Here, B0 is the magnitude of the magnetic field in tesla and ẑ is a unit
vector pointing in the +z direction within a laboratory (fixed) frame. Intuition
suggests that the microscopic spins should all point in the same direction as
the applied magnetic field. Quantum physics predicts otherwise. Each nuclear
species possesses a spin quantum number, I, which takes on nonnegative
integer multiples of 1/2. All of the nuclei in Table 12.1, in fact, have I = 1/2
and their spins systems are called spin 1/2 systems. For spin 1/2 systems
in equilibrium, the microscopic magnetization can point in only one of two
possible orientations relative to the direction ẑ. In particular, they can be 54◦
off ẑ or 180◦ − 54◦ = 126◦ off ẑ, with a very slight preference for the 54-degree
(the so-called ‘‘up’’) orientation, which is the low energy state. Furthermore, the
phase of μ—that is, its orientation around the z-axis—is random. Putting all
these facts together, the spin system overall becomes slightly magnetized in the ẑ
direction. This gives rise to the notion of ‘‘bulk’’ or macroscopic magnetization,
which we now study in detail in order to understand how MR imaging works.

12.3 Macroscopic Magnetization
Consider a specific spin system (e.g., the nuclei of 1H) within a volume of
material. When an external static magnetic field B0 is applied, the spin system
becomes magnetized. This can be modeled using a bulk magnetization vector M,
which is really just the sum of a large number Ns of individual nuclear magnetic
moments

M =
Ns∑

n=1

μn .

This situation is shown in Figure 12.2. If the sample is left undisturbed in the
static field B0 for a long period of time,2 M will reach an equilibrium value

2The definition of ‘‘long’’ and ‘‘short’’ times will become clear after we look at relaxation processes.
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Figure 12.2
The magnetization vector
M.

Static
magnetic
field

B0 M
Magnetization
vector

Sample
1H

M0 that is parallel with the direction of B0 and has a magnitude M0 [which
is dependent only on its spatial position r = (x, y, z)]. The magnitude of M0 is
given by

M0 = B0γ−2h2

4kT
PD , (12.4)

where k is Boltzmann’s constant, h is Planck’s constant, T is temperature (from
absolute zero), and PD is the so-called proton density—that is, the number of
targeted nuclei per unit volume. In whole-body imaging, the hydrogen nucleus
is just a proton, which accounts for the name proton density. We are going to
see that if M0 is larger, the NMR signal is larger. Therefore, both larger magnets
and higher proton densities produce larger NMR signals. When we learn about
spatial encoding for MRI in Chapter 13, we will see that spatial differences in
PD give rise to signal differences, which in part accounts for image contrast.

It is of fundamental importance in NMR and MRI that M is a function
of time. In addition to the changes in this vector as it approaches equilibrium
within a magnet, it turns out that M can be manipulated in a spatially depen-
dent fashion by using external radio frequency (RF) excitations and magnetic
fields. Thus, it should be understood that M = M(r, t), where r is a three-
dimensional laboratory coordinate and t is time. In analogy to the microscopic
angular momentum studied at the nuclear scale, there is also a bulk angular
momentum J corresponding to the sample, which is related to the sample’s
magnetization by

M = γ J . (12.5)

In MR imaging, the ‘‘sample’’ is a small volume of tissue—that is, a voxel.
The value of an MR image at a given voxel is determined by two dominant
factors: the tissue properties and the scanner imaging protocol. There are several
tissue properties that affect the appearance of an MR image, including two
relaxation parameters T1 and T2, which we will define below, and the proton
density. The second dominant factor is the way in which the vector M is
manipulated by the scanner hardware and software using a so-called pulse
sequence. As we shall see, the pulse sequence manipulates the magnetic field
within the field of view in order to manipulate M over space and time. For
now, we focus on a particular sample (voxel) and study how M = M(t) changes
with time. The so-called equations of motion for M(t) are based on the Bloch
equations, which we now begin to develop.
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12.4 Precession and Larmor Frequency
Because M(t) is a magnetic moment, it experiences a torque when an exter-
nal, time-varying magnetic field B(t) is applied. The equation describing this
relationship is

dJ(t)
dt

= M(t) × B(t) , (12.6)

where J is the angular momentum vector associated with M. Note that the
symbol × denotes the cross product of two vectors. Using (12.5) to eliminate J
in (12.6) yields

dM(t)
dt

= γ M(t) × B(t) , (12.7)

which is valid over a short period of time, where ‘‘short’’ will soon be defined.
Now suppose that B(t) is a static magnetic field oriented in the z direction

—that is, B(t) = B0. If the initial magnetization vector M(0) was oriented at an
angle α relative to the z-axis, then the solution of (12.7) is

Mx(t) = M0 sin α cos (−γ B0t + φ) , (12.8a)

My(t) = M0 sin α sin (−γ B0t + φ) , (12.8b)

Mz(t) = M0 cos α , (12.8c)

where
M0 = |M(0)| , (12.9)

M(t) = (Mx(t), My(t), Mz(t)), and φ is an arbitrary angle. These equations
describe a precession of M(t) around B0 with a frequency

ω0 = γ B0 , (12.10)

which is known as the Larmor frequency.
As expressed in (12.10), the Larmor frequency has units of radians per

second. In this book, we have expressed frequencies in cyclic rather than radial
units. Therefore, we define the equivalent Larmor frequency

ν0 = γ−B0 , (12.11)

which has units of cycles per second or hertz. Using (12.11) and (12.2), the
equations of precession in (12.8a) can be written as

Mx(t) = M0 sin α cos (−2πν0t + φ) , (12.12a)

My(t) = M0 sin α sin (−2πν0t + φ) , (12.12b)

Mz(t) = M0 cos α . (12.12c)

Precession is an important concept in NMR and MRI. Most people have
seen precession in a child’s top or dreidel. A spinning top typically begins
with the axis of the top, which is also its axis of rotation, pointing vertically.
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As the top slows, its spin axis begins to rotate about the vertical axis—this is
precession. In NMR, M(t) represents the axis of the top; the direction of the
static magnetic field— ẑ, in this case—represents the vertical axis. This situation
is shown schematically in Figure 12.3. Notice that precession occurs in the
clockwise direction when viewed opposite the direction of the static magnetic
field.

It might be assumed that the Larmor frequency is constant for a given
spin system (e.g., 1H) within a sample. After all, the gyromagnetic ratio is
constant for a given spin system, and B0 is supposed to be a constant. In reality,
B0 cannot be exactly constant. There are three sources of B0 fluctuations of
concern in MRI: magnetic field inhomogeneities, magnetic susceptibility, and
chemical shift. Magnet design and calibration is a very important issue in
MRI. We shall see in the following chapter that shimming the main magnet to
produce a very homogeneous field is critical to image quality. Generally, the
main field inhomogeneity is kept to a few parts per million (ppm) and is slowly
varying over the field of view, so it can be either ignored or compensated by
postprocessing.

Magnetic susceptibility refers to the material property that decreases or
increases the magnetic field within the material relative to the surrounding field.
Diamagnetic materials slightly decrease the field, paramagnetic materials slightly
increase the field, and ferromagnetic materials strongly increase the field. The
magnetic field in the presence of susceptibility can be modeled as

B̂0 = B0(1 + χ ) , (12.13)

where χ is a spatially variable quantity called the diamagnetic susceptibility.
Both carbon and molecular oxygen (O2) are diamagnetic, and as a result the
body is mostly diamagnetic. This means that the magnetic field within the body
is slightly lower than the field outside, and there are sudden changes in the field
when moving from inside to outside the body. These sudden changes can have a
deleterious effect on images because our assumptions leading to image equations
assume a constant magnetic field. But differences in susceptibility due to natural
biological events, such as iron deposits in the brain or removal of oxygen from
blood hemoglobin due to neuronal activity, can also be imaged. Thus, like many
intrinsic tissue properties, the presence of differences in tissue susceptibility can
be either suppressed or emphasized in NMR or MRI acquisitions.

Figure 12.3
The magnetization vector
M precesses about the
z-axis.
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Chemical shift is a measure of the change in Larmor frequency due to the
chemical environment of the imaged nucleus—for example, the molecules to
which the 1H atom is attached. In the chemical shift phenomenon, the local
electron cloud can shield the nucleus from the full effects of the main magnetic
field. Unlike susceptibility, chemical shift is a very local property since it is tied
to the molecular environment of a nucleus; the spatial impact of chemical shift
is therefore tied to the locations and concentrations of the particular molecule
causing the effect. Chemical shift can be modeled as a change in the magnitude
of the magnetic field, by

B̂0 = B0(1 − ς ) , (12.14)

where ς is the shielding constant and is a measure of the degree of chemical
shift. The corresponding shifted Larmor frequency is given by

ν̂0 = ν0(1 − ς ) . (12.15)

Chemical shift is usually expressed in ppm:

ς (ppm) = ς × 106 . (12.16)

For example, the hydrogen nuclei in fat (CH2) are shifted down by 3.35 ppm
from those in water (H2O). This corresponds to a shift of the Larmor frequency
by −214 Hz at 1.5 T.

Groups of nuclei within a given spin system that have the same Larmor
frequency (including chemical shift effects) are called isochromats. For example,
the hydrogen nuclei in water form an isochromat, while those in fat form
another isochromat. The importance of isochromats for a given spin system is
that they have only very slightly different Larmor frequencies. The impact of
this fact on imaging will become clear as we proceed.

12.5 Transverse and Longitudinal
Magnetization

In order to obtain a deeper understanding of MRI, it is necessary to conceptualize
the magnetization vector M(t) as having two components. The first is the
longitudinal component, which is oriented along the axis defined by the static
magnetic field. The second is the transverse component, which is oriented in a
plane orthogonal to the direction of the static magnetic field. The longitudinal
magnetization is given by Mz(t)—simply the z component of M(t). The transverse
magnetization is defined by

Mxy(t) = Mx(t) + jMy(t) , (12.17)

which captures the two orthogonal components Mx(t) and My(t) as one complex
quantity. The angle of the complex number Mxy, given by

φ = tan−1 My

Mx
, (12.18)
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is called the phase or phase angle of the transverse magnetization. Figure 12.3
illustrates this concept as a projection of the magnetization vector M(t) against
the z-axis and the x-y plane, respectively. The three Cartesian components of
M(t) are completely represented by just these two components, one of which
is complex. Thus, understanding the evolution of Mxy(t) and Mz(t) yields,
equivalently, an understanding of the temporal evolution of the three spatial
components of M(t).

12.5.1 NMR Signals

Using (12.12) and (12.17), the transverse magnetization can be written as

Mxy(t) = M0 sin αe−j(2πν0t−φ) . (12.19)

The origin of the observed signal in MRI can now be understood. The rapidly
rotating transverse magnetization creates an RF excitation within the sample.
This RF excitation will in turn induce a voltage—a measurable signal—in a coil
of wire located outside the sample. This signal is recorded for use in MRI. It is
a common misconception that MRI uses radio waves to image the body. This is
not true. In fact, it is Faraday induction that is used both to manipulate nuclear
spin systems and to generate signals from active NMR samples. Thus, while it is
true that the signal frequencies in whole-body imaging are in the RF frequency
band, radio waves themselves play very little role in MR imaging. Radio waves
are generated by the coils used to induce NMR and they will penetrate the body.
Their frequencies are well below that of ionizing radiation, however, and their
only effect on the body is to cause slight heating.

Although it is common to refer to the transverse magnetization as the
‘‘signal,’’ in order to actually receive a voltage signal from these rotating spins,
there must be a coil of wire—a so-called RF coil—close to the sample. In
Chapter 13, we will study various RF coil designs that are used in imaging; for
now, we simply need to understand the abstract relationships.

Faraday’s law of induction states that a time-varying magnetic field cutting
across a coil of wire will induce a voltage in the wire. We can determine the
amplitude of the induced voltage using the principle of reciprocity—that is, we
first look at the magnetic field produced at a point in space as a result of a
current flowing in the coil of wire. Specifically, suppose that the magnetic field
at r produced by a unit direct current in the coil is given by Br(r). Now reverse
the scenario: suppose that there exists a time-varying magnetic field M(r, t) (our
magnetic moment) throughout the object. Then, the voltage induced in the coil
is given by

V(t) = − ∂

∂t

∫
object

M(r, t) · Br(r) dr , (12.20)

where · represents the dot (or inner) product.
To find a simpler expression for the induced voltage in an NMR experiment,

we first assume that the object is homogeneous—that is, M(r, t) = M(t). We
also assume that the coil produces a uniform field when excited, so Br(r) = Br.
We also note that the z component of magnetization Mz(t) is a slowly changing
quantity (we will see why later); hence, its temporal derivative is small and can
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be ignored. Using these simplifications in (12.20) and breaking each field into
its component representation yields

V(t) = − ∂

∂t

∫
object

Mx(t)Br
x + My(t)Br

y dr (12.21a)

= −Vs
∂

∂t

[
Mx(t)Br

x + My(t)Br
y

]
, (12.21b)

where Vs is the volume of the sample.
The transverse magnetization components are found as the real and imagi-

nary parts of Mxy(t) in (12.19),

Mx(t) = M0 sin α cos(−2πν0t + φ) , (12.22a)

My(t) = M0 sin α sin(−2πν0t + φ) . (12.22b)

Using these expressions in (12.21) yields

V(t) = −2πν0VsM0 sin α
[
Br

x sin(−2πν0t + φ) − Br
y cos(−2πν0t + φ)

]
.

(12.23)

Writing the components of the reference field as

Br
x = Br cos θr , (12.24a)

Br
y = Br sin θr , (12.24b)

and further simplifying (using a trigonometric identity) yields

V(t) = −2πν0VsM0 sin α Br sin(−2πν0t + φ − θr) . (12.25)

This shows that the basic NMR signal is a sinusoid at the Larmor frequency.
The magnitude of the NMR signal in (12.25),

|V| = 2πν0VsM0 sin α Br, (12.26)

is of central interest, since we would ordinarily want to maximize it. Recall
from (12.4) that M0 is proportional to B0, and ν0 is also proportional to B0.
Therefore, (12.26) reveals that signal strength is proportional to B2

0, which means
that higher field magnets will yield larger signals. Current whole-body scanners
use field strengths of 1.5 and 3.0 tesla, but scanners with fields up to 7 tesla are
available and approved for human use by the FDA, and these scanners yield
much higher signal strengths. We see also that the maximum signal is produced
when α = π/2. The angle α is called the tip angle (or sometimes the flip angle)
and is something we can control when acquiring MR data. We will find that it
is sometimes beneficial to use smaller tip angles in order to image faster, as will
be discussed in the next chapter, but this practice comes at the expense of signal
strength. The last factor of interest is the sample volume Vs, a quantity that is,
to some degree, under our control. In NMR, we can derive a larger signal by
putting more of the substance under study into the scanner. We will discover in
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MRI that Vs represents voxel size, and that larger signal strength is achieved by
having larger voxels.

EXAMPLE 12.1
From (12.26), we can see that in order to improve the resolution while keeping the
signal strength at the same level, we need to increase B0. Now consider a scanner with
B0 = 1.5 tesla.

Question If we want to double the resolution in all three dimensions, what B0 should
we use to keep the signal strength unchanged?

Answer By doubling the resolution in all three dimensions, we halve the voxel size in
all directions. This change reduces the volume of a voxel by a factor of 1/23 = 1/8. From
(12.26), we know that in order to keep the signal strength at the same level, we must
have B0 increased by a factor of

√
8. So, in order to double the resolution, we need to use

B0 = 1.5 ×
√

8 = 4.24 tesla.

12.5.2 Rotating Frame

It is sometimes convenient to express and visualize the evolution of the magne-
tization vector in a frame of reference, called the rotating frame, that is rotating
at the Larmor frequency ν0. The coordinates in the rotating frame are related to
those in the stationary frame by

x′ = x cos(2πν0t) − y sin(2πν0t) , (12.27a)

y′ = x sin(2πν0t) + y cos(2πν0t) , (12.27b)

z′ = z . (12.27c)

In this frame of reference, (12.19) becomes

Mx′y′ (t) = M0 sin αejφ . (12.28)

In other words, in the rotating frame Mx′y′ is a stationary vector in the complex
plane with magnitude M0 sin α and phase angle φ.

We now look at the method used to tip M(t) away from B0 in order to elicit
an NMR signal.

12.6 RF Excitation
We have seen that the magnetization vector M will precess if it is initially
oriented away from B0, and the transverse component of this precession will
induce a current in an antenna surrounding the sample. By putting RF current
through an antenna surrounding the sample, the spin system can be deliberately
excited and thereby control the behavior of M. For example, this is how we
can produce magnetization vectors that are not parallel to B0. In particular, we
can excite the spin system using RF signals so that the stimulated system will
in turn induce RF signals as output.
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Equation (12.7) can be used to understand how RF excitation will allow us
to control the magnetization vector. Consider a system in equilibrium (so that
M(t) lines up with B0). If a small magnetic field B1 = B1x̂ oriented in the
x direction is turned on (adding to the main field), then (12.7) predicts a small
motion of M(t) in the +y direction. One understands this as an incremental
precession around the x-axis due to the presence of the additional field B1.
This is the beginning of a process that can lead, ultimately, to the magnetization
vector M(t) resting on the transverse plane and to precess about the z-axis once
B1 is turned off.

However, there is a difficulty with the above approach to spin system
excitation. As soon as the incremental precession around the x-axis begins,
the spin system is no longer in equilibrium, and the magnetization vector M(t)
begins to precess (also) around the z-axis, which has a much larger field strength
and therefore a much larger rate of precession. Once that precession begins, an
analysis of the location of M(t) (see Problem 12.4) reveals that the desired effect
of B1 is lost. In fact, if we are to continually push M(t) toward the transverse
plane (the desired goal in most instances), we will need to track the position of
M(t) as it precesses around the z-axis, and apply a B1 field whose orientation
will produce the correct motion, in accordance with (12.7).

Since M(t) is precessing at the Larmor frequency, the first step in tracking
the position of M(t) is to apply the B1 field at the Larmor frequency rather than
keeping it constant. In this way, the excitation becomes an RF excitation. This
has a desirable effect, since the precessing vector M(t) is pushed down toward
the transverse plane whenever it coincides with the ±y-axis (see Problem 12.4).
Such an RF excitation is said to be linearly polarized because its B1 field is
oriented along only one linear axis. It is possible to improve this approach
by adding another RF field oriented in the y direction (still orthogonal to the
main field). By applying a quadrature excitation (sine instead of cosine) to this
y-oriented B1 field, the magnetization vector is continuously pushed toward the
transverse plane. Such an RF excitation is said to be circularly polarized since
the direction of the B1 field traces out a circle in the transverse plane.

Circularly polarized RF excitations are produced using quadrature RF coils
(see Chapter 13), which are in common use today. The circularly polarized RF
field can be modeled as a complex magnetic field in the transverse plane

B1(t) = Be
1(t)e−j(2πν0t−ϕ) , (12.29)

where Be
1(t) is the envelope of B1(t) and ϕ is its initial phase. The simplest

envelope is a rectangular pulse with amplitude B1 and duration τp, yielding a
simple RF burst. In the rotating frame, the RF field is given by

B1(t) = Be
1(t)ejϕ . (12.30)

For simplicity, we will assume in the following that ϕ = 0, so that B1 is oriented
in the x′ direction of the rotating frame. This excitation causes M to precess
in the clockwise direction in the y′-z′ plane (in analogy to the precession we
observed earlier for the static B0 field), as shown in Figure 12.4(a). This type
of motion of M is called forced precession because it occurs in response to a
deposition of RF energy that comes from outside the sample. The frequency of
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Figure 12.4
(a) In the rotating frame,
the magnetization vector
M precesses around the
x′-axis in response to an
RF excitation. (b) In the
laboratory frame, the
actual motion of M is a
spiral.
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this precession is given by ν1 = γ−B1, where B1 = |Be
1(t)|. Of course, the actual

precession must include the rotation in the x-y plane. The actual evolution of
M(t) is a spiral from the z-axis toward the x-y plane in a clockwise orientation
when viewed from the +z-axis, as shown in Figure 12.4(b).

The final tip angle and phase of M depend on both the amplitude and
duration of Be

1(t). If we turn off the RF after M has precessed down into the
transverse plane, then the pulse is called a π/2 (pronounced ‘‘pi over two’’)
pulse. A π/2 pulse is commonly used as an excitation pulse because it elicits
the maximum signal from a sample that is in equilibrium. An RF pulse twice as
long as this is called a π pulse; it will place M along the −z-axis. This is often
called an inversion pulse because it inverts the orientation of M. In general, the
final tip angle after an RF excitation pulse of duration τp is given by

α = γ

∫ τp

0
Be

1(t) dt . (12.31)

For the special case of a rectangular pulse, M is tipped through an angle

α = γ B1τp . (12.32)

An RF excitation pulse that changes the tip angle by α is referred to as an
α pulse.

EXAMPLE 12.2
We apply an RF pulse to a sample of protons. The sample is in equilibrium with the B0

field in the +z direction.

Question We need to tip the magnetization vector M into the x-y plane in 3 ms. What
should the strength of RF excitation be?

Answer We need a π/2 pulse to tip the magnetization vector M aligned in z direction
into the x-y plane. The gyromagnetic ratio for protons is γ− = 42.58 MHz/T. The tip
angle is

α = π/2 = 2πγ−B1τp = 2π × 42.58 MHz/T × B1 × 3 ms .

So the strength of the RF excitation should be

B1 = 1.96 × 10−6 tesla = 0.0196 gauss.
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12.7 Relaxation
After application of an α pulse, and assuming that α �= π , M will precess in
response to the presence of the main magnetic field B0, as described earlier.
According to (12.7), this precession will never end. If this were true, then
RF waves would emanate from the sample and could be detected forever as
a sinusoidal voltage in an external antenna. Obviously, this situation cannot
be true; there must be some mechanism to dampen this (otherwise perpetual)
oscillation. In fact, there are two independent relaxation processes that together
cause the received signal to vanish: longitudinal relaxation and transverse
relaxation. We now describe each of these in detail.

Transverse relaxation acts first to cause the received signal to decay. Also
known as spin-spin relaxation, transverse relaxation is caused by perturbations
in the magnetic field due to other spins that are nearby. This interaction, heavily
influenced by random microscopic motion, causes spins to momentarily speed
up or slow down, changing their phases relative to other nearby spins, as
illustrated in Figure 12.5. This dephasing causes a loss of coherence of the RF
wave produced by the spin system and a concomitant loss of signal in the
receiver antenna. The resultant signal is known as a free induction decay (FID),
as illustrated in Figure 12.6.

The signal decay in an FID is well modeled as an exponential decay.
The time constant of this decay—called the transverse relaxation time—is
given the symbol T2 and, like a conventional time constant, has units of time.
Accordingly, rather than modeling the transverse magnetization as a never-
ending complex exponential as in (12.19), a more accurate representation is
given by

Mxy(t) = M0 sin αe−j(2πν0t−φ)e−t/T2 . (12.33)

Figure 12.5
Dephasing caused by
transverse relaxation.
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Figure 12.7
(a) Transverse and (b)
longitudinal relaxation.
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T2 is generally different for various types of tissues and is one of the important
physical properties of the body that gives rise to contrast in MR images, as we
shall see. The decay of signal strength |Mxy(t)| due to T2 relaxation is shown
graphically in Figure 12.7(a).

After this careful presentation of T2, we are now going to ‘‘pull a fast
one on you,’’ and reveal that the received signal actually decays more rapidly
than T2. In fact, local perturbations in the static field B0 cause the received
signal to decay exponentially with a time constant T∗

2 (pronounced ‘‘tee two
star’’), which satisfies T∗

2 < T2. This situation is illustrated in Figure 12.7(a).
It is useful to model the decay associated with these ‘‘external’’ field effects using
a time constant T′

2. The relationship between the three transverse relaxation
constants is

1
T∗

2
= 1

T2
+ 1

T′
2

. (12.34)

It is natural to ask why we need the concept of T2 if it does not fit reality.
We will find that although the initial signal decays with T∗

2, there remains an
underlying magnetization coherence that lasts longer—in fact, it decays with
time constant T2. This is consistent with the fact that the relaxation due to T′

2
effects is reversible. In making images, we will crucially depend on refocusing
this latent coherence through the concept of spin echoes. So, although the initial
signal disappears after a few T∗

2’s, there is an underlying signal potential lasting
a few T2’s. We describe how to exploit this potential in Section 12.9.

The second relaxation mechanism that causes a loss of signal is called
longitudinal relaxation or spin-lattice relaxation. This process concerns the
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longitudinal magnetization Mz(t), which recovers back to its equilibrium value
M0 as a rising exponential, as depicted in Figure 12.7(b). Although transverse
relaxation is a decreasing exponential and longitudinal relaxation is an increasing
exponential, both processes lead to a loss of NMR signal.

Suppose that an α pulse (α �= π ) is applied at t = 0. Then, the longitudinal
magnetization obeys

Mz(t) = M0(1 − e−t/T1 ) + Mz(0+)e−t/T1 , (12.35)

where T1 is a material property called the longitudinal relaxation time. The
notation Mz(0+) refers to the longitudinal magnetization immediately after the
α pulse and is given by

Mz(0+) = M0 cos α . (12.36)

It is implied by this notation that the duration of the α pulse is negligible with
respect to the longitudinal relaxation time. This is a good assumption since,
typically, α pulses are a few milliseconds long, while longitudinal recovery lasts
several hundred milliseconds.

This recovery of longitudinal magnetization is illustrated in Figure 12.7(b).
Like T2, T1 is generally different for various types of tissue and is also responsible
for generating contrast in MR images, as we shall see. For tissues in the
body, the relaxation times are in the ranges 250 ms < T1 < 2, 500 ms and
25 ms < T2 < 250 ms. Usually, 5T2 ≤ T1 ≤ 10T2 (although there are some
exceptions), and for all materials T2 ≤ T1.

Although we have been using the term ‘‘equilibrium’’ throughout the
chapter, our understanding has been limited to some notion of an ‘‘unchanging’’
or ‘‘quiescent’’ system. We can now understand what equilibrium means mathe-
matically. A sample is said to be in equilibrium if its longitudinal magnetization
Mz(t) is essentially equal to its final value M0 throughout the sample. In practice,
a sample is considered to be in equilibrium if there have been no external
excitations for at least 3Tmax

1 , where Tmax
1 is the largest T1 in the sample. In the

next chapter, we will encounter the term steady-state; it is worth noting now
that this is a different notion than equilibrium. Equilibrium implies that there
has been no excitation for some time into the past; steady-state describes a spin
system that has been periodically excited so that the spin system is undergoing
a periodic longitudinal relaxation process.

EXAMPLE 12.3
Suppose a sample is in equilibrium, and a π/2 pulse is applied.

Question What happens to the longitudinal magnetization of the sample?

Answer The longitudinal magnetization immediately after the α pulse is Mz(0+) =
M0 cos(π/2) = 0. Therefore, (12.35) yields

Mz(t) = M0(1 − e−t/T1 ) ,

where M0 is the equilibrium value of longitudinal magnetization.
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EXAMPLE 12.4
Suppose a sample is in equilibrium, and an (unspecified) α pulse is applied.

Question What are the transverse and longitudinal magnetizations of the sample,
expressed in the rotating frame?

Answer Since the sample is initially in equilibrium, the longitudinal magnetization
immediately after the α pulse is given by (12.36). Substituting (12.36) into (12.35) yields
the longitudinal magnetization

Mz(t) = M0(1 − e−t/T1 ) + M0 cos αe−t/T1 .

This expression is the same whether expressed in the laboratory coordinate frame or
the rotating frame. The transverse magnetization, expressed in the rotating frame, is just
Mxy(t) in (12.33) multiplied by e+j2πν0t, which yields

Mx′y′ (t) = M0 sin αejφe−t/T2 .

12.8 The Bloch Equations
Putting together both the forced and relaxation behavior of a magnetic spin
system yields the Bloch equations

dM(t)
dt

= γ M(t) × B(t) − R{M(t) − M0} , (12.37)

which describe the behavior of M in the laboratory frame.3 Here, B(t) is
composed of the static field and the RF field,

B(t) = B0 + B1(t) ,

and R is the relaxation matrix, given by

R =
⎛
⎝ 1/T2 0 0

0 1/T2 0
0 0 1/T1

⎞
⎠ . (12.38)

The Bloch equations are used to construct models of the behavior of magne-
tization vectors during excitation. From this behavior, the NMR signal can
be inferred by computing the transverse magnetization. For most applica-
tions, these equations are transformed into the rotating frame of reference (see
Problem 12.9).

EXAMPLE 12.5
The Bloch equations describe the behavior of M in the laboratory frame.

Question Find the equations for the components of M in the x-y plane, and verify that
the transverse relaxation after a π/2 pulse (in the x direction) satisfies the equations.

3This equation is referred to in the plural because it is a vector equation comprising three scalar
equations.
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Answer The Bloch equations are given above in (12.37). By expanding the cross
product, we have

d
dt

⎛
⎝ Mx(t)

My(t)
Mz(t)

⎞
⎠ = γ

⎛
⎝ My(t)Bz(t) − Mz(t)By(t)

−Mx(t)Bz(t) + Mz(t)Bx(t)
Mx(t)By(t) − My(t)Bx(t)

⎞
⎠ −

⎛
⎜⎜⎝

1
T2

Mx(t)
1

T2
My(t)

1
T1

(Mz(t) − M0z)

⎞
⎟⎟⎠ .

After a π/2 pulse, the RF field B1 is shut down, and only B0 is nonzero. Therefore,
Bx(t) = By(t) = 0, and the equations for Mx(t) and My(t) are simpler:

d
dt

(
Mx(t)
My(t)

)
= γ

(
My(t)Bz(t)
−Mx(t)Bz(t)

)
−
( 1

T2
Mx(t)

1
T2

My(t)

)
.

The transverse relaxation after a π/2 pulse is given by

Mx(t) = M0 cos[−(2πν0t − π/2)]e−t/T2 = −M0 sin(2πν0t)e−t/T2 ,

My(t) = M0 sin[−(2πν0t − π/2)]e−t/T2 = −M0 cos(2πν0t)e−t/T2 .

The initial phase is π/2 because the RF pulse is applied in x direction, the magnetization
vector M is tipped into y direction. By substituting the relaxation equations into the
Bloch equations for Mx(t), we get

dMx(t)
dt

= d
dt

[
−M0 sin(2πν0t)e−t/T2

]

= −2πν0M0 cos(2πν0t)e−t/T2 + 1
T2

M0 sin(2πν0t)e−t/T2

= γ B0My(t) − 1
T2

Mx(t) .

Similarly, we have

dMy(t)
dt

= −γ B0Mx(t) − 1
T2

My(t) .

12.9 Spin Echoes
Pure transverse relaxation, characterized by the time constant T2, is a random
phenomenon. The fact that the FID decays faster, with time constant T∗

2, is
due to fixed perturbations in the magnetic field. These fixed perturbations
cause the precession of some spins to speed up and others to slow down (relative
to the nominal rate of rotation predicted by the Larmor frequency). As described
in Section 12.7, in a very brief period nearby spins are largely dephased—that is,
they begin to point in different directions in the transverse plane—as illustrated
by the top row of Figure 12.8.

The existence of spin echoes is due to the fact that the faster (slower)
spins, which now lead (lag) the spin system, can be made to lag (lead) the spin
system using a short-duration 180◦ pulse, as shown in Figure 12.8(d). From
this new phase position, the fast spins ‘‘catch up’’ and the slow spins ‘‘fall
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Figure 12.8
Formation of a spin echo.
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back,’’ forming a spin echo, as shown in the bottom row of Figure 12.8. Thus,
a spin echo is the signal that is generated by the transverse spins recovering
their coherence due to a deliberate 180◦ RF pulse, after a loss of coherence due
to transverse relaxation processes. The time interval from the initial π/2 pulse
to the formation of the spin echo is known as the echo time and is given the
symbol TE. This time is under our control because we specify the application
time of the 180◦ pulse, which is at TE/2.

Until this section, we have not had to consider the timing of NMR signals;
we have simply generated an α pulse and watched what happens. In the
generation of spin echoes, however, we see that it is the succession of two pulses
that matters, and the timing of the second pulse relative to the first determines
when the signal (echo) occurs. As we will discover in Section 12.10 and in even
greater detail in Chapter 13, it is the type and ordering of excitations and their
relative timings that gives rise to different tissue contrasts, as well as a host of
other image characteristics such as resolution, noise, and artifacts. In the case of
spin echoes, Figure 12.9 shows a simple timing diagram, which depicts a pulse
sequence that can be followed to generate the echo signal.

There are two mechanisms that combine to make spin echoes decrease in
amplitude over time. First, because time elapses during the spin echo process,

Figure 12.9
Pulse sequence diagram
for generating spin
echoes.

RF
excitation

MR
signal

FID

TE/2

TE

Echo

18090
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longitudinal relaxation causes the magnitude of the transverse magnetization to
decrease. This idea is evident in Figure 12.8, where the transverse component
of the magnetization vector is shown to be getting smaller with time. Second,
because of the random effects of transverse relaxation, the phase of the coherent
echo is never perfectly aligned, as illustrated in Figure 12.8(f). Since T2 is often
much smaller than T1, the first effect can often be ignored; therefore, the
amplitude of an echo is approximately given by the ideal T2 exponential decay
of the tissue [see (12.33)] at t = TE. This means that we can elicit multiple echoes
using multiple 180◦ pulses, and the signal strength of these echoes will decay
exponentially with time constant T2, until they disappear at approximately 3T2.

EXAMPLE 12.6
Suppose two 1H isochromats are in different locations in a 1.5 T magnet, and the
fractional difference in field strength is 20 ppm.

Question How long will it take before these isochromats are 180◦ out of phase?

Answer Suppose one sample has field strength B0 and the other B′
0. The magnitude of

the field strength difference can be found as follows:

B′
0 = B0(1 − 20 × 10−6) ,

|B′
0 − B0| = (20 × 10−6)B0 .

The difference in Larmor frequency is then

�ν = γ−|B′
0 − B0|

= γ−(20 × 10−6)B0

= 42.58 MHz/T × (20 × 10−6) × 1.5 T

= 1, 277.4 Hz .

Since 180◦ is half a cycle, the time it will take before these isochromats are 180◦ out of
phase is

�t = 1/2 cycle
1, 277.4 cycle/s

= 391 μs .

Question What will be their phase difference at TE/2 if the echo time is 4 ms?

Answer TE is defined to be the echo time; therefore, TE/2 = 2 ms. The number of
cycles occurring in 2 ms is

Number of cycles = 1, 277.4 cycles/s × 2 ms

= 2.555 cycles .

The phase difference is therefore

Phase difference = 2.55 cycles × 2π radians/cycle

= 16 radians .

Thus, after this relatively short amount of time, the two signals have completely lost
coherence.
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12.10 Basic Contrast Mechanisms
We now understand that it is the transverse magnetization Mxy(t) that produces
the measurable MR signal; the larger its magnitude, the larger the measured
signal. If we are to see a contrast between tissues—for example, different image
intensities in the gray matter (GM) and white matter (WM) of the brain—the
measured signal must be different in those tissues. In MRI, our ability to
generate tissue contrast depends on both the intrinsic NMR properties of the
tissues—that is, PD, T2, and T1 —and the characteristics of the externally
applied excitations (i.e., the pulse sequence). So far, we have seen that it is
possible to control the tip angle α and the echo time TE of the RF excitation.
It is also possible to control the interval between successive α pulses; this is the
so-called pulse repetition interval which is given the symbol TR. In this section,
we consider the response of small volumes containing different tissues to the
same external application of RF excitations. We will see how tissue contrast can
be manipulated by externally controllable parameters.

Figure 12.10 shows three images of the same slice through a human skull.
These clearly show quite different tissue contrasts in the three images. The
contrast in the images are classified as (a) PD-weighted, (b) T2-weighted, and
(c) T1-weighted. This does not mean that the brightness of these images are
proportional to PD, T2, and T1, but merely that the differences in intensity
seen between different tissues are largely determined by the differences in PD,
T2, and T1, respectively, of the tissues. In the brain, there are two dominant
tissue types, GM and WM matter, which are surrounded by cerebrospinal
fluid (CSF). The NMR properties of these three tissues at 1.5 T are given
in Table 12.2.

PD-Weighted Contrast In PD-weighted images, the image intensity should be
proportional to the number of hydrogen nuclei in the sample. This weighting can
be obtained with the kind of NMR experiment we have already considered. We
merely need to start with the sample in equilibrium, apply an excitation RF pulse,

(a) (b) (c)

Figure 12.10
Three images of the same slice through the skull. Contrast between the tissue types are
classified as (a) PD-weighted, (b) T2-weighted, and (c) T1-weighted. Courtesy of GE
Healthcare.
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TABLE 12.2

Brain Tissue Parameters Measured at 1.5T.

Tissue Type Relative PD T2 (ms) T1 (ms)

White matter 0.61 67 510
Gray matter 0.69 77 760
Cerebrospinal fluid 1.00 280 2,650

and image quickly, before the signal has a chance to decay from T2 effects. Thus,
a PD-weighted contrast can be obtained by using a long TR (which allows the
tissues to be in equilibrium) and either no echo or a short TE (in order to minimize
T2 decay). In order to obtain the maximum signal, the tip angle should be π/2.
The image shown in Figure 12.10(a) was obtained using TR = 6, 000 ms, TE =
17 ms, and α = π/2. It directly reflects the contrast expected from Table 12.2. In
practice, 6,000 ms is an unusually long repetition time. It is generally impractical
in MRI to use more than about TR = 3, 500 ms because the images take too long
to acquire.

T2-Weighted Contrast To reveal T2 contrast, differences in the transverse
relaxation times of different tissues must be apparent. We know that due to
T∗

2 effects, the FID decays more rapidly than pure transverse relaxation would
predict, and this is not sufficient time to observe T2 differences between tissues.
To obtain T2-weighted images, therefore, spin echoes must be used. But what
should TE be? We have already seen that if TE is small, we get PD-weighting. On
the other hand, if TE is large, the signal strength would be too small to detect
above the noise level. In practice, for T2 contrast, TE should be selected to be
approximately equal to the T2 values of the tissues being imaged. Figure 12.10(b)
is the result of using TR = 6, 000 ms, TE = 102 ms, and α = π/2. The use of
a large TR here is consistent with obtaining maximum signal strength, but its
use also reduces intermingling of T1 contrast (which will become clear in the
next section). The appearance of Figure 12.10(b) is consistent with the data in
Table 12.2, especially when one realizes that the image intensities are related to
T2 through a decaying exponential. In particular, we realize that GM and WM
have completely decayed (greater than three time constants) by the time the CSF
has decayed by only about a third of its starting intensity. This means that the
GM and WM should have small contrast with respect to each other and large
contrast with respect to CSF. WM is slightly darker than GM because its NMR
signal has decayed slightly faster.

T1-Weighted Contrast To obtain T1-weighted contrast, differences in the
longitudinal component of magnetization must be emphasized. This is done by
exciting the tissue repeatedly before it has had a chance to fully recover its
longitudinal magnetization. We know that if the sample is in equilibrium and
excited using an α pulse, then the transverse magnetization is given by

Mxy(t) = M0 sin αe−j(2πν0t−φ)e−t/T2 . (12.39)
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This (potential) signal dies away with a time constant T2, and since T1 � T2, it is
already negligible when t ≈ T1. On the other hand, the longitudinal component,
given by

Mz(t) = M0(1 − e−t/T1 ) + Mz(0+)e−t/T1 , (12.40)

is not negligible when t ≈ T1. So, if we set TR ≈ T1 (for some tissue in the field of
view), we have created a situation where the transverse component has vanished
(and therefore no signal is available, even from an echo), and the longitudinal
component has not returned to equilibrium.

Now suppose an α pulse is applied at t = TR, where TR ≈ T1 for some tissue.
In this case, (12.39) no longer applies, because the sample was not initially in
equilibrium. Instead, the longitudinal magnetization follows (12.40) and has
longitudinal magnetization Mz(TR) just prior to excitation. For generality, we
denote the longitudinal magnetization just prior to an RF excitation by Mz(0−).
Then, the transverse magnetization after excitation follows

Mxy(t) = Mz(0−) sin α e−j(2πν0t−φ)e−t/T2 (12.41a)

= Mxy(0+)e−j(2πν0t−φ)e−t/T2 , (12.41b)

where Mxy(0+) denotes the magnitude of the transverse magnetization immedi-
ately after excitation.

In this scenario, Mxy(0+) < M0 sin α for most tissues, and the exact value of
Mxy(0+) depends directly on the longitudinal relaxation time of the particular
tissue. This process is illustrated in Figure 12.11 for two tissues, one with a
short T1 (top row) and one with a long T1 (bottom row). Starting in the left
column at an early time when t > 3T2, there is no transverse magnetization, and
the longitudinal magnetization is starting to recover. In the middle column, the
tissue with the short T1 has undergone much more recovery than that with the

Figure 12.11
The principle behind
T1-weighted contrast.
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long T1. In the right column, a π/2 pulse tips the longitudinal magnetization
into the transverse plane. The signal strength is proportional to the length of
the magnetization vector in the transverse plane, and this length is partially
determined by the T1 value of the tissue.

The image shown in Figure 12.10(c) was obtained using TR = 600 ms,
TE = 17 ms, and α = π/2. From the data in Table 12.2, we see that this choice
of TR falls in between the T1 values for GM and WM but is much smaller than
that of CSF. Therefore, both GM and WM will have recovered approximately
two-thirds of their longitudinal magnetization, whereas CSF will have recovered
relatively little. As a result, the CSF signal should be very small, while that of
GM and WM should be larger. This situation is reflected well in Figure 12.10(c),
where the GM and WM are relatively bright, while the CSF is dark.

Inversion Recovery We found above that tissues with different T1 values can
be made to yield different signal intensities by controlling the pulse repetition
time TR of a pulse sequence. There is a conceptually simpler way to establish
T1 contrast, that is by applying a 180◦ RF pulse—which is called an inversion
pulse—at the beginning of a pulse sequence, as shown in Figure 12.12(a).
Previously, we used a 180◦ pulse to yield a spin echo, but that was for
the manipulation of the transverse magnetization, whereas here it is for the
manipulation of the longitudinal magnetization.

Consider a system in equilibrium. Application of a α = 180◦ RF pulse
simply inverts the longitudinal magnetization; that is

M(0+) = −M0 . (12.42)

This is illustrated in Figure 12.12(b). Notice that the transverse magnetization is
zero after this pulse is applied (because sin α = 0). Thus, no signal is generated.
However, the longitudinal magnetization must make its way back to equilibrium
according to the ‘‘usual’’ exponential form given by (12.40). Substituting (12.42)

Figure 12.12
(a) Inversion recovery
pulse sequence (spin echo
version) and (b) time
course of longitudinal
relaxation of the nulled
tissue.
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into (12.40) and simplifying yields

Mz(t) = M0(1 − 2et/T1 ) , (12.43)

which describes the evolution of longitudinal magnetization from the moment
of the inversion pulse. Tissues with different T1 values will relax at different
rates, and this difference can be captured by applying an imaging pulse during
the relaxation after the inversion pulse.

Consider a tissue having a longitudinal relaxation time of T1. Its longitudinal
magnetization will be precisely zero at

tnull = T1 ln 2 , (12.44)

which is straightforward to prove by setting Mz(t) = 0 in (12.43) and solving
for t. If an α = 90◦ pulse is applied at TI = tnull, where TI is called the inversion
time, then this particular tissue will have no transverse relaxation because

Mxy(t+null) = Mz(t−null) sin α = 0 .

This tissue has been ‘‘nulled’’ and will not generate an NMR signal. How-
ever, since other tissues with different T1 values will have nonzero transverse
magnetization, they will contribute to the FID and their contrast relative to
the nulled tissue is (mathematically) infinite. Figure 12.12(a) shows a spin echo
inversion recovery pulse sequence. A spin echo is most commonly used in inver-
sion recovery experiments since T∗

2 effects will typically dephase the transverse
magnetization by the inversion time TI, leaving no signal without the spin echo.

The principle of inversion recovery can be applied to measure the T1 of
a given tissue by repeating the experiment with different inversion times TI.
When a particular inversion time, say tI,null, gives a zero signal, then according
to (12.44)

T1 = TI,null/ ln 2 (12.45)

for that tissue. An even more important use of an inversion pulse is to null out
certain tissues such as fat (these are called STIR sequences) or fluid (these are
called FLAIR sequences). When a given class of tissues, such as fat or fluid, is
nulled, then all other tissues have very high contrast with respect to the nulled
class, and this can be used to improve tissue discrimination in certain diseases.

12.11 Summary and Key Concepts
Nuclear magnetic resonance is the phenomenon behind magnetic resonance
imaging. This phenomenon is well-known in chemistry and is now exploited for
medical imaging. In this chapter, we presented the following key concepts that
you should now understand:

1. Magnetic resonance imaging is based on the phenomenon of nuclear mag-
netic resonance.
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2. A nucleus with an odd Z or A has angular momentum or spin; collections
of such nuclei are called nuclear spin systems.

3. Such systems become magnetized when an external magnetic field is applied,
producing a bulk magnetization vector that is a function of time.

4. The so-called equations of motion for this magnetization vector are based
on the Bloch equations.

5. These equations describe a precession of the magnetization vector around
the external magnetic field direction, with a frequency known as the Larmor
frequency.

6. An RF pulse will cause the magnetization vector to precess around the
external magnetic field.

7. The magnetization vector has two components: transverse magnetization
and longitudinal magnetization.

8. The observed signal in MRI is an RF pulse produced by the rapidly rotating
transverse magnetization.

9. Relaxation describes the gradual dampening of the precession (and associ-
ated signal); it has two components: transverse or spin-spin relaxation and
longitudinal or spin-lattice relaxation.

10. Contrast in MR images is produced by manipulating the RF excitation pulse
sequence to produce MR signals that are influenced by different weighted
contributions of PD, T1, and T2.
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Problems
Magnetization

12.1 A nonuniform magnetic field B pointing in the z direction is applied to a
sample of protons. The field B (in tesla) varies as a function of z (in cm):

B(z) = 1 + 0.5z .

The magnetization vector M precesses around the z-axis. Suppose at time
t = 0, all magnetization vectors have the same phase. At what time will
the magnetization vector M at z = 1 cm and that at z = 0 have the same
phase again?
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12.2 Prove that the equations in (12.12) are solutions to (12.7).
12.3 Protons that are in different chemical species, such as the CH2 and CH3

groups in fat, will resonate at slightly different frequencies due to local
shielding of the static field by the electronic environment. This change in
the resonance frequency is called chemical shift; it has made NMR an
indispensable tool for chemists and physicists. If N species are present
in the sample, and we neglect all interactions between nuclei, the FID is
composed of a set of N decaying oscillators. Write down an equation
that gives an expression for the transverse magnetization under these
circumstances.

RF Excitation and Relaxation

12.4 A sample of 1H in the equilibrium condition in a static magnetic field
B0 is excited by a short circularly polarized RF pulse. The RF pulse is a
magnetic field in the transverse plane

B1(t) = Be
1(t)e−j2πν0t G ,

where ν0 is the Larmor frequency of the sample. The envelope of the RF
pulse is a triangle function with parameter T:

Be
1(t) =

{
1
10

(
1 − |t−T|

T

)
, 0 ≤ t ≤ 2T

0, otherwise
.

(a) Find the tip angle of the magnetization vector as a function of t for
0 ≤ t ≤ 2T.

(b) What is the value of T to make B1(t) a π/2 pulse?

12.5 The longitudinal and transverse relaxation of a magnetization vector
after an RF excitation is governed by the following differential equations
(in the rotating frame):

dMz

dt
= −Mz − M0

T1
,

dMxy

dt
= −Mxy

T2
.

Solve the above equations for Mz(t) and Mxy(t), assuming that Mz(0) and
Mxy(0) are known.

12.6 The following equations from Example 12.4 give the components of M
after an α pulse (assuming the system is in equilibrium just before the α

pulse):

Mz(t) = M0(1 − e−t/T1 ) + M0 cos αe−t/T1 ,

Mxy(t) = M0 sin αejφe−t/T2 .

Suppose that we now excite the sample with a train of α pulses, separated
by a time TR. The equilibrium condition is true when TR is long compared
with T1 and we can assume that Mz just before the pulse is equal to



436 Chapter 12 Physics of Magnetic Resonance

Mo. Derive a more general formula for Mz(t). You can assume that the
transverse magnetization has completely dephased before each RF pulse,
that is, Mxy(TR) = 0. (Hint: In this more general formula, Mo will be
replaced with the steady-state value of the longitudinal magnetization.
Define Mz after the (n + 1)th pulse to be Mn+1

z , and Mz after the nth pulse
to be Mn

z . Relate these two quantities with an equation. Derive another
(very simple) equation from the steady-state condition. You now have
enough information to solve the problem.)

12.7 In this problem, we answer the question: What is the tip angle that
maximizes MR signal intensity for a pulse sequence with given TR

and TE values? Solve this problem for given T1, T2, and T∗
2 values.

Assume that the magnetization is in the steady-state condition, that is,
the magnetization is a periodic function of time with a period of TR. Also
assume that the transverse magnetization completely dephases before
each RF pulse, that is, Mxy(0−) = 0.

(a) Calculate Mz(0−), the steady-state magnetization value just before
the RF pulses.

(b) Calculate Mxy(TE), the signal level in the steady-state condition.
(c) Calculate the optimum tip angle.

12.8 (a) For the pulse sequence given in Figure P12.1, write down the expres-
sion for the FID signal.

Figure P12.1
Pulse sequence for
Problem 12.8.

RF
excitation

MR
signal

t

180 90

(b) Explain how we can use this pulse sequence to measure T1.

Bloch Equations and Spin Echoes

12.9 Transform the Bloch equations into the rotating frame.
12.10 (a) Explain why a π pulse is applied at TE/2 in order to get an echo at

t = TE.
(b) Suppose a π/2 pulse is applied to a sample at t = 0, and a sequence

of π pulses is applied to the sample at t = 2k+1
2 TE, k = 0, 1, . . .. If TE

is small compared with T2, find an expression for the magnitude of
Mxy(kTE) for k = 1, 2, . . ..

12.11 A rectangular RF pulse given by

B1(t) = A rect(t/10−5)[cos(2πν0t)x̂ + sin(2πν0t)ŷ]

is used to tip the magnetization vector away from its equilibrium position
along the z-axis by 15◦. What is the value of A required to achieve this
tip angle?
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12.12 A π/2 pulse is applied at t = 0, sending the longitudinal magnetization of
a sample into the transverse plane in the direction of the x-axis. At that
instant a spatially-varying (but temporally constant) magnetic field �B(r)
oriented in the z direction is added to the static field B0. The spatially-
varying Larmor frequency is then given by

ν0(r) = γ−(B0 + �B(r)) ,

and the phase of the precessing sample is given by

φ(r, t) = −γ (B0 + �B(r))t .

A π pulse is then applied at time τ .

(a) What is the phase φ(r, t) immediately before and immediately after
the π pulse?

(b) What is the phase φ(r, t) at time TE = 2τ?
(c) Make a conclusive statement about the use of spin echoes when there

are spatially-varying gradients in use.

Contrast Mechanism

12.13 Explain what is PD-weighted contrast. Describe how to select imaging
parameters to obtain PD-weighted images. Explain why a large TE cannot
be used.

12.14 Suppose we are imaging a human brain (see Table 12.2 for the NMR
properties of different brain tissues). We use the strategy described above
in Problem 12.6 and acquire signals after the system is in the steady state.
For simplicity, we assume the intensity of the reconstructed MR image
is directly proportional to the magnitude of the transverse magnetic field
right after the RF excitations. In order to get maximal signal strength,
we use π/2 pulses.

(a) In order to get the best contrast between GM and CSF, what is the
best value for TR?

(b) Using the TR value computed in part (a), what is the contrast between
GM and CSF? What is the contrast between GM and WM?

12.15 We try using the pulse sequence shown in Figure P12.2 to image the
human brain. A π/2 pulse is applied to the brain while in equilibrium.

Figure P12.2
Pulse sequence for
Problem 12.15.

RF
excitation

MR
signal

FID

TR

FID FID

TR

t t t

90 90 90
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Suppose the duration of the RF pulse is negligible. The FID signal is
sampled at time τ and the pulse repetition interval is TR.

(a) We use TR = 6, 000 ms, τ = 20 ms. Is this a T2-weighted contrast?
If not, what modification is needed to obtain T2-weighted images?

(b) Sketch the modified pulse sequence.
(c) Provide some reasonable values of τ , TR, tip angle, and other param-

eters that should be used in the new pulse sequence.



Magnetic Resonance
Imaging

C H A P T E R

1313
In the previous chapter, we studied nuclear magnetic resonance (NMR), the
physics behind magnetic resonance imaging (MRI). We saw that it is possible to
manipulate nuclear spin systems in such a way that a radio frequency signal is
generated by the object in the form of a free induction decay (FID). We also saw
that spin echoes can be used to recover an otherwise very brief or transient FID.
We even saw that a variety of different types of tissue contrasts can be created
by manipulation of the timing of the various excitations. What we did not see,
however, is how the spatial dependency of the underlying object can be encoded
so that images can be created.

In fact, looking back at the previous chapter, you will notice that we
assumed there was a single object called the sample, which produced a single
coherent signal called the FID or echo. A single object and its corresponding
single signal was the basic viewpoint of the first 40 years or so of NMR. Then,
in the early 1970s, Paul Lauterbur had the idea to spatially encode the NMR
signal in order to create images. The first MR scanners were built in the late
1970s, and there has been a continuous growth in technical development and
clinical use since that time.

In this chapter, we first explore the instrumentation necessary to create MR
images. We then present the image formation process, starting from imaging
equations and ending with computer algorithms that use these equations to
generate MR images. Finally, we discuss the factors affecting image quality in
order to get a sense of the limitations of MR imaging and of the possibilities for
the future.

13.1 Instrumentation
13.1.1 System Components

As depicted in Figure 13.1, there are five principal components constituting an
MRI scanner: the main magnet; a set of coils to provide a switchable spatial
gradient in the main magnetic field; resonators or ‘‘coils’’ for the transmission

439
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Figure 13.1
Block diagram of MR
scanner components.

RF coils

Gradient coils

Main magnet

RF
electronics

Gradient
amplifiers

Control
electronics Console

Pulse sequence
computer

Image reconstruction computer

x y z

and reception of radio frequency pulses; electronics for programming the timing
of transmission and reception of signals; and a console for viewing, manipulating,
and storing images. Figure 13.2(a) shows a photograph of an MRI magnet with
patient table and Figure 13.2(b) shows the operator console.

The magnet, gradient coils, and RF coils must be isolated from the electronic
noise of the outside world—for example, broadcast radio signals—in order to
prevent interfering signals. Accordingly, these elements are placed in a copper-
lined room, which acts as a Faraday cage. All electronic signals that enter the
scan room, such as gradient currents and power outlets, must first go through
bandpass filters to ensure that no electrical noise in the range of the receiver
electronics is present inside the room. One or more racks of electronics, including

Figure 13.2
(a) The main magnet with
the patient table and
(b) the console for
operating the scanner.
Courtesy of GE
Healthcare. (a) (b)
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the gradient amplifiers and transmit/receive electronics, are typically housed in
a room adjacent to the scanner room.

Like computed tomography (CT) and positron emission tomography (PET)
scanners, the majority of MRI systems on the market today have the patient
lying on a sliding table inside a cylinder. This geometry requires large (>1 meter
diameter) solenoidal coils of superconducting wire to be used to provide a strong
(>1 tesla) main magnetic field. Other geometries, such as those with magnets
having two pole pieces arranged either vertically or horizontally, have also been
produced. These so-called open MRI systems give easier access to the patient but
have lower field strengths (<1 tesla) and hence lower signal amplitude. We focus
our attention on 1.5 T MR scanners, which represent approximately 70% of
the installed scanners in the United States. Our presentation is general enough,
however, to adequately describe the operation and imaging characteristics of
both lower and higher strength MR scanners.

13.1.2 Magnet

The most common type of magnet used in MRI systems is the cylindrical super-
conducting magnet (typically with a 1 meter bore size). In a superconducting
magnet, as depicted in Figure 13.3, coils of niobium-titanium wire are immersed
in liquid helium held at about 4◦ K. Niobium-titanium is a superconductor at
temperatures less than 9.5◦ K, and helium boils at 4.2◦ K. A dewar, also known
as a cryostat, is used to keep the helium from boiling. The cryostat is essentially
a ‘‘sandwich’’ that contains liquid helium between layers of liquid nitrogen and
a vacuum, which help to insulate the helium.

Field strengths in MR scanners vary from 0.5 T (21 MHz) to 3.0 T
(128 MHz), with a few systems operating at 9 T (383 MHz). The most common
magnet used for whole body imaging operates at 1.5 T. This field strength has
no special or optimal characteristics; it was simply the highest field achievable
at the time the MRI market was being established (in the late 1970s). Because
these magnets use superconducting wire, the current is on all of the time. For
a 1.5 T magnet, the stored energy in this constant current is approximately
2.8 million joules; put another way, if the solenoid carrying the current was a
single wire, that wire would carry 740 amperes of current.

There are two major challenges in the design and maintenance of super-
conducting magnets. First, the homogeneity of the magnetic field within the

Figure 13.3
Arrangement of cold
fluids for superconducting
coils.

LN2 � 77	 K LHe � 4.2	 K
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titanium
wire Vacuum

Iron shield
or
Second niobium-
titanium wire
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bore (field of view) must be maintained at better than ±5 ppm. The process of
shimming is used to ‘‘tailor’’ the magnetic field in order to improve homogeneity.
Passive shimming is the placement of small pieces of metal just inside the bore.
The metal pieces disturb the field created by the superconducting wire and, when
properly placed, the result is a more homogeneous field. Active shimming is the
adjustment of currents in as many as 30 small coils of wire placed just within
the bore. This process is more automated than passive shimming, but it is more
expensive to manufacture.

The second challenge in the design of superconducting magnets is the
minimization of the so-called fringe field—the magnetic field that is outside the
bore of the magnet. Because these fields are very large, the fringe field can cause
significant problems in devices that depend on either magnetic storage (e.g.,
credit cards) or moving currents (e.g., implanted medical devices). Because of
these kinds of detrimental effects caused by the fringe fields, MR scanners must
be sited carefully within a hospital or clinic building.

Two mechanisms can be used to reduce fringe fields, again one passive and
one active. The passive mechanism is to simply put a large iron shield around
the entire superconducting magnet. This tends to reduce the fringe field beyond
the iron but also detrimentally affects the field within the magnet’s bore. The
active mechanism is to add an additional set of superconducting coils outside
the primary coils (see Figure 13.3). The additional set has current moving in the
opposite direction, which significantly lowers the field outside. Since the second
set also reduces the field within the magnet, the primary coils have to operate
at a higher current than would otherwise be the case, in order to maintain the
desired magnetic field strength. Active shielding has the advantage that other
large metal objects outside the scanner (e.g., steel beams within the walls of the
building) will have less of an effect on the field within the bore.

13.1.3 Gradient Coils

As depicted in Figure 13.1, the gradient coils fit just inside the bore of the magnet
(after any active shimming coils, if present). The function of the gradient coils is
to provide a temporary change in the magnitude B0 of the main magnetic field
as a function of position in the magnet bore. There is no process described in
Chapter 12 that requires such a function; in fact, we have gone to great lengths
to ensure that the main field is constant. So, why would we want to deliberately
perturb this ‘‘perfection’’ by creating an additional field that deliberately causes
the main field to vary spatially? It turns out that this is the key to spatially
encoding the NMR signal—the key to creating images.

Gradient coils provide the means to choose slices of the body for selective
imaging. In this way, MRI can be tomographic—that is, it can image slices.
Gradient coils also provide the means to spatially encode the pixels within a
given image slice so that the individual FIDs and echoes coming from each one
of thousands of pixels can be unraveled and turned into an image. We will
see how all this works in Section 13.2. For now, let us study the gradient coils
themselves.

There are usually three orthogonal gradient coils, one for each of the
physical x, y, and z directions, as shown in Figure 13.4. For a cylindrical
magnet, these gradient coils are wound on a cylindrical former and stabilized



13.1 Instrumentation 443

Figure 13.4
Arrangement of the
gradient coils.

x Gradient coils

y Gradient coils

z Gradient coils

All coils

by ‘‘potting’’ the windings in epoxy. Circulating water or air is used to cool the
current-carrying elements. Gradient coils are subject to large forces—sometimes
called Lorentz forces—since they carry currents in a strong magnetic field.
Furthermore, in order to acquire images, the gradient currents are repeatedly
turned on and off, leading to significant vibration. In addition to the potential
to break down the epoxy and thereby weaken electrical connections, this
vibration is the source of the rather loud ‘‘knocking’’ sounds associated with
MR scans.

The purpose of each of the gradient coils is to add or subtract a spatially
dependent magnetic field to the main field. In particular, if all three coils are
turned on at the same time with strengths Gx, Gy, and Gz, respectively, then the
main field is (ideally) given by

B = (B0 + Gxx + Gyy + Gzz) ẑ . (13.1)

Notice that the gradient coils do not change the direction of the magnetic field;
instead, they add to (or subtract from) the magnitude of the main field. This is
a common point of confusion when first learning MRI and should be clearly
understood before moving on. Ideally, the change in field strength resulting
from currents in the gradient coils is a linear function of spatial position. This
helps considerably in the development of algorithms to reconstruct images, as
we shall see. The gradient amplitude is defined by the constants Gx, Gy, and
Gz, which have units of gauss per centimeter. It is often written in vector
form as

G = (Gx, Gy, Gz) . (13.2)
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Using the notation r = (x, y, z) to denote a vector spatial position, we find that
(13.1) can be written using a dot product notation as

B = (B0 + G · r) ẑ . (13.3)

The gradient coils are designed to produce a linear spatial perturbation of
the magnetic field, as described above. As shown in Figure 13.4, the x- and
y-gradients can be produced by pairs of saddle coils and the z-gradient can
be produced using two opposing coils, each wound around the circumference
of the cylindrical bore. The maximum gradient amplitude is determined by
the maximum current that the coil can carry. This, in turn, is limited by the
gradient amplifier, the heating of the coil, and the forces on the coil. Typically,
100–200 amperes of current are available for the x, y, and z coil each. The
maximum gradient amplitude in clinical scanners is usually on the order of
1–6 gauss/cm (or 10–60 mT/m).

We will see that the faster a gradient can turn on the faster we will
be able to acquire an image. The switching time from zero to the maximum
gradient amplitude is also dependent on the coil and amplifier design. Typical
switching times are on the order of 0.1–1.0 ms. The so-called slew rate is more
commonly used to characterize the overall performance of a gradient coil and
amplifier pair. The slew rate is the maximum achievable rate of change of the
gradient value and is given in units of mT/m/ms. Typical values range from 5 to
250 mT/m/ms.

The gradient coils must also have an auxiliary shielding coil on the outside
of the gradient coil cylinder in order to minimize the change in the magnetic field
outside the gradient housing. Without this shield, the changing flux through
surrounding metal components such as the magnet housing would cause signif-
icant eddy currents, which exist on time scales from milliseconds to seconds.
These induced eddy currents completely change the temporal profile of the
magnetic field gradients. Some of the most innovative engineering that has
emerged from the development of MRI has been the design of gradient coils
that can be switched rapidly without inducing large eddy currents in the metallic
components of the magnet housing.

In MR imaging methods, the gradients are switched on and off very rapidly.
Ideally, this change in field strength would occur instantaneously; however,
there are physical limitations that prevent this. The first limitation is the self-
inductance of the gradient coil, which can be overcome with high-voltage
amplifiers, or by redesigning the coil to be smaller (usually this means shorter
in the z direction). The tradeoff when making the gradients smaller is that the
region of linearity in the change of the magnetic field becomes smaller, and hence
the maximum achievable useful field of view (FOV) becomes smaller. The second
limitation is the induction of eddy currents in the patient causing peripheral
nerve stimulation (muscle twitching). The Food and Drug Administration (FDA)
has set a limit of 40 T/s on the exposure to magnetic field switching. Above this
limit, the probability of peripheral nerve stimulation is not negligible.

EXAMPLE 13.1
Although the bore of a magnet is one meter, the human body normally takes up
considerably less room. For the sake of concreteness, let us say the diameter of a human
body is d and d ≈ 0.5 m—this is the field of view (FOV). In the center of the magnet, the
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additional field caused by a gradient is zero, rising to its maximum values on the edges
of the FOV, which is at a radius of d/2.

Question How rapidly can an MR scanner legally establish a gradient of G = 40 mT/m
in the human body, and what is the slew rate required to achieve this?

Answer The maximum contribution of the magnetic field in the human body due to
the gradient coils is

Gmax = 40 mT/m × d
2

= 10 mT .

We assume that the gradient waveform is linear until it reaches the desired final value.
Therefore, the minimum time to reach the maximum value is

tmin = Gmax

40 Tesla/s
= 10 mT

40 Tesla/s
= 0.25 ms .

The slew rate required to achieve this is

SR = 40 mT/m
0.25 ms

= 160 mT/m/ms .

13.1.4 Radio Frequency Coils

In the previous chapter, we saw the importance of radio frequency (RF) induction
in NMR. Current that is oscillating at the Larmor frequency applied around the
sample causes the nuclear spins to precess, tipping them toward the transverse
plane. Once a spin system is excited, coherently rotating spins can induce RF
currents (at the Larmor frequency) in nearby antennas, yielding measurable
signals associated with the FID and echoes. Thus, RF coils (sometimes called
resonators) in MRI systems, as shown in Figure 13.1, serve to both induce spin
precession and to have currents induced in them by the spin system.

There are two basic types of RF coils: volume coils and surface coils. Volume
coils are designed to (mostly) surround the object being imaged, while surface
coils are designed to be placed on the surface in very close proximity to the object
being imaged. Different types of RF coils are depicted in Figure 13.5. Volume
coils are preferable to surface coils in most instances because their sensitivity
(field) patterns are very uniform within the body. This means that transmitted
energy is uniformly distributed throughout the sample so, for example, tip angles
intended to be π/2 are fairly close to being π/2 radians everywhere. In addition,
FIDs generated throughout the sample in response to an excitation are received
in a relatively uniform manner using volume coils. Surface coils, in contrast, are
very sensitive to sources close to the coil, but their sensitivity degrades rapidly
away from the coil. Arrays of surface coils can be used to improve the coverage
(e.g., ‘‘belts’’ containing four or more coils can be strapped around the torso),
but the uniformity is still quite inferior to the carefully designed geometrically
perfect volume coils.

All scanners have a body coil, which fits just inside the gradient coils, as
shown in Figure 13.1 (labeled as RF coils in the figure). Usually the body coil is
a birdcage resonator as depicted in Figure 13.5(b). Most scanners come with a
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Figure 13.5
Different types of radio
frequency coils: (a) saddle
coil, (b) birdcage coil, and
(c) surface coil. (a) (b) (c)

head coil, which is a much smaller coil—birdcage, saddle coil, or Aldermann-
Grant coil (not shown)—designed to fit closely around the human head. Other
specialty volume coils, such as knee coils, neck coils, and small extremity coils
can be purchased for most MRI scanners. Surface coils are individual loops [see
Figure 13.5(c)] placed in close proximity to the organ being imaged, or they can
be used in combination—so-called phased arrays—in order to improve their
homogeneity and sensitivity over that of single coils.

During RF transmission, relatively large currents are produced in the coil
elements from an RF amplifier, with a power requirement of approximately
2 kW for human imaging. Ideally, a transmission coil produces a relatively
uniform B1 field throughout the entire imaging volume. On reception, the coil
must pick up very low amplitude magnetic fields, which produce very small
voltages in the coil. Because transmission and reception require currents of
much different amplitude in the coil, these functions are often split into two
separate subsystems. In practice, a body coil located just inside the gradient
coils is used to transmit RF into the patient, and another coil (e.g., head coil,
surface coil, or phased array coil) positioned close to the volume of interest is
used for signal reception. This is a very good way to increase the signal-to-noise
ratio of the imaging signal, as will be discussed later. For both the transmit and
receive coils, it is important to realize that only the transverse components of
the magnetic field are used for imaging.

13.1.5 Scanning Console and Computer

The console [see Figures 13.1 and 13.2(b)] in a typical MRI system is used by the
operator to select the scanning protocol, set the gating to the patient’s electro-
cardiogram (ECG) or breathing (to synchronize acquisition to the appropriate
periodic physiologic process), graphically select the orientation of the scan planes
to image, review images obtained, and change variables in the pulse sequence
to modify the contrast between tissues. The operator’s console is connected
to a compute engine, such as an array processor, which performs the image
reconstruction. Current scanners reconstruct about 10–50 images per second,
which is adequate for real-time scanning of slices. The speed of reconstruction
is often limited by the data transfer rate from the receiver electronics to the
array processor. Some scanners now have real-time image feedback much like
ultrasound, so that the operator can use the real-time images from a single slice
to maneuver the scan plane.
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13.2 MRI Data Acquisition
Projection radiography encodes the spatial position of objects using the position
of x-rays that hit a detector. Factors affecting the encoding of spatial position
in radiography are the magnification caused by the diverging beam and the
superposition of overlaying structures. In radiography, the superposition of
structures is never ‘‘decoded;’’ radiologists learn to read radiographs with the
knowledge that images are corrupted in this fashion. CT encodes the spatial
position of objects by observing their effect in many projections, each from
a different orientation. The position of an object in CT is actually spread
across the observed data set in a rather complicated way. CT reconstruction
algorithms decode the spatial position by filtering and integrating the data using
a mathematical algorithm—for example, convolution backprojection.

So far, we understand only that MRI will use the gradient coils to encode
spatial position. But how will this be done? How will the data be decoded? The
‘‘trick’’ is to use both the Larmor frequency and the phase of the transverse
magnetization to encode spatial position. In this section, we present both
frequency and phase encoding of spatial position and develop a fundamental
MR image formation method.

13.2.1 Encoding Spatial Position

Before discussing the encoding of spatial position, we should ask, ‘‘What is
the spatial coordinate system?’’ It is customary for +z to be oriented along the
direction of the B0 field and for the +y direction to be oriented up. The +x
direction must therefore be horizontal and oriented in such a way to create a
right-handed coordinate system. When the patient goes in head-first and supine,
this means that the +z direction is from the head to the feet; +y is oriented
posterior (back) to anterior (front); and +x is oriented right to left, as shown in
Figure 13.6. In this scenario, we see that if we were able to image a slice whose
z-coordinate is constant, we would get a so-called axial image; we would get
a coronal image by holding y constant; and we would get a sagittal image by
holding x constant.

Although an MR scanner can create images at arbitrary locations and
orientations, for simplicity, we will describe only the formation of an axial image.

Figure 13.6
Laboratory coordinates in
an MR scanner.

y

x

z
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In this case, the z direction corresponds to the through-plane direction, and the
x and y directions correspond to the in-plane directions. It is straightforward to
acquire both coronal and sagittal images and also oblique and double-oblique
images. An oblique image is one whose orientation is found by taking an
image that is orthogonal to one of the three cardinal orientations and rotating
about another cardinal axis. A double-oblique image has an orientation that
requires a second rotation about a cardinal axis. The methods we develop for
the formation of axial images will carry over with relatively little modification
to the acquisition of images in these other orientations.

In order to encode spatial position using frequency, the Larmor frequency
should vary as a function of spatial position. Recall that the frequency at which
a magnetization vector M(t) precesses about a magnetic field B is given by
ν = γ−B, where B = |B|. Now suppose that we turn on a constant gradient
field G = (Gx, Gy, Gz) by applying a constant current to all three gradient coils.
Then, the total magnetic field is given by (13.3), and the Larmor frequency is
given by

ν(r) = γ−(B0 + G · r) , (13.4)

where the dependence of Larmor frequency ν(r) on spatial position r = (x, y, z)
is made explicit.

This concept, called frequency encoding, is the first of two concepts used to
encode spatial position in MRI, the other being called phase encoding. Frequency
encoding is used both for slice selection, as we describe in Section 13.2.2, and
for reading out samples in Fourier space, as we describe in Section 13.2.3.
Phase encoding is used to select a position in Fourier space, as described in
Section 13.2.6.

EXAMPLE 13.2
It is very common to use only one gradient component when applying the concept of
frequency encoding.

Question If a sample is put in a magnetic field with B0 = 1.5 T, and a z-gradient with
strength Gz = 3 G/cm is applied, what is the Larmor frequency for the protons on the
z = 0 plane? If we are to image a slab with a thickness of 0.5 m centered at z = 0, what
is the range of Larmor frequencies of the protons in the slab?

Answer In this case, G has only one nonzero component

G = (0, 0, Gz) .

Using (13.4) gives
ν(r) = γ−(B0 + G · r) (13.5a)

= γ−(B0 + Gzz) . (13.5b)

For protons, the gyromagnetic ratio is γ− = 42.58 MHz/tesla. So on the z = 0 plane the
Larmor frequency is

ν0 = γ−B0 = 63.87 MHz .

With the z-gradient, the strength of the magnetic field is

B(z) = B0 + Gzz .



13.2 MRI Data Acquisition 449

Its range within the slab of sample is between

Bmin = B0 − Gz × 0.25 m = 1.5 T − 7.5 mT , (13.6a)

Bmax = B0 + Gz × 0.25 m = 1.5 T + 7.5 mT . (13.6b)

So, the range of the Larmor frequencies within the slab of sample is

63.55 MHz ≤ ν ≤ 64.19 MHz .

13.2.2 Slice Selection

We have already studied several medical imaging techniques that image 2-D
slices of the human body: CT, SPECT, PET, and ultrasound. In CT and
ultrasound, the energy used to image the selected slice is restricted to the slice
itself. In that way, the physiological property giving rise to image contrast arises
from within only the selected slice—there is no other part of the body from
which signal can arise. In SPECT and PET, the entire body is a potential source,
but the observed signal is selected by physical and electronic collimation so that
it belongs to a specific slice.

In MRI, the basic principles of both of these approaches can be used.
Specifically, it is possible to excite only a selected slice so that the received signal
can arise only from within the selected slice; it is also possible to excite the whole
volume and then to extract images of selected slices. The first technique is called
2-D MR imaging and the second is called 3-D MR imaging. We confine our
detailed presentation in this chapter to 2-D imaging and only comment briefly
on 3-D imaging. The first step in 2-D imaging is to perform slice selection,
the selective excitation of a nuclear spin system in a slice. As noted above, for
convenience we describe the selection—and then imaging—of axial slices. The
principles carry over quite directly to the imaging of arbitrary slices.

Principle of Slice Selection In Example 13.2, we found that application of the
gradient G = (0, 0, Gz) yields a Larmor frequency that is a function of z. This
spatially varying Larmor frequency can be written as

ν(z) = γ−(B0 + Gzz) , (13.7)

which is illustrated in Figure 13.7. If a pure sinusoidal RF excitation at a specific
frequency were applied, then an infinitesimally thin slice of the body would
undergo forced precession. That slice corresponds to all points whose z position
has the specific Larmor frequency being excited. However, it is neither possible
to create such a sinusoidal waveform in practice nor is it practically desirable.
Instead, we create a waveform that excites a range of frequencies, which in turn
excites a range of tissues, corresponding to a ‘‘thick slice’’ or a slab.

Figure 13.8 shows two slice selection scenarios. In the first, Figure 13.8(a),
a z-gradient Gz = GA is used and a signal containing the range of frequencies
ν ∈ [ν1, ν2] is generated. (We will discuss what this signal actually looks like
below.) This combination causes a forced precession of all the spins around the
neck area of the subject in this example. However, the slice is thicker than would
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Figure 13.7
Effect on the main
magnetic field from a
z-gradient.
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Figure 13.8
Slices are selected by
application of a
z-gradient and excitation
over a specific frequency
range. (a) Smaller and
(b) larger gradients.
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ordinarily be desirable. In the second scenario, Figure 13.8(b), a larger z-gradient
Gz = GB is used and the same RF signal is applied. Because the z-gradient is
larger in magnitude than that in Figure 13.8(a)—that is, |GB| > |GA|—the
same RF waveform having frequencies in the range [ν1, ν2] causes the forced
precession of a thinner slice. Notice also that the slice is in a different position
as well, at the lower chest in this case.

By studying Figure 13.8 we see that there are actually three parameters that
are used together to select slices: z-gradient strength Gz, RF center frequency,

ν = ν1 + ν2

2
, (13.8)

and RF frequency range,

�ν = |ν2 − ν1| . (13.9)

For example, assume that we want to image a thinner slice at the neck region
using one of the two z-gradients in Figure 13.8. There are two ways to achieve
this. Suppose we use the smaller z-gradient, GA, as in Figure 13.8(a). We
see that the RF center frequency is fine, but the RF frequency range would
have to be made smaller in order to make the excited slice narrower. This is
the first approach. The second approach uses the larger z-gradient, GB, as in
Figure 13.8(b). In this case, the RF frequency range is fine—it already produces
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a thin slice—but the RF center frequency must be made smaller in order to shift
the slice from the chest region to the neck region.

With these three parameters, it is possible to control both slice position z
and slice thickness �z. Solving (13.7) for z, we find that the lowest and highest
excited frequencies, ν1 and ν2, yield the slice boundaries,

z1 = ν1 − γ−B0

γ−Gz
, (13.10a)

z2 = ν2 − γ−B0

γ−Gz
, (13.10b)

where ν1 = ν(z1) and ν2 = ν(z2). Slice position z is therefore given by

z = z1 + z2

2
(13.11a)

= ν − ν0

γ−Gz
, (13.11b)

where (13.11b) follows after some algebra. Slice thickness �z is given by

�z = |z2 − z1| (13.12a)

= �ν

γ−Gz
. (13.12b)

EXAMPLE 13.3
Suppose that we desire a slice thickness of 2.5 mm and that the z-gradient strength is
Gz = 1 G/cm.

Question What RF frequency range should be excited?

Answer Solve (13.12b) for the frequency range

�ν = γ−Gz�z

= γ− × 1 G/cm × 2.5 mm

= 4.258
kHz
G

× 1
G
cm

× 0.25 cm

= 1.06 kHz .

This gives the frequency range. The selection of the specific frequencies themselves—that
is, ν1 and ν2 —depends on the specific slice to be selected relative to the z = 0 origin.

We note that thinner slices have fewer nuclei, which makes the NMR signal
smaller. At some point with progressively thinner slices, the received NMR
signal—FID or echo—is too small to detect above the ambient antenna noise,
and thinner slices are not practically achievable. In whole-body imaging today,
slices thinner than about 0.8 mm require special pulse sequences and much
longer imaging times.
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Practical RF Waveforms We learned in the previous section that slice selection
uses a constant gradient together with an RF excitation over a range of
frequencies. We now consider what RF waveform to use in exciting the range
of frequencies [ν1, ν2]. We desire a signal whose frequency content is

S(ν) = A rect
(

ν − ν

�ν

)
. (13.13)

According to Fourier transform theory (see Section 2.2.4 and Example 2.7), we
see that the signal itself should be

s(t) = A�ν sinc(�νt)ej2πνt . (13.14)

This analysis is valid provided both that the gradient is constant during RF
excitation and that the RF excitation is short. An illustration of s(t) is provided
in Figure 13.9(a); its envelope is illustrated in Figure 13.9(b).

Let us consider the exact effect that the RF signal B1(t) = s(t) has on the
spin system. Equation (12.31) gives the final tip angle α after an RF excitation
pulse of duration τp and is repeated here:

α = γ

∫ τp

0
Be

1(t) dt , (13.15)

where Be
1(t) is the envelope of the RF excitation evaluated in the rotating

coordinate system. For isochromats whose Larmor frequency is ν, the excitation
signal in the rotating coordinate system is

Be
1(t) = s(t)e−j2πνt . (13.16)

After some algebraic manipulation (see Problem 13.5), it can be shown that

α(z) = γ Arect
(

z − z
�z

)
, (13.17)

which shows that the tip angles excited by the waveform in (13.14) define a
perfect slab excitation, exactly as expected by the intuitive argument above. In
principle, the value of constant A could be selected to produce an arbitrary tip
angle within the slab, such as a 90◦ maximum signal excitation.

Figure 13.9
A slice selection
waveform (a) and its
envelope (b) and its
Fourier transform (c).

(a) (b) (c)
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Equation 13.17 is an ideal tip angle profile, which cannot be realized in
practice because the sinc pulse in (13.14) would require an infinite amount of
time to ‘‘play out.’’ A more realistic scenario is created by truncating s(t) and
repeating the above analysis. This yields the following tip angle distribution

α(z) = γ Aτprect
(

z − z
�z

)
∗ sinc

(
τpγ−Gz(z − z)

)
, (13.18)

where τp is the duration of the pulse (truncated beyond [−τp/2, τp/2]) and ∗
is convolution. An illustration of a slice profile resulting from a truncated sinc
excitation is shown in Figure 13.9(c); it is essentially the Fourier transform
of the slice selection waveform. Because of truncation, the slice profile is not
perfectly rectangular in this example. This means that the edges of the slice will
be somewhat blurry and there will be ‘‘ripples’’ caused by the convolution of the
(ideal) rect profile with the sinc function associated with truncation. In general,
there is a tradeoff between the duration and shape of the RF waveform and the
profile edge ‘‘crispness’’ and ripples within the slice profile. A shorter excitation
RF pulse multiplied by a Hamming window is generally desirable even though
it will not produce a ‘‘crisp’’ rectangular slice profile.

Although it is useful to know what the slice profile is in terms of tip angle,
it is somewhat more important to know what the signal strength will be as a
function of z. Here, we recall that the amplitude of the transverse magnetization
is proportional to sin α. In the case of small tip angle excitation, sin α ≈ α,
which means that |Mx′y′ (t)| will (initially) have a rect profile as well. Often, the
small tip angle approximation is used for initial design purposes all the way up
to α = 90◦ excitation. Fine-tuning of the actual excitation pulses can be made
by using the Bloch equations to simulate all excitations.

EXAMPLE 13.4
From Example 13.3, a 2.5 mm thick slice can be excited using a gradient strength of
Gz = 1 G/cm and an RF pulse bandwidth of 1.06 kHz.

Question What is the duration of the main lobe plus the first two side lobes (on either
side) of the RF pulse required to achieve this slice thickness?

Answer The envelope of the waveform is sinc(�νt). The time of the first zero t1 satisfies

t1 = 1/�ν = 943 μs .

The duration T of main lobe plus the two nearest side lobes is four times this value.
Therefore,

T = 3.77 ms .

A pulse that comprises only the main lobe and its two sidelobes is called a two-period
sinc approximation.

Refocusing Gradients During RF excitation, the spin system within the excited
slab is undergoing forced precession. The slice profile reveals differences in the
final tip angles and hence implies different transverse magnetizations experienced
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at different z positions. Assuming reasonable design of the RF excitation
waveform (e.g., some windowing to reduce spurious ripples), these differences
are negligible in the final images. The strength of the gradient and RF waveform
can be tuned so that the center of the slice experiences a desired tip angle, often
90◦ for imaging.

There is another effect that takes place during RF excitation, however,
that is not negligible: slice dephasing. During forced precession, the spins at
the ‘‘lower’’ edge of the slice are precessing slower than those at the ‘‘higher’’
edge simply because these spins have different Larmor frequencies. As a result
of this, the spins become out of phase with each other across the slice. To
a good approximation, the phase that is introduced is linear and is equal
to γ Gz(z − z)τp/2, where τp is the duration of the RF pulse. To see this
mathematically, it is necessary to solve the Bloch equations, which we will not
carry out here. We can get a sense that this is correct, however, by noticing that
the greatest impact of the excitation is halfway through the pulse, since that is
where the Bt(t) field is strongest. If the entire RF pulse were concentrated at the
center of the gradient pulse, then the phase would accumulate over duration
τp/2, rather than the whole pulse duration. Since the resulting FID or echo relies
on in-phase precession, it is necessary to rephase the spins within the slice.

Spin rephasing is accomplished using a so-called refocusing lobe z-gradient
waveform. One possible refocusing lobe waveform is simply a constant negative
gradient of strength −Gz for a duration of τp/2, applied immediately after
the initial RF excitation. Having no accompanying RF excitation, this negative
gradient simply causes a change in the Larmor frequency as a function of z.
The accumulated phase relative to that at z over the duration of the refocusing
lobe is γ (−Gz)(z − z)τp/2. Adding this to the phase accumulated over the initial
RF excitation pulse yields zero, which means that the spins are now in phase
over the slice and they will give an FID and can be used to form an echo in
the usual way. The refocusing lobe can be shaped differently than a rectangle,
however, since all that matters is that its integral is equal to half the integral
of the slice selection gradient but with opposite sign. Most pulse sequences use
refocusing lobes (with the required area) so that the pulse sequence can be as
short as possible.

A Simple Pulse Sequence We now understand the basic elements of slice
selection. A constant z-gradient is applied during which an RF waveform of
duration τp is applied. After the RF waveform is completed, another gradient is
applied to refocus the spins within the slice. After this, we should expect to find
an FID arising from the excited spins in the slice that was selected.

Figure 13.10 shows a simplified pulse sequence, illustrating the concepts of
slice selection. In this diagram, the gradient amplitudes are shown to change
instantaneously as step functions, which is physically impossible given the
minimum switching times and finite slew rates of the gradient coils in an MR
scanner. In reality, the gradient pulses typically look like trapezoids with rising
and falling edges having slopes equal in magnitude to the maximum slew rate
of the gradient amplifiers. The mathematics becomes a bit more complicated
when trapezoidal gradient pulses are used, but the principles of pulse sequence
design are the same. For now we will continue to use the unrealizable rectangular
pulses for didactic purposes.
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Figure 13.10
A simple pulse sequence
implementing slice
selection with refocusing.
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At the completion of the refocusing gradient pulse, the phase angle of all
magnetization vectors in the selected slice will be the same, and therefore the
signals from these magnetization vectors will add constructively. This permits the
reception of an FID and the creation of echoes in the usual way. If no dephasing
were present across the selected slice, we would expect the FID to begin
at the center of the RF pulse. As shown in Figure 13.10, this is where we place the
time origin t = 0 in the slice selection pulse sequence. Because of dephasing, the
appearance of the FID is delayed until near the conclusion of the refocusing lobe.

Although there may be brief FIDs or echoes throughout a pulse sequence, the
location of the analog-to-digital converter (ADC) window in a pulse sequence
indicates where data are sampled for the creation of an image. In Figure 13.10,
the ADC is turned on immediately after slice refocusing in order to capture
the FID.

13.2.3 Frequency Encoding

Basic Signal Model We learned in Chapter 12 [see (12.41b)] that the transverse
magnetization for a uniform sample (and uniform magnetic field) after an α

excitation is given by

Mxy(t) = Mxy(0+)e−j(2πν0t−φ)e−t/T2 , (13.19)

where

Mxy(0+) = Mz(0−) sin α . (13.20)

Suppose we have a heterogeneous isochromat within an excited slice. We
model the spatial distribution of proton density, longitudinal relaxation, and
transverse relaxation using functions of x and y only—that is, PD(x, y), T1(x, y),
and T2(x, y)—assuming that the slice is fairly thin so there is no z variation.
This implies that there will be a spatial variation of transverse magnetization
immediately after RF excitation, which can be written as Mxy(x, y; 0+). The
received signal is then an integral over the slice, given by

s(t) = A
∫ ∞

−∞

∫ ∞

−∞
Mxy(x, y; 0+)e−j2πν0te−t/T2(x,y) dx dy , (13.21a)

= e−j2πν0t
∫ ∞

−∞

∫ ∞

−∞
AMxy(x, y; 0+)e−t/T2(x,y) dx dy , (13.21b)
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where A is a constant representing many different gain terms arising from
both physics and instrumentation, and φ is assumed to be zero without loss of
generality.

There are a couple of details about (13.21) that we must make clear. First,
we know from Chapter 12 that the FID decays more rapidly than T2; in fact, it
decays with time constant T∗

2 < T2. Therefore, we must view (13.21) either as
an idealized signal model, or one that applies only for very short time intervals,
where the difference in decay rates is negligible. Why not replace T2 with T∗

2 in
(13.21)? While it is true that we would then get a more accurate representation of
the true signal, we would find that it is not as easy to understand the generation
of signals and images using spin echoes, a vitally important concept in MRI.
We will see that the use of T2 is most appropriate for spin-echo acquisitions,
which is what we have been discussing so far. When we introduce gradient-echo
acquisitions in Section 13.2.5, we will use T∗

2.
Second, it should be noted that t = 0 represents the center of the slice

selection RF waveform, as shown in Figure 13.10. This is consistent with the
time at which the spins would begin transverse and longitudinal relaxation if
the pulses were made infinitesimally narrow. Third, it should be noted that
this equation ignores the short time τp it takes for the FID to actually appear
after the refocusing lobe of the slice select gradient. Nearly all practical imaging
approaches record echoes rather than FIDs (as we shall see), so this small ‘‘dead
period’’ is not usually important.

For clarity, let us define the effective spin density as

f (x, y) = AM(x, y; 0+)e−t/T2(x,y) , (13.22)

which represents the MR quantity that is being imaged here. The variable t is
not included in f (x, y) because it is assumed that the signal acquisition period
is small relative to T2. Using the definition given by (13.22) in (13.21), we find
that the received signal is given by

s(t) = e−j2πν0t
∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy . (13.23)

The received signal is always demodulated in MRI hardware, yielding the
baseband signal

s0(t) = e+j2πν0ts(t) (13.24a)

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy , (13.24b)

which is a constant, independent of x and y (and t, assuming a short data
acquisition period). Equation (13.24) shows that this imaging procedure inte-
grates out all the spatial dependency in the signal s0(t). Therefore, position is
not encoded in this signal in any way other than the selective excitation of slice
selection.
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Figure 13.11
A simple pulse sequence
implementing slice
selection followed by
frequency encoding.
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Readout Gradient The first concept required for spatially encoding MR signals
within the image plane is called frequency encoding. In frequency encoding, a
gradient is turned on during the FID, as shown in Figure 13.11, causing the
Larmor frequencies to be spatially dependent [see (13.4)]. (This same concept
will apply to echoes, as we will see in a later section.) The direction of the
frequency encoding gradient is called the readout direction because the signal
that is ‘‘read out’’ (i.e., digitized when the ADC is turned on) is spatially
encoded in that direction. The readout direction is arbitrary (except that it
should be orthogonal to the slice selection gradient); for didactic purposes,
we will associate it with the x direction. Accordingly, the Larmor frequencies
during a frequency encode gradient are given by

ν(x) = γ−(B0 + Gxx) , (13.25)

which should be compared with the Larmor frequencies during a slice selection
gradient, given in (13.7).

The response during an FID under slice selection is still an integration of all
the spins within the excited slice, but the Larmor frequency must be written as
in (13.25). Therefore,

s(t) = A
∫ ∞

−∞

∫ ∞

−∞
Mxy(x, y; 0+)e−j2π (ν0+γ−Gxx)te−t/T2(x,y) dx dy , (13.26a)

= e−j2πν0t
∫ ∞

−∞

∫ ∞

−∞
AMxy(x, y; 0+)e−t/T2(x,y)e−j2πγ−Gxxt dx dy . (13.26b)

Using the definition of effective spin density in (13.22), the demodulated (base-
band) signal is given by

s0(t) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2πγ−Gxxt dx dy . (13.27)

Equation (13.27) reveals an important concept in MR imaging and deserves
a bit more explanation. In particular, the double integral on the right-hand
side can be interpreted as a 2-D Fourier transform of f (x, y), provided that
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the frequency variables are properly identified. First, we identify the spatial
frequency variable in the x direction as

u = γ−Gxt , (13.28)

which has units of inverse length (typically cm−1). We next realize that in order
for (13.27) to match the 2-D Fourier transform, the spatial frequency variable
in the y direction must be zero,

v = 0 . (13.29)

Denoting F(u, v) as the 2-D Fourier transform of f (x, y), we can now make the
identity

F(u, 0) = s0

(
u

γ−Gx

)
, (13.30)

which shows that the demodulated FID represents a certain ‘‘scan’’ of the 2-D
Fourier space of the effective spin density.

In magnetic resonance imaging, Fourier space is usually referred to as
k-space. This practice arises from the convention in physics where the wave
number k represents a spatial frequency. Usually, the wave number has units
of radians per unit length—that is, it is a radial frequency—and this was the
convention in early MRI as well [see also the discussion around (10.10)]. More
recently, MRI researchers associate the units of inverse length with k. In this
case, the k-space variables can be identified with our Fourier frequencies,

kx = u , (13.31a)

ky = v . (13.31b)

Although somewhat unconventional, in order to avoid confusion between radial
and cyclic frequencies and to maintain consistency throughout the book, we
will use our customary Fourier frequencies u and v to describe MRI. When
referencing a modern book on MRI, the identification in (13.31) will permit
direct comparison.

Scanning Fourier Space The recognition that MR imaging can be interpreted
as a ‘‘scanning’’ of 2-D Fourier space is a tremendously important simplifying
and unifying concept. Like CT, which has the projection-slice theorem to tie
1-D projections to central slices in 2-D Fourier space, viewing pulse sequences
as a type of scanning in Fourier space allows us to understand why a certain
set of simple pulse sequences, like that in Figure 13.11, must be augmented or
repeated with a changing parameter in order to acquire enough information to
make a 2-D tomographic image.

For example, let us take a look at the Fourier information we obtain using
the pulse sequence in Figure 13.11. From (13.30), this single readout provides
Fourier information only on the horizontal u-axis in Fourier space, because this
is where v = 0. Furthermore, since observations are taking place only where
0 < t < Ts, we are only able to observe the positive u-axis over a particular
interval. This Fourier scan, usually called a Fourier trajectory, is shown in
Figure 13.12. It is quite evident from this diagram that only a small amount of
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Figure 13.12
Fourier trajectory for a
simple frequency-encoded
FID readout.
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Fourier space is scanned using this one small pulse sequence; somehow, we must
find a way to scan more. How do we return to the origin again so that we might
scan in some other direction? How do we scan in another direction?

In the next several sections, we study different techniques that will allow us
to traverse Fourier space in a remarkably flexible manner, acquiring Fourier data
as we ‘‘drive’’ through Fourier space. As in CT, the reconstruction algorithm
that we use must match the particular geometry of the acquired data. MR is
much more flexible in this regard than CT, and both rectilinear (as described
above) and polar scanning are commonly used in MR imaging, requiring the
fast Fourier transform algorithm and convolution backprojection, respectively,
for reconstruction. The following sections are ordered for didactic purposes and
do not necessarily present an order based on historical development or practical
importance. Furthermore, some of the pulse sequences we present are never
or rarely used in practice; therefore, we will specifically identify those that are
widely used and worthy of more detailed study.

EXAMPLE 13.5
For a sample of hydrogen nuclei, we want to scan a line segment in the k space from
u = 0, v = 0 to u = 0.5 cm−1, v = 0.

Question Assuming that the readout gradient has magnitude of Gx = 1 G/cm, how
long should the duration of the readout gradient be?

Answer From (13.28), we have
u = γ−Gxt.

In order to scan the line segment from u = 0, v = 0 to u = 0.5 cm−1, v = 0, we must
have

γ−GxTs = 0.5 cm−1.

The gyromagnetic ratio for 1H is

γ− = 42.58 MHz/T = 4.258 kHz/G .

The duration of the readout gradient should thus be

Ts = 0.5
4.258 × 103 × 1

= 0.117 ms .
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13.2.4 Polar Scanning

Changing the direction of the Fourier space scan simply requires a different
frequency-encoding gradient. In the previous section, the x direction was identi-
fied as the readout direction and an x-gradient was used to achieve this particular
encoded FID signal. However, a more general gradient involving both an x and
y component can be used to encode the Larmor frequency,

ν(x, y) = γ−(B0 + Gxx + Gyy) , (13.32)

as shown in Figure 13.13(a). Following an analogous development as in the
previous section [see (13.27)] leads to a baseband signal given by

s0(t) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2πγ−(Gxx+Gyy)t dx dy . (13.33)

From this, we identify the Fourier frequencies

u = γ−Gxt , (13.34a)

v = γ−Gyt , (13.34b)

and find that the implied Fourier trajectory is a ray emanating from the origin
in the direction

θ = tan−1 Gy

Gx
, (13.35)

as depicted in Figure 13.13(b). Because polar Fourier data is related to to the
object by the projection-slice theorem, this type of imaging is sometimes called
projection imaging.

This more general scan strategy has the potential to be used in a complete
imaging scenario. What seems to be required is the repetition of the basic pulse
sequence enough times to cover Fourier space in polar rays. This is a good idea,
except for a still unanswered question: How do we move back to the origin in
order to start another polar scan? The simplest way is to wait for the transverse

Figure 13.13
(a) A pulse sequence for
arbitrary polar scan and
(b) a Fourier trajectory
for this polar scan.
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magnetization to decay. There are two other useful concepts, however, and we
begin to develop one of these in the next section.

13.2.5 Gradient Echoes

We studied the concept of spin echoes in Chapter 12, and we will return to
those in a bit. First, we introduce a mechanism to create a different type of echo
called a gradient echo. This idea can be readily connected to both the Fourier
trajectories we have just introduced and the intuitive idea of spins realigning
themselves, as in spin echoes and rephasing in slice selection.

Consider the pulse sequence shown in Figure 13.14(a). The first part of this
pulse sequence is very recognizable. In fact, up through time t = TE − Ts/2,
the sequence looks like the simple frequency-encoded pulse sequence introduced
above. In this case, however, the x-gradient is negative, which simply means that
the trajectory in Fourier space from the origin moves in the negative u direction,
rather than in the positive u direction that we studied above. This is illustrated
by the A gradient lobe in Figure 13.14(a) and the A Fourier space trajectory
in Figure 13.14(b).

The FID signal is ignored in this pulse sequence (as there is no ADC window
during the FID). Instead, the purpose of the negative x-gradient is to move the
Fourier space position onto the negative u-axis. In this way, when the positive
readout gradient is applied immediately thereafter, as shown using the B lobe in
Figure 13.14(a), the Fourier trajectory traverses back in the positive u direction,
crossing the origin and continuing onto the +u-axis, as shown by the B trajectory
in Figure 13.14(b).

It may not be immediately apparent why we should expect to see an echo
peaking at time TE. So, let us consider the effect of the negative x-gradient
lobe with strength −Gx, applied immediately after slice selection. Of course, we
realize that this lobe encodes spatial frequency, precisely as if it were a readout
gradient. Therefore, spins are rotating faster on the −x-axis than they are on
the +x-axis. These faster spins accumulate phase as

φ(x, t) = γ

∫ t

τp

−Gxx dt = −γ Gxx(t − τp) , τp < t < τp + Ts/2 . (13.36)

This loss of phase coherence, by the way, occurs more rapidly than even T∗
2

because of the applied gradient. At time t = τp + Ts/2, a positive x-gradient with

Figure 13.14
(a) A simple gradient-echo
pulse sequence and (b) its
Fourier space trajectory.
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strength Gx is applied. During this applied gradient, the phase is accumulated
according to

φ(x, t) = −γ GxxTs/2 + γ

∫ t

τp+Ts/2
Gxxdt (13.37a)

= −γ GxxTs/2 + γ Gxx(t − τp − Ts/2) . (13.37b)

By direct substitution, we see that at time t = τp + Ts, the accumulated phase
is identically zero regardless of the actual value of Gx or the position x. This
realignment of spins occurs at the center of the readout gradient, identified as
the echo time TE in Figure 13.14(a).

A gradient echo can therefore be viewed in two ways. It can be seen as the
natural consequence of an increased signal at the Fourier origin when ‘‘driving
around in Fourier space’’ or as a realignment of spins at t = TE due to a
realignment of accumulated phase. There is one key feature of the gradient
echo approach that encourages the ‘‘driving around in Fourier space’’ viewpoint
rather than that of realignment of spins. That feature has to do with the
dotted line in Figure 13.14(a), denoting the decay of the signal amplitude in
this gradient echo pulse sequence. In particular, the signal strength decays with
time constant T∗

2 in the gradient echo approach, not with time constant T2 as
we saw in the spin echo approach in Chapter 12. The gradient echo refocuses
the phase deviations that we have deliberately introduced through gradient
application, not those deviations that are physically present due to static field
inhomogeneities. This is a fundamental difference between gradient echoes and
spin echoes, and it must always be kept in mind when designing or analyzing
pulse sequences.

13.2.6 Phase Encoding

With frequency encoding and gradient echoes, it is clear that a wide variety
of schemes (pulse sequences) can be designed to cover 2-D Fourier space and
yield enough information to reconstruct a picture of the slice. There is a second
important mechanism, however, that is used to encode spatial information
in MRI: phase encoding. If we view frequency encoding as a mechanism to
read out Fourier data in the u direction, then phase encoding is viewed as the
mechanism to position our readout line in the v direction in Fourier space.
After our discussion of frequency encoding and gradient echoes, phase encoding
should seem very intuitive.

Basic Concept Consider the pulse sequence shown in Figure 13.15(a). The
pulse sequence includes the usual slice-selective RF pulse followed by a refocusing
gradient. The very next action is a y-gradient pulse (A in the figure) with
strength Gy and duration Tp. This pulse achieves what is referred to as phase
encoding, which can be interpreted as a polar scan in Fourier space in the
vertical direction, as shown in Figure 13.15(b) (A in the figure). Although there
is no readout during this pulse (because there is no ADC window at this time),
from (13.33) we see that the phase accumulated during this pulse is given by

φy(y) = −γ GyTpy . (13.38)
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Figure 13.15
(a) A simple pulse
sequence showing the
phase encoding of an FID
and (b) its Fourier
trajectory.(a) (b)
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The very next action in this pulse sequence is a standard x-oriented readout
gradient [B in Figure 13.15(a)], which acquires data in Fourier space along the
B trajectory in Figure 13.15(b). After incorporating this phase encoding step
into (13.27), which is the imaging equation we previously derived for the FID
readout pulse sequence, the baseband signal becomes

s0(t) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2πγ−Gxxte−j2πγ−GyTpy dx dy . (13.39)

Comparing this to the 2-D Fourier transform yields the following identifications:

u = γ−Gxt , (13.40a)

v = γ−GyTp , (13.40b)

and

F(u, γ−GyTp) = s0

(
u

γ−Gx

)
, 0 ≤ u ≤ γ−GxTs . (13.41)

A 2-D Gradient Echo Pulse Sequence It is common to combine phase encod-
ing, gradient echoes, and frequency encoding in a single pulse sequence.
Figure 13.16(a) shows a pulse sequence identical to that of Figure 13.15(a),
except that the FID readout has been replaced with a gradient echo readout. In
Fourier space [Figure 13.16(b)], there are three distinct movements correspond-
ing to the A, B, and C segments in the pulse sequence. Only the C segment
corresponds to actual data collection. This pulse sequence is capable of acquiring
an entire line of Fourier space from negative to positive frequencies. Analogous
analysis to the previous pulse sequence reveals that the Fourier frequencies
scanned are given by

F(u, γ−GyTp) = s0

(
u

γ−Gx

)
, −γ−GxTs/2 ≤ u ≤ γ−GxTs/2 . (13.42)
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Figure 13.16
(a) A gradient echo pulse
sequence and (b) its
Fourier trajectory.
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The pulse sequence depicted in Figure 13.16(a) would work, but it can be
easily improved. A better pulse sequence would overlap the refocusing lobe, the
phase-encoding gradient, and the gradient echo formation lobe. These, it turns
out, can all be done at the same time, as their phase preparation processes are
independent. The advantage is that the amplitude of the echo is significantly
larger since TE is shorter. This possibility is explored further in Problem 13.15.

EXAMPLE 13.6
A rectangular-shaped phase-encoding gradient is not practical because it has discontinu-
ities at both ends (and large slew rates are required even to just approximate it). Since
phase encoding depends on the area of the pulse rather than its specific shape, we can
use waveforms with more practical shapes.

Question Suppose we want to use a sine-shaped gradient to achieve the same phase
accumulation as a rectangular one with Gy = 1 G/cm and Tp = 0.5 ms. Assuming the
same duration is required, what is the expression of the phase-encoding gradient and
what is its maximum slew rate?

Answer The duration of the gradient is Tp = 0.5 ms, exactly half the period of a sine
function. So the gradient can be expressed as

Gy(t) = Gy max sin (2π t) .

In order to achieve the same phase accumulation, we need

GyTp =
0.5 ms∫
0

Gy max sin (2π t) dt

0.5 G ms/cm = Gy max

0.5 ms∫
0

sin (2π t) dt

= 1
π

Gy max .
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So, the maximum value for the phase encoding gradient is Gy max = π/2 G/cm. Therefore,

Gy(t) = π

2
sin (2π t) G/cm ,

where t is in ms. The slew rate is the maximum value of
∣∣∣∣dGy(t)

dt

∣∣∣∣, which can easily be

computed to be
SR = π2 G/cm/ms .

13.2.7 Spin Echoes

We saw in Chapter 12 that spin echoes could be used to refocus spin systems
that had been dephased due to T∗

2 effects (static magnetic field inhomogeneities).
By using spin echoes, an MR signal could be generated until it was completely
lost due to T2 effects (random perturbations of the magnetic field), which are
not reversible. Because T2 > T∗

2, the spin echo can produce a measurable signal
long after the initial FID decays away. In this section, we will see how the spin
echo can be used in an imaging sequence and its interpretation in Fourier space
scanning.

Recall from Section 12.9 that a spin echo is generated by applying a 180◦
RF pulse shortly after the initial α pulse. Spins that were lagging behind are now
ahead and vice versa. Consider what this means in terms of phase accumulation.
Suppose we had deliberately applied a phase encode with gradient strength Gy

just prior to the 180◦ pulse, which means that phases that had advanced due to
their y position would now be lagging and vice versa. It would be as if we had
applied a phase encode with the gradient strength −Gy. Now, suppose that we
had prepared for a gradient echo by applying an x-gradient with strength −Gx

and then applied a 180◦ RF pulse. Again, the spins that were leading would now
be lagging, and it would be as if we had applied an x-gradient with strength Gx.
In both cases, the effect of the 180◦ pulse is to interchange the meaning of lead
and lag, and this happens in both the x and y directions at the same time.

The effect of a 180◦ pulse in Fourier space can be understood by carefully
interpreting some of our words from the previous paragraph. We stated that
the position in Fourier space after the 180◦ pulse would be as if both the
phase encode and the gradient echo preparation pulse had the opposite sign.
Therefore, the 180◦ pulse causes a sudden change of sign of the frequencies
corresponding to both the x and y directions, which is a reflection through the
origin in Fourier space. If the position had been (u, v) prior to the pulse, it would
now be (−u, −v). This is a very rapid repositioning in Fourier space, costing
only the time it takes to execute a 180◦ pulse.

Given this description, it is straightforward to construct a pulse sequence
incorporating a spin echo. One possibility is shown in Figure 13.17. Section 1
in panel (a) performs the usual slice selection. Section 2 creates a phase encode,
moving the Fourier frequency straight up from the origin, as shown in panel
(b). Section 3 performs an x prephasing gradient, moving the Fourier location
into the first quadrant, as shown in panel (b). Section 4 is a 180◦ RF pulse
executed during a slice selection gradient. Refocusing of this slice selection
gradient is not necessary because of a peculiarity of the 180◦ pulse. In particular,
phase accumulated during the first half of the pulse is exactly balanced in the
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Figure 13.17
(a) A pulse sequence
diagram for a spin echo
image acquisition and
(b) its Fourier space
trajectory.
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second half of the pulse because the spins are reversed. Section 5 is a required
waiting period, a dead-time during which an echo is formed. Section 6 is the
conventional frequency-encoded readout, scanning across Fourier space while
collecting data.

EXAMPLE 13.7
Spin echo pulse sequences can be used to measure T2 values of a sample of a homogeneous
tissue. Consider Figure 13.17 and let Gx = 0.

Question What is the baseband signal at time t = TE for a sample of a homogeneous
tissue?

Answer From (13.22) and (13.27), we can determine that the baseband MR signal is

s0(t) =
∞∫

−∞

∞∫
−∞

AMxy(x, y; 0+)e−t/T2(x,y)e−j2πγ−Gxxt dx dy .

Since the sample is homogeneous, we have Mxy(x, y; 0+) = Mxy and T2(x, y) = T2. Since
Gx = 0, the baseband signal at time t = TE is

s0(TE) = AMxye−TE/T2�A ,

where �A is the area of the cross section of the sample in the x-y plane. Now, suppose
we use the same pulse sequence with a different echo time T′

E to image the same sample.
The baseband signal at time t = T′

E measured is

s′
0(T′

E) = AMxye−T′
E/T2�A.

The value of T2 can be solved as

T2 = T′
E − TE

ln
[

s0(TE)
s′
0(T′

E)

] .
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13.2.8 Pulse Repetition Interval

The gradient echo and spin echo pulse sequences have the potential to acquire all
of 2-D Fourier space (at least in a sampled fashion). In order to do so, however,
the basic pulse sequence must be repeated with different scan parameters.
For example, the polar scan method must be repeated using different readout
orientations θ . Both the gradient echo and spin echo techniques must be repeated
using different phase-encoding gradient values Gy. The duration of the interval
between such repetitions is called the pulse repetition time and is given the
symbol TR.

Our development of MR imaging equations (Section 13.3) will depend on
whether the sequence is presumed to be either a slow imaging sequence or a fast
imaging sequence. The slow imaging regime assumes TR � T2. In this case, the
transverse magnetization has completely disappeared before application of the
next α pulse, and there is no possibility of producing an echo from a previous
excitation. The Fourier analysis of successive pulse sequences can correctly treat
each one as if it starts from the Fourier origin. This is a little like ultrasound
imaging, where TR must be large enough so echoes cannot be received from
previous pulses and thereby confused with echoes coming from present pulses.

The fast imaging regime, however, breaks down this ‘‘barrier’’ using several
different techniques, including the acquisition of multiple spin echoes or gradient
echoes from a single initial RF excitation, and spoiling the transverse magne-
tization prior to subsequent excitation. Based on the previous discussion, we
can concoct several schemes to acquire multiple spin echoes or gradient echoes.
Basically, the ‘‘driving around in Fourier space’’ idea works fine, provided that
we think correctly about compensating for spins that need to be rephased and
continuing loss of signal due to T2 and T∗

2 effects. We do not have space to
cover these techniques within the main body of the book, but we do offer several
examples that can be worked out in the problems.

The idea of spoiling is something new. In this approach, a special additional
gradient pulse called a spoiler pulse is used just prior to each successive excitation
in order to guarantee that no echoes will form from previous excitations. The
basic idea is to apply a z-gradient in order to dephase the spins in the z direction
so that spins integrated over the thickness of the slice will add destructively and
no signal can be produced. A different value of the spoiler gradient is used with
each successive TR interval so that there will be no possibility that the spins
would actually be forced to line up again at some point later in the sequence.
Gradient echo sequences that use this technique are called spoiled gradient echo
(SPGR) image sequences.

13.2.9 Realistic Pulse Sequences

We now present three pulse sequences that might be implemented in practice.
These pulse sequences are based on the principles developed in the previous
section but show adherence to slew rate limitations, take advantage of overlap,
and use alternate wave shapes where area is the only consideration.

Two-Dimensional Gradient-Echo Pulse Sequence A theoretically correct 2-D
gradient-echo pulse sequence is shown in Figure 13.16. There are several
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Figure 13.18
(a) A realistic
gradient-echo pulse
sequence and (b) its
Fourier space trajectory.
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aspects of this pulse sequence that are unrealizable, impractical, or unde-
sirable. Figure 13.18 gives a more realistic pulse sequence for the following
reasons. First, in this pulse sequence, all gradient waveforms are represented as
trapezoidal pulses, which reflects the fact that there is a limited slew rate on the
gradient amplifiers. Second, the slice selection refocusing lobe, the phase encode
pulse, and the readout prefocusing pulse are all done at the same time. This
does not cause any problem since these processes are independent. This practice
saves time and puts the initial scan position in the correct location in Fourier
space (although the exact Fourier trajectory taken from the origin to the final
position might be quite complicated).

The third reason that Figure 13.18 is a more realistic pulse sequence is
that it acknowledges the fact that the basic pulse sequence must be repeated
with different phase encode values. The start of the second pulse sequence is
shown after the breaks appearing on the time axes, and the repetition interval
is explicitly shown on the pulse diagram as TR. The breaks in the time axes
indicate that time may elapse before starting the next excitation. The different
phase encode values are indicated using a glyph that shows the basic waveform
as a bold trapezoidal envelope and the other waveforms as lighter trapezoids.
The Fourier diagram in Figure 13.18(b) indicates the Fourier trajectory in a
single excitation as well as additional trajectories for multiple excitations. It is
clear that this pulse sequence is capable of covering Fourier space after multiple
excitations.

A fourth aspect of Figure 13.18 that is different from Figure 13.16 is the
additional z-gradient during time period 4. This is the spoiler gradient discussed
above, and it is often used to produce a faster imaging sequence. Like the
phase encode gradient, the spoiler uses a different value with each repetition, as
depicted by the bold and lighter lines.

Two-Dimensional Spin-Echo Pulse Sequence Having seen the elements that
make up a more realistic 2-D gradient echo pulse sequence, the more realistic
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Figure 13.19
(a) A realistic spin-echo
pulse sequence and (b) its
Fourier space trajectory.
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spin-echo sequence shown in Figure 13.19 should come as no surprise. As in the
gradient-echo sequence, gradient waveforms are shown as trapezoids, reflecting
the actual limitations of MR gradient amplifiers. We depict a repetition of the
basic pulse sequence using breaks in the time axes and indicating the pulse
repetition interval TR. There are also special glyphs to depict the use of multiple
phase encodes over successive excitations.

The spin-echo sequence cannot use a spoiler since successive excitations
need to create true echoes. Fast imaging techniques using spin echoes exist, and
some discussion of these is presented in the problems.

Two-Dimensional Polar Imaging A realistic 2-D polar imaging pulse sequence
is shown in Figure 13.20. We show a spin-echo sequence here, which is typical
for polar imaging, but we could design a gradient-echo or spoiled gradient-echo
sequence as well. As in both of the realistic sequences shown above, we have
indicated the required repetition of the basic pulse sequence using both breaks
in the time axes and glyphs that indicate the changing waveforms with each
excitation.

The x- and y-gradients, which are used together for both phase encoding
and frequency encoding (readout), in a polar pulse sequence must be chosen
so that the correct orientation is scanned. In order to scan angle θn during the
nth excitation, following (13.35), we see that the gradients must be selected as
follows:

θn = tan−1 Gy,n

Gx,n
. (13.43)

13.3 Image Reconstruction
Since the data acquired from 2-D MR imaging pulse sequences can be interpreted
as scans of Fourier space, the image reconstruction algorithm in MRI is the
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Figure 13.20
(a) A realistic spin-echo
polar pulse sequence and
(b) its Fourier space
trajectory.
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inverse Fourier transform. Since we have presented both rectilinear and polar
data acquisition, we present the corresponding reconstruction algorithms.

13.3.1 Rectilinear Data

For conventional pulse sequences that acquire data in a rectilinear fashion, such
as the gradient-echo or spin-echo sequences outlined above, the baseband signal
is a temporal waveform that is dependent on the area Ay of the phase encode
gradient (which can be negative). With reference to (13.39), the baseband signal
can be written as

s0(t, Ay) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2πγ−Gxxte−j2πγ−Ayy dx dy , (13.44)

where the dependence on both t and Ay has been made explicit. We identify the
Fourier frequencies as [see (13.40)]

u = γ−Gxt , (13.45a)

v = γ−Ay , (13.45b)

which allows us to identify the Fourier transform of f (x, y) as

F(u, v) = s0

(
u

γ−Gx
,

v
γ−
)

, 0 ≤ u ≤ γ−GxTs . (13.46)

An MR image is reconstructed as the inverse 2-D Fourier transform of
F(u, v), which from (13.46) can be written as

f (x, y) =
∫ ∞

−∞

∫ ∞

−∞
s0

(
u

γ−Gx
,

v
γ−
)

e+j2π (ux+vy) du dv . (13.47)



13.3 Image Reconstruction 471

This equation is truly fundamental in MRI. Its simplicity, however, hides so
many practical aspects of MRI that we can be easily lulled into a false sense
of understanding. For example, we do not really know what f (x, y) represents
at this stage in our presentation. The meaning of f (x, y) is not as conceptually
straightforward as the linear attenuation coefficient in CT, the radioactivity
concentration in SPECT, or even the reflectivity in ultrasound. In fact, f (x, y) is
determined by several tissue NMR properties as well as certain pulse sequence
parameters. We will have more to say about this in Section 13.3.3.

Another aspect of (13.47) that must be addressed is the fact that both
frequency variables, u and v, must be sampled. This leads to the practical
requirement that (13.47) be computed using a 2-D discrete inverse Fourier
transform algorithm [typically based on the fast Fourier transform (FFT)]. In
this book, we do not require a background in digital signal processing, so we
will not discuss the specifics of algorithm implementation. However, the fact
that Fourier space is sampled in MRI is critical to image quality and will be
discussed in Section 13.4.

EXAMPLE 13.8
A 2-D MR image is reconstructed from data collected by sampling Fourier space. Assume
that data are acquired using a spin-echo pulse sequence (Figure 13.19), and a square
region of Fourier space centered at (u, v) = (0, 0) is sampled in a rectilinear fashion.

Question The parameters are set to be TR = 50 ms, Ts = 3 ms, Gx = 1 G/cm, �Gy =
0.1 G/cm, γ− = 4.258 kHz/G, and Tp = 0.3 ms. How many lines are acquired in Fourier
space? How long does it take to acquire the entire image?

Answer The Fourier frequency is given by

u = γ−Gxt .

Since Gx = 1 G/cm and Ts = 2 ms, the range of acquired u is

umax − umin = γ−GxTs = 12.774 cm−1.

The square coverage in Fourier space requires vmax − vmin = 12.774 cm−1. Since we have
a fixed Tp and �Gy = 0.1 G/cm, the adjacent lines in Fourier space are separated by

�v = γ−�GyTp = 0.128 cm−1.

In order to cover the square in Fourier space, we need to acquire

N = 12.774 cm−1

0.128 cm−1 = 100 lines .

The imaging time is therefore
T = NTR = 5 s .

13.3.2 Polar Data

Pulse sequences that acquire polar data in Fourier space have baseband signals
that depend on both time and orientation, s0(t, θ ), where θ is given by (13.35).
In this case, the frequency variable is identified in polar coordinates as

� = γ−
√

G2
x + G2

y t . (13.48)
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From the development in CT, we know that the projection-slice theorem equates
a ‘‘slice’’ of F(u, v) to the Fourier transform of g(�, θ ), which is a projection of
f (x, y). That is,

G(�, θ ) = F(� cos θ , � sin θ ) , (13.49)

where

G(�, θ ) = F1D{g(�, θ )} , (13.50)

and

g(�, θ ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(� − x cos θ − y sin θ ) dx dy . (13.51)

The baseband signal is a polar scan in Fourier space, which yields

G(�, θ ) = s0

⎛
⎜⎝ �

γ−
√

G2
x + G2

y

, θ

⎞
⎟⎠ . (13.52)

From the 2-D Radon transform theory developed in Chapter 6, we know that
f (x, y) can be reconstructed using filtered backprojection [see (6.23)], which is
given by

f (x, y) =
∫ π

0

[∫ ∞

−∞
|�|G(�, θ )ej2π�� d�

]
�=x cos θ+y sin θ

dθ . (13.53)

We know that convolution backprojection is an equivalent approach [see (6.26)].
Also, polar-to-rectangular interpolation methods could be used to form a
rectilinear array of data, and the reconstruction method would thus be a
standard 2-D inverse Fourier transform.

13.3.3 Imaging Equations

We introduced the concept of MRI contrast mechanisms in Section 12.10.
We explained that the basic tissue parameters PD, T2, and T1 are responsible
for contrast and that the pulse sequence parameters—α, TE, and TR —can
be manipulated to change the image contrast and, hence, the appearance of
the reconstructed MR images. Table 13.1 summarizes our findings from the
previous chapter describing the basic way to create contrast that is primarily
dependent on PD, T2, and T1. Please look back at Figure 12.10 to remind
yourself how dramatically different the same cross section can look depending
on the contrast mechanism used to create the image.

Although the list in Table 13.1 is valid, the given scanner parameters are
not the only way to produce the target contrast. In particular, the changes in
contrast due to tip angle α are not reflected in this table. To get a much more
complete understanding of the possibilities, it is necessary to derive an imaging
equation for a given pulse sequence, which we now develop. It should be noted
that these three contrasts are not the only possible contrast mechanisms in
MRI. Other key contrast mechanisms in MRI include T∗

2, flow, susceptibility,
diffusion, and chemical shift. We provide an introduction to the susceptibility
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TABLE 13.1

Contrast Generation in Basic MRI

Contrast Scanner Parameters

PD Long TR, read FID or use short TE

T2 Long TR, TE ≈ T2,
T1 Read FID or use short TE, TR ≈ T1

and diffusion contrasts in Section 13.5. Other topics are left for independent
study; a good starting point is the bibliography given at the end of this chapter.

We have established that MRI reconstructs an image of the effective spin
density f (x, y), which is given by

f (x, y) = AM(x, y; 0+)e−t/T2(x,y) . (13.54)

The first fact we need to realize is that t should be replaced by the time at
which the signal is sampled. In the case of FID sampling t = 0, while for echo
sampling t = TE. Now consider a pulse sequence that issues a steady succession
of α RF excitation pulses and assume that TR � T2 (which implies that the
transverse magnetization is gone by the time each successive RF excitation is
applied). If TR ≈ T1 (at least for some tissues), then the sample will not be in
equilibrium; that is, the longitudinal magnetization will not reach its equilibrium
value before the next excitation pulse. But each pixel will establish a steady-state
z magnetization in a certain sense. We now explore the concept of steady-state
pulse sequences.

From (12.35), we know that the first α pulse will yield the longitudinal
magnetization

Mz(t) = Mz(0+)e−t/T1 + M0(1 − e−t/T1 ) , (13.55)

where it is understood in the context of imaging that M0, Mz, and T1 are
functions of x and y within an excited image slab. If an α pulse is used, we have

Mz(0+) = Mz(0−) cos α , (13.56)

and Mz(0−) = M0 for the first pulse. So,

Mz(t) = M0 cos αe−t/T1 + M0(1 − e−t/T1 ) , (13.57)

which at the moment of the second excitation has the value

Mz(TR) = M0 cos αe−TR/T1 + M0(1 − e−TR/T1 ) . (13.58)

This longitudinal magnetization will be tipped by α in the next excitation and
will then undergo further recovery.

It is straightforward to show that the magnetization just prior to the nth
α pulse must obey

Mz(nTR) = Mz([n − 1]TR) cos αe−TR/T1 + M0(1 − e−TR/T1 ) . (13.59)
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Equation (13.59) is a difference equation that can be solved for its steady-state
value M∞

z (0−). In particular, the steady-state value must obey

M∞
z (0−) = M∞

z (0−) cos αe−TR/T1 + M0(1 − e−TR/T1 ) , (13.60)

which, after some algebra, yields

M∞
z (0−) = M0

1 − e−TR/T1

1 − cos αe−TR/T1
. (13.61)

Looking back at the effective spin density [(13.54)], we realize that the
longitudinal magnetization in (13.61) is tipped by α during RF excitation in
order to generate a transverse component—the source of the NMR signal.
Therefore, the reconstructed spin density for a steady-state pulse sequence can
be written as

f (x, y) = AM∞
z (x, y; 0−) sin αe−TE/T2(x,y) , (13.62)

where TE = 0 in the case of FID imaging. Incorporating (13.61) yields

f (x, y) = AM0 sin αe−TE/T2(x,y) 1 − e−TR/T1

1 − cos αe−TR/T1
, (13.63)

which is a very common imaging equation for MR imaging. It should always be
remembered that (13.63) applies for steady-state imaging when TR � T2.

EXAMPLE 13.9
From (13.63), we can see that the parameters, TE, TR, and α, can be optimized to obtain
the best contrast between different tissues.

Question Suppose that two tissues have the same proton density and T2 value but have
different T1 values, Tb

1 and Tf
1. What is the optimal TR value that provides the best local

contrast of effective spin density, given that α = π/2?

Answer The tip angle is α = π/2. So the effective spin density for two tissues are

f b(x, y) = AM0e−TE/T2 (1 − e−TR/Tb
1 ) ,

f f(x, y) = AM0e−TE/T2 (1 − e−TR/Tf
1 ) .

The local contrast of the effective spin density is

C = f f(x, y) − f b(x, y)
f b(x, y)

= e−TR/Tb
1 − e−TR/Tf

1

1 − e−TR/Tb
1

.

By assuming TR � Tb
1 , we have

C ≈ e−TR/Tb
1 − e−TR/Tf

1 .
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By taking the derivative of C with respect to TR and setting it to zero, we have

dC
dTR

= − 1

Tb
1

e−TR/Tb
1 + 1

Tf
1

e−TR/Tf
1 = 0.

The optimal TR for best local contrast is therefore

T̂R = Tb
1Tf

1

Tb
1 − Tf

1

ln

(
Tf

1

Tb
1

)
.

13.4 Image Quality
In MRI, there are many issues that must be understood in order to get a good
sense of image quality. In this section, we will address the concepts of sampling,
resolution, noise, SNR, and artifacts. We will find that the issues are a bit more
involved than in most medical imaging modalities, and we can pursue only the
most basic concepts in this book. Further details can be found in several of the
references listed in the bibliography at the end of this chapter.

13.4.1 Sampling

We now understand that MRI can be interpreted as a procedure that samples the
2-D spatial Fourier space of the effective spin density in a plane. The most basic
part of this acquisition process is the sampling of the baseband signal s0(t)—an
FID or echo—during a readout gradient using an ADC. Suppose Na samples
are acquired T seconds apart during a readout that has gradient strength Gx.
Then, the ADC will acquire data for duration

Ts = NaT , (13.64)

a variable that is identified in all of our pulse sequences. The sampling rate for
this process is

fs = 1
T

, (13.65)

and it is given the name receiver bandwidth (RBW) in MRI. This is because
the ADC uses an antialiasing filter that cuts off frequencies outside the interval
[−fs/2, fs/2] in order to avoid temporal aliasing. The width of this interval is
the receiver bandwidth—that is, RBW = fs/2 − −fs/2 = fs.

Recall that the readout gradient encodes the Larmor frequencies of the spin
system in the x direction. Accordingly, on one side of the field of view (FOV),
the spins have a higher frequency during the readout interval, and on the other
side they have a lower frequency. We know that the received signal s(t) is
demodulated using the Larmor frequency ν0 = γ−B0, which corresponds to the
center of the FOV. Therefore, relative to the center of the FOV, the baseband
signal frequencies on one side of the FOV will have positive frequencies and the
other side will have negative frequencies during a readout interval.
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Since the sampling process uses an antialiasing filter, the sampled baseband
signal cannot represent frequencies outside the interval [−fs/2, fs/2]. This means
that spins with higher (negative or positive) frequencies will be invisible—the
FOV is cut off in the x direction by the readout ADC. Therefore, the size of the
FOV in the x direction FOVx is specified by the spatial range of the spin system
with Larmor frequencies within the RBW. Accordingly,

γ−GxFOVx = fs , (13.66)

which leads to the relationship

FOVx = fs

γ−Gx
(13.67a)

= 1
γ−GxT

, (13.67b)

where the last equality follows from (13.65). By comparing the denominator of
(13.67a) with (13.40a), it is evident that the quantity γ−GxT represents a ‘‘step’’
�u in Fourier space in the readout direction. Accordingly,

�u = γ−GxT (13.68)

is the separation of samples in k space in the u direction corresponding to a
sampled MRI readout.

Sampling in the v direction is determined by the sequence of phase encode
gradients that are used. Typically, a step size in phase encode gradient area �Ay

is selected, and any particular phase encode waveform has an area that is an
integer multiple of �Ay. Accordingly, we find that

�v = γ−�Ay (13.69)

and

FOVy = 1
γ−�Ay

(13.70a)

= 1
�v

. (13.70b)

Despite the analogous expressions for FOV in the readout and phase-
encode directions, there is a key difference between them that requires careful
interpretation and implementation. In the readout direction, an antialiasing
filter is used to remove frequencies higher than those in the readout FOV. This
has the effect of obliterating the signal coming from tissues outside the readout
FOV. In the phase encode direction, however, there is no antialiasing filter; the
Fourier space lines that are sampled are essentially ‘‘point samples’’ with respect
to the phase encode direction. So, if tissues actually exist outside the calculated
phase-encode FOV, they will be aliased and will cause wraparound in the phase
encode direction in the reconstructed images.

The aliasing problem caused by a too-large step size in phase encode
gradients is analogous to the concept of aliasing presented in Chapter 3. Here, we
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are sampling Fourier space rather than image space, and the aliasing causes
wraparound in image space rather than in Fourier space. For example, in a
conventional axial brain image in which the phase encode direction corresponds
to the back-to-front direction, too-large phase-encode sampling will cause the
back of the brain to appear at the front and vice versa.

EXAMPLE 13.10
The FOV of an MR image is related to the sampling steps in Fourier space. Sup-
pose the reconstructed MR image has same resolution and size in both x and y
directions.

Question If we set Ts = 3 ms, Gx = 1 G/cm, and fs = 85.33 kHz, how many samples
are acquired for each readout gradient? What is �Ay? What is the size of the FOV?

Answer The duration of a readout gradient is Ts = 3 ms, and RBW is fs = 85.33 kHz.
So there are Na = Tsfs = 256 samples taken for each readout gradient. The sampling
period is T = 1/fs = 11.72 μs. Since the reconstructed image has same resolution and
size in both directions, we have

�v = �u = γ−GxT = γ−�Ay .

This means that, �Ay = GxT = 11.72 G μs/cm. The FOV has the same size in both
directions, which is

FOVx = fs

γ−Gx
= 85.33 kHz

4.258 kHz/G × 1 G/cm
= 20.04 cm .

13.4.2 Resolution

Viewing MRI as a Fourier imaging method makes a basic discussion of image
resolution fairly straightforward. We know that pulse sequences acquire data
from a region in Fourier space using a sequence of readouts [see Figures 13.18(b),
13.19(b), and 13.20]. If there is any Fourier information outside the region
acquired by the pulse sequence (i.e., higher frequency information), then it is
not imaged and is reconstructed as if it were identically zero. Therefore, a
pulse sequence inherently represents a low-pass filtering process applied to the
underlying image. This limits the achievable resolution of MRI.

Let us consider the conventional acquisition approaches that use rectilinear
scanning, as in Figures 13.18 and 13.19. The low-pass filter implied by these
methods is a rectangle in Fourier space with dimensions

U = Nxγ−GxT , (13.71a)

V = Nyγ−�Ay , (13.71b)

where Nx and Ny are the number of readout and phase encode samples acquired,
respectively. The implied low-pass filter is therefore given by

H(u, v) = rect
( u

U

)
rect

( v
V

)
, (13.72)
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and the PSF, which is the inverse Fourier transform of H(u, v), is therefore given
by

h(x, y) = UV sinc(Ux) sinc(Vy) . (13.73)

It is sufficient to consider the main lobe of the 2-D sinc function in (13.73) in
order to define resolution. As we have often done throughout this book, we will
approximate the FWHM of a sinc function as one half of the interval between
the first two zeros. Accordingly,

FWHMx = 1
U

= 1
Nxγ−GxT

, (13.74a)

FWHMy = 1
V

= 1
Nyγ−�Ay

. (13.74b)

Incorporating the definitions in (13.68) and (13.69) yields

FWHMx = 1
Nx�u

, (13.75a)

FWHMy = 1
Ny�v

, (13.75b)

which are called the Fourier resolutions of MRI.
When polar sampling is used, the concept of resolution is conceptually the

same as that in CT (see Section 6.4.1). In CT, two effects degraded spatial
resolution: detector size and the ramp filter window function W(�). In MR, the
limited trajectories being scanned in Fourier space—not the detector size—are
relevant in degrading resolution. Suppose S(�) represents a rectangular window
describing the frequency scan (assumed to be symmetric about the origin) of
each polar scan. Then the reconstructed effective spin density is given by

f̂ (x, y) = f (x, y) ∗ h(r) , (13.76)

where r =
√

x2 + y2. The point spread function is circularly symmetric and given
by the inverse Hankel transform [see (2.108)]

h(r) = H−1{S(�)W(�)} . (13.77)

It is important to distinguish what is sometimes called the pixel size from
the Fourier resolution. Our formulas for reconstructing f (x, y) are stated in
terms of continuous variables—both spatial and Fourier variables—although
we know that they will be implemented digitally. Without assuming prerequisite
knowledge of digital signal processing, it is difficult to get too deeply into the
details of implementation, but the concept of pixel size can be clarified easily
enough.

Observations at discrete u and v locations will be obtained by MR scanning,
and the reconstruction formula, (13.47) or (13.53), will be discretized to accept
only those observed values. Similarly, the x and y locations at which f (x, y)
is computed will also be discretized. The separation of the x and y samples,
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�x and �y, define the dimensions of a pixel, and together they define the pixel
size. These dimensions are completely arbitrary. Although we may have 256 by
256 Fourier space samples, we can choose to reconstruct J by J pixels in the
image space, and J can be absolutely anything. Of key importance, however, is
that the underlying Fourier resolution does not change as a function of J, �x,
and �y, but only as a function of the image acquisition Fourier window.

EXAMPLE 13.11
The resolution of an MR image is related to the k space coverage by Fourier transform.
Suppose we want to acquire a 256 × 256 image, with resolution of 1 mm × 1 mm.

Question Suppose the readout gradient is Gx = 1 G/cm, what is the RBW fs? What is
�Ay? What is the k space coverage? If TR is 50 ms, what is the imaging time?

Answer The Fourier resolution in the x direction is

FWHMx = 1
Nxγ−GxT

= 1 mm .

So the RBW is

fs = 1
T

= NxFWHMxγ−Gx = 109 kHz .

The Fourier resolution in the y direction is

FWHMy = 1
Nyγ−�Ay

= 1 mm .

So we have

�Ay = 1
Nyγ−FWHMy

= 9.17 G μs/cm.

The k space coverage is V = U = 1/FWHMx = 10 cm−1. The imaging time is T =
50 ms × 256 = 12.8 s.

13.4.3 Noise

Noise in MRI arises from statistical fluctuations of the signal—e.g., FID or
echo—sensed by the receiver coils. The dominant source of this noise is
Johnson noise, which is generically caused by the thermal agitation of electrons
or ions in a conductor. In MRI, Johnson noise arises predominantly from
the electrolytes in the patient, but it can also arise within the receive coil
and the electronics attached to it. The variance of the received noise can be
characterized by

σ 2 = 2kT R
TA

, (13.78)

where k is Boltzmann’s constant, T is temperature, R is the effective electrical
resistance that the receiver coil ‘‘sees,’’ and TA is the total acquisition time. It is
important to note that TA is the sum of all the readout times during which data
are collected; this time is less than the total time it takes to complete a given
pulse sequence since there are many intervals in which the ADC is not active.
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Normally, it is desirable to reduce noise as much as possible. We do not have
control over temperature T (in ordinary human imaging scenarios, anyway), but
we can control both R (to some extent) and TA. The effective resistance in both
the RF coil and the electronics is ordinarily much smaller than that of the body,
and it can be ignored. Therefore, to reduce R, we need to reduce the amount
of patient seen by the RF coil. We learned earlier that there are different RF
coil designs (e.g., body coils, head coils, and surface coils). Therefore, choosing
a coil whose sensitivity pattern encompasses a smaller volume will inevitably
reduce the noise in the receiver. For example, it is highly desirable to use a
head coil when imaging the head, since the body coil (attached within the
bore of the scanner) would see a large part of the thorax, thereby contributing
noise to the signal. Coils for the extremities are even smaller, and they are
therefore better for imaging small body parts. Surface coils, while typically
seeing a very small volume, have an uneven sensitivity pattern. In such coils the
MR intensity will vary across the image, producing a ‘‘shading artifact’’ that is
usually undesirable.

For a body or head coil, which can be approximated as a solenoid (a mul-
titurn loop of wire), an equation for R can be worked out (see Problem 13.22).
Suppose the solenoid has N turns per unit length, a total length of L, and each
turn has radius r0. We can then determine that

R = π3μ2
0ν

2
0N2Lr4

0

2ρ
. (13.79)

Here, ν0 is the Larmor frequency, μ2
0 = 4π × 10−7 weber/amp-meter is the per-

meability constant, and ρ is the resistivity of the body. From (13.78) and (13.79),
it seems that noise can be reduced by decreasing (1) the solenoid’s length, (2) the
number of turns per unit length, (3) the solenoid’s radius, or (4) ν0. If we reduce
the length of the solenoid, then its imaging volume is made smaller, which
may be undesirable in volumetric imaging. If we reduce its radius, then only a
smaller object will fit within the coil. This is essentially the difference between
a head coil and a body coil, although either coil can be used to create an image
of the head, a head coil has lower noise than a body coil and is therefore
preferable.

According to (13.79), reducing the number of coils per unit length seems
like a good idea, but it turns out that this will also have the effect of reducing
the signal and will not actually improve the image quality. Finally, reducing ν0 is
easily accomplished by using less current in the superconducting magnet, which
in turn reduces B0 and hence ν0 = γ−B0. It turns out, however, that the NMR
signal will be reduced faster, causing an actual degradation of image quality.
To understand these two facts, we need to understand the parameters affecting
signal strength in MRI and then look at signal-to-noise ratio (SNR).

EXAMPLE 13.12
Noise is sometimes thought to be controlled by the sampling rate (RBW) and that higher
sampling rates cause an increase in the image noise.

Question Find an expression for MRI noise variance in terms of the sampling rate
(RBW) fs.
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Answer The total acquisition time is

TA = MTs ,

where M is the number of readouts and Ts is the total time of a readout (where we
assume that all readouts have the same duration in a given pulse sequence). Assuming
there are Na samples in each readout with a time separation of T per sample,

Ts = NaT .

Since

fs = 1
T

,

we can write

TA = MNa

fs
,

and using this in (13.78) yields

σ 2 = 2kT Rfs

MNa
. (13.80)

It therefore appears that increasing fs leads directly to an increase in image noise. But
what has really happened is that the larger fs leads to a faster acquisition of Na samples,
which in turn reduces both Ts and TA. Shorter overall acquisition time is what leads to
higher noise. However, had we simultaneously changed the readout gradient Gx while
increasing the sampling rate in such a way that Ts remained constant, the noise would
have remained constant as well. Alternatively, if we doubled fs but scanned Fourier space
twice and then averaged the results, the total acquisition time would be the same and the
image noise would have once again remain unchanged. Thus (13.80) should not be used,
even though it is technically correct, as it hides the true mechanism governing image
noise in MRI.

13.4.4 Signal-to-Noise Ratio

We are interested to know what factors can be adjusted to reduce the noise,
while simultaneously keeping the signal strong. This concept is embodied in
SNR, of course, and since we already have an expression for the noise, we need
only find an expression for the signal. Under the assumption of a homogeneous
sample and uniform RF field, (12.26) gives the result we need. For convenience,
we repeat this equation for signal strength here:

|V| = 2πν0VsM0 sin α Br . (13.81)

If the receive coil is a solenoid (as in the previous section), then the reference
field strength Br at the center of the coil, produced by a unit current I0 passing
through the coil, is given by

Br = μ0I0N , (13.82)

where N is the number of turns per unit length. Substituting (13.82) into (13.81)
yields

|V| = 2πν0VsM0 sin α μ0N , (13.83)

where we have assumed |I0| = 1, since it is unity reference current.
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An expression for SNR is found using (13.78) and (13.83):

SNR = |V|√
σ 2

= 2πν0VsM0 sin α μ0N√
2kT R/TA

. (13.84)

Substituting for R using (13.79) and M0 using (12.4), and working through
some algebra yields

SNR = γ−h2

√
4πk3

2πν0PD
√

ρ

r2
0

√
LT 3

Vs sin α
√

TA . (13.85)

This expression has three basic terms in the product. The first fraction comprises
physical constants, which cannot be changed or affected. The second term
comprises terms that are related to the object or the system design and perhaps
can be changed or selected. For example, objects with larger proton densities or
resistivities, or ones that experience larger static magnetic fields (hence, higher
Larmor frequencies) will yield larger SNRs. As well, lowering the temperature
or making the coil smaller (radius or length) will increase the SNR.

The third term in (13.85) comprises terms that are directly selectable by
the user in a given imaging scenario. Here, Vs represents the size of the sample
represented by a single reconstructed signal value—that is, the pixel volume.
We can directly select pixel volume through both slice selection, FOV selection,
and choosing the size J of the reconstructed image. Also, we have already long
recognized that choosing the tip angle α = π/2 maximizes the received signal.
Finally, we can improve SNR by increasing the amount of time TA we spend
gathering Fourier data.

13.4.5 Artifacts

The most common form of image distortion is geometric distortion or warping.
This arises when the gradient strength is not uniform across the entire FOV; for
example, if the amplitude of the x-gradient falls off as a function of increasing z,
in a coronal image the patient will seem to ‘‘pinch in’’ at the extreme values of
z. Because of the demands to image faster, physically shorter, faster switching
gradients are now often used; hence, there is often considerable drop-off in the
gradients at the edges of a larger FOV. Software is used to correct for this
distortion at the time of image reconstruction. However, the slice shape and
thickness will change with changing gradient strength, and this effect cannot be
corrected in reconstruction.

Ghosts are one of the most common artifacts seen in MR images. They are
most commonly caused from changes in the object between Fourier space
acquisitions—for example, motion due to breathing, swallowing, tremor, heart
beat or other flow effects. Because of these changes, the acquired data do not
correspond to the same object, and reconstruction based on these data produces
faint signals in one or more acquisitions that are not present in others—these
are the ghosts. Ghosting artifacts are reduced by imaging in a breath-hold, by
acquiring data in synchrony with the heartbeat (i.e., gating on the ECG signal)
or by acquiring images exceptionally fast. However, there are disadvantages
to these solutions. Breath-holding can be uncomfortable or impossible for the
patient, gating increases the overall image acquisition time and is sometimes
difficult to reliably acquire, and fast imaging always suffers from reduced SNR.
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Wraparound artifacts are caused by aliasing in the phase encode direction.
It has previously been determined that

FOVy = 1
�v

,

where �v is the Fourier space separation of the measured Fourier scan lines
in the phase encode direction. If the object does not fit within the FOV in the
y direction, then it will wrap around in the y direction, in exact analogy to
the frequency wraparound of a conventional sampled signal (see Chapter 3).
The main difference here is that this sampling is done in only one of two Fourier
directions (the phase encode direction) and the resulting replication leading to
wraparound is in the spatial domain rather than the Fourier domain. This does
not happen in the readout direction because an antialiasing filter is employed
during readout.

To eliminate the wraparound artifact, it is necessary to eliminate the object
that is outside the FOV. This can be done by rotating the scan plane to put
the shorter dimension of the object in the phase encode direction, or by using
small receiver coils whose sensitivity profile matches the FOV. Outer volume
saturation pulses can be used to eliminate unwanted signals, but they are effective
only for a short duration.

One method of reducing scan time is to eliminate phase-encode steps
that sample the higher spatial frequencies in Fourier space. Unfortunately, this
produces a low-resolution image and may also produce a ‘‘ringing’’ artifact.
Gibbs ringing or the so-called ‘‘truncation artifact’’ is a classic problem with
poorly designed low-pass filters. If the cutoff of the higher frequencies occurs
too abruptly, the sinc-shaped point spread function causes large oscillating
sidebands at edges in the image. One can reduce these artifacts by applying a
filter that has a smooth transition zone as one approaches the region where the
high-frequency data are not acquired.

In Chapter 12, we saw that chemical shift changes the Larmor frequency of
nuclei in a spin system depending on what chemical environment they are in. For
proton imaging, we are primarily interested in two species of protons—those in
water and those in fat. At 1.5 T, the resonance frequency of protons in water is
approximately 225 Hz higher than that of protons in the CH2 components of
fat. Therefore, since the position in x is encoded by frequency, fat protons will
be positioned slightly different than those in water. There will therefore be a
relative position shift in the readout direction between fatty tissues and nonfatty
tissues. In extreme cases, this can cause the position of fat to appear in the wrong
place relative to the water image, making anatomy look abnormal when it is in
fact normal. A very common method used to reduce this artifact is to suppress
the fat signal; the inversion recovery strategy (i.e., the STIR pulse sequence),
described in Section 12.10, is one way to accomplish this. Finally, magnetic
susceptibility differences can cause changes in the local magnetic field felt in
the sample. Typically, this leads to signal ‘‘dropouts’’ at air/tissue interfaces;
however, in the following section we will see how pulse sequences designed to
image susceptibility itself can be quite useful.

13.5 Advanced Contrast Mechanisms
Up to this point, we have described tissue contrast mechanisms that are consid-
ered ‘‘basic’’ because they use only imaging pulses, inversion pulses, gradients,
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and spin echoes to manipulate the spin system of the sample. Here, we present
more advanced mechanisms for establishing tissue contrast where, in some cases,
the contrasts themselves are determined by other properties of the tissue, not
just the basic NMR properties PD, T1 and T2.

Susceptibility-Weighted Imaging Susceptibility causes a variation in the mag-
netic field from the static magnetic field, and it is possible to image this effect
using susceptibility-weighted imaging (SWI). From (12.13), we see that the
change in magnetic field due to susceptibility is given by

�B(x, y) = χ (x, y)B0 , (13.86)

where χ (x, y) is the susceptibility, shown here to depend on its spatial location
within the imaging plane. This change in field strength will produce a change in
Larmor frequency

�ν(x, y) = γ−χ (x, y)B0 , (13.87)

and it follows that the transverse magnetization of an FID given in (12.33) must
be modified by adding �ν(x, y) to ν0, yielding

Mxy(t) = M0 sin αe−j(2π (ν0+�ν(x,y))t−φ)e−t/T2 . (13.88)

Thus, the primary effect of susceptibility is to change the phase of the transverse
magnetization in a spatially dependent fashion.

In an ideal world, we could measure the susceptibility by computing the
phase of the complex transverse magnetization and simply solving for �ν(x, y)
assuming ν0 and φ were known. While it is reasonable to assume that ν0 is
known (because of careful calibration), it turns out that there are many reasons
that φ cannot be known in general. In fact, phase inhomogeneity is a ubiquitous
problem in MRI, but it turns out that in many cases the phase inhomogeneity
is dependent on spatial position and not on time. In this case, a repeated
gradient echo experiment can be used to ‘‘tease out’’ the spatial distribution of
susceptibility. Let us explore how to do this.

Consider the readout part of a standard gradient echo pulse sequence. From
(13.25), we see that the spatially dependent Larmor frequency will be

ν(x, y) = γ−(B0 + χ (x, y)B0 + Gxx) , (13.89)

when susceptibility is present. Standard signal demodulation only accounts for
the nominal Larmor frequency, ν0, so the baseband signal [see (13.27)] is left
with a phase coming from susceptibility, as follows

s0(t) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2πγ−(χ(x,y)B0+Gxx)tejφ0(x,y) dx dy , (13.90)

where φ0(x, y) represents the spatially dependent (inhomogeneous) phase that
comes from a variety of sources.

Now, it was previously shown that in a properly designed gradient echo
pulse sequence the phase is zero for all spatial positions x at the echo time TE
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(see Section 13.2.5). But that will not be the case here because of susceptibility
and the underlying phase. From (13.90), we can see that the remaining phase
will be

φ(x, y) = 2πγ−χ (x, y)B0TE + φ0(x, y) . (13.91)

Performing this imaging experiment twice with two different values of TE gives
two equations and two unknowns, χ (x, y) and φ0(x, y). Solving this for χ (x, y)
yields

χ (x, y) = φ1(x, y) − φ2(x, y)

ω0(T(1)
E − T(2)

E )
, (13.92)

where T(1)
E and T(2)

E are the two echo times and φ1(x, y) and φ2(x, y) are the
corresponding measured phases.

Functional Magnetic Resonance Imaging Functional magnetic resonance
imaging (fMRI) is based on the fact that blood hemoglobin has two chemical
states, oxygenated and deoxygenated, and these two molecules have different
magnetic susceptibilities. As discussed in Section 12.4, diamagnetic materials
produce a slight decrease in the local magnetic field, while paramagnetic materi-
als produce a slight increase. Oxygenated hemoglobin is slightly diamagnetic and
has virtually the same susceptibility as most body tissues, thus producing no con-
trast in a susceptibility-weighted image. However, deoxygenated hemoglobin
is paramagnetic, which provides contrast in a susceptibility-weighted image.
Since active neurons in the brain use oxygen at a higher rate than inactive
neurons, there tends to be a higher concentration of deoxygenated hemoglobin
in areas of high brain activity. This means that there will be a higher fraction of
paramagnetic molecules in these regions, which produces a change in the phase
of the measured signal [see (13.90)]. This is referred to as the blood oxygenation
level dependent (BOLD) signal that is measured in fMRI.

Because deoxygenated hemoglobin molecules are present in concentration
within the blood, their paramagnetic property yields inhomogeneities in the Lar-
mor frequency at the microscopic scale, which in turn reduces T∗

2. Thus, rather
than directly measuring a change in local susceptibility (e.g., using the two-echo
SWI method described above), fMRI is typically accomplished by using a pulse
sequence that is sensitive to T∗

2 —that is, a gradient-echo pulse sequence. The
typical experiment first acquires an image when the subject is at rest and then
acquires a second image while the subject is carrying out a mental task. When
the task image is subtracted from the resting state image, the parts that are
brighter indicate those regions of the brain containing higher concentrations
of deoxygenated hemoglobin and are therefore more involved in the particular
mental task.

Because of the difference in susceptibility of deoxygenated hemoglobin, the
venous system in the brain has a different susceptibility than other tissues in
the brain. Therefore, SWI, described above, can be used to image the veins in
the brain. As well, because of the quantitative relationship between the phase
of the measured signal and the actual susceptibility χ (x, y), it is possible to
relate the measured susceptibility to the actual oxygen saturation in the blood.
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This provides a much more direct and quantitative approach to fMRI, but it is
technically very challenging and is being explored in research labs today.

Diffusion Magnetic Resonance Imaging We know that the ability to generate
an NMR signal depends on an in-phase transverse magnetization within the
sample (which is considered to a voxel in MRI). Both constants T2 and T∗

2
have the effect of dephasing the transverse magnetization and thereby reducing
the induced signal. It turns out that diffusion—that is, the random movement
of molecules, particularly prevalent in liquids—is another mechanism that can
cause such dephasing. To see how this happens, consider turning on a z-gradient
Gz after a 90-degree excitation pulse. We know that the Larmor frequencies
across the slice (really a ‘‘slab’’ because there is some slice thickness) will be
different and therefore dephasing across the slice will begin immediately. But if,
in addition, there are molecules moving around in three dimensions, the phases
at any given z position within the slice will take on additional randomness
(beyond that determined by T2) which cannot be recovered, even with a spin
echo. Thus, if molecular diffusion is large, we would expect to see a significant
drop in the received FID or echo signal relative to that of the signal in the
absence of diffusion. We should therefore be able to measure local diffusion in
tissues using MRI.

The usual way to measure diffusion in MRI is to use a bipolar pulse
just after the excitation pulse and before the readout gradient, as shown in
Figure 13.21. The first gradient in a bipolar pulse is long enough (and large
enough) to permit diffusion within the tissues to cause measurable signal loss
(exactly as described above). The second gradient reverses the effects of fixed
dephasing across the image slice caused by the first gradient. In the illustrated
pulse sequence, the bipolar pulses are applied in the slice-encode direction,
so we can think of the second gradient as serving the same purpose as the
refocusing lobe in slice selection. Although this measurement can be carried out
using a gradient echo pulse sequence, the additional time required for diffusion

Figure 13.21
(a) A pulse sequence
diagram for a
diffusion-weighted image
acquisition. The bipolar
gradient pulse that
encodes diffusion is
shown in the ‘‘Slice
Selection’’ gradient
waveform during times
3 and 5. (b) The Fourier
space trajectory of this
pulse sequence.
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encoding tends to cause excess signal losses due to T∗
2. So, Figure 13.21 depicts

a spin echo pulse sequence with the 180-degree pulse occurring between the two
bipolar pulses. The spin reversal caused by the 180-degree pulse is the reason
for a spin echo and also the reason that the sign of second bipolar gradient is
the same as that of the first gradient.

The simplest way to use a diffusion-weighted image is to simply subtract
two images, one acquired without a bipolar pulse (a reference image) and the
other acquired with a bipolar pulse. It is important to keep the timing of all
the pulses to be the same, however, so that the T2-weighting of the two images
arises from the same echo time TE. Since the diffusion-weighted image will have
a smaller signal where there is substantial diffusion, the resultant subtracted
image will be brighter where there is higher diffusion.

Although the presentation above captures the essence of diffusion-weighted
imaging, actual use of the sequence and image data resulting from this sequence
is far more involved in practice. For example, use of the bipolar pulse in the slice
selection gradient represents only a single direction of diffusion sensitivity; in
practice, these pulses can be applied to all three gradient coils at the same time
in order to give an arbitrary direction of sensitivity. Because some tissues (most
notably, the white matter of the human brain) show directionally dependent
diffusion, the use of multiple directions can be used to compute a diffusion
tensor at each voxel. Such an approach is called diffusion tensor imaging (DTI).
Eigenanalysis of this tensor yields, among other things, a principal eigenvec-
tor, which characterizes the direction of greatest diffusion, and a fractional
anisotropy, which characterizes the degree of directionality of the underlying
tissue. The mean diffusivity, a single number representing the overall diffusivity
regardless of direction, is also computed from the diffusion tensor at each voxel.

13.6 Summary and Key Concepts
MRI systems are very useful in medical imaging because they provide high-
resolution anatomic information noninvasively, and they can image a variety
of tissue properties that relate to the underlying composition and molecular
environment of the tissues. Such systems represent large versions of NMR
systems with significant additions to form images. In this chapter, we presented
the following key concepts that you should now understand:

1. An MRI scanner consists of five principal components: the main magnet,
a set of switchable gradient coils, RF coils, pulse sequence and receive
electronics, and a computer.

2. The most common magnet is a cylindrical superconducting magnet with
field strength ranging from 0.5 to 7 T.

3. The gradient coils produce the change in local magnetic field necessary to
encode spatial location in the MR signal.

4. The RF coils or resonators receive the MR signals and may be large (e.g., a
body coil) or small (e.g., a surface coil).

5. Manipulation of the gradient coils produces frequency and phase encoding
of location; manipulation of the RF excitation pulse sequence produces
varying image contrast.
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6. MR data arise from scans of Fourier space; MR image reconstruction is
based on the inverse 2-D Fourier transform and yields the distribution of
effective spin density.

7. MR image quality depends on contrast (which itself depends on intrinsic
tissue parameters and the choice of pulse sequence), sampling, and noise.

8. Careful control of the spin systems using both RF excitations and gradient
pulses can produce images that encode information about susceptibility,
including the BOLD effect in hemoglobin captured by functional MRI, and
diffusion.
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Problems
MR Imaging Instrumentation

13.1 A uniform magnetic field in the z direction is applied to a sample. When
an x-gradient is applied, what change is made to the magnetic field?

13.2 Briefly explain the function of RF coils.

Encoding Spatial Position and MR Imaging Equation

13.3 You intend to image one slice (z = 5 cm, �z = 1 cm) of an off-centered
cube having width 10 cm as shown in Figure P13.1. You are given
Gz = 1 G/mm and γ− = 4.258 kHz/G.

Figure P13.1
See Problem 13.3.

y

z

x

5 cm

10 cm

1 cm
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(a) Find the bandwidth (in Hz) of the RF waveform needed to perform
the slice selection.

(b) Give a mathematical expression for the RF waveform B1(t) (in the
rotating frame) that is needed to perform the slice selection.

13.4 (a) What is the slice thickness (defined as the full width at half max-
imum) if a slice-selection gradient amplitude of 1 G/cm is used
with a Gaussian shaped RF pulse that has a shape given by
A(t) = A0 exp{−t2/σ 2}, where σ = 1 ms.

(b) What is the slice thickness if we cut the gradient amplitude in half?
Suppose we change the shape of the RF pulse so that σ is reduced by a
factor of two.

(c) What is the new slice thickness (with a 1 G/cm gradient)?
(d) What else is affected by this change?

13.5 An RF signal is given by

s(t) = A�ν sinc(�νt)e−j2πνt.

Show that the tip angle distribution is given by (13.17).
13.6 Explain why a refocusing gradient is usually needed for slice selection,

and why its duration is half the duration of the RF excitation when its
waveform is a constant negative gradient of strength −Gz.

13.7 Substituting (13.22) into (13.44) and assuming T2 is constant yields

s0(t, Ay) =
∫ ∞

−∞

∫ ∞

−∞
Ae−t/T2(x,y)M(x, y; 0+)e−j2πγ−Gxxte−j2πγ−Ayy dx dy

= Ae−t/T2

∫ ∞

−∞

∫ ∞

−∞
M(x, y; 0+)e−j2πγ−Gxxte−j2πγ−Ayy dx dy .

What is the effect of the term e−t/T2 on the reconstructed image? (Assume
that the pulse sequence in Figure 13.15 is used.)

13.8 Suppose a point object is moving along the x-axis with the following
trajectory: x(t) = xo + vt.

(a) Calculate the phase shift that is induced in the transverse magne-
tization after the application of the gradient waveform shown in
Figure P13.2.

Figure P13.2
See Problem 13.8(a).
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(b) Calculate the phase shift induced by the waveform shown in
Figure P13.3. This is called a flow compensation pulse.
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Figure P13.3
See Problem 13.8(b).

�G

G

G

0 T
2

T

t

2T

(c) Repeat the calculations for the above two waveforms for the trajec-
tory given by x(t) = xo + vt + 1

2 at2.
(d) What gradient waveform could you use as an acceleration compen-

sation pulse?
(e) Is it possible to design a gradient waveform that will produce phase

shifts that are independent of acceleration but are dependent on the
velocity? Explain.

13.9 Suppose that a slice has been selected through a 5 × 5 × 5 cm cube.
We wish to produce a projection of this slice with the application of a
readout gradient. The pulse sequence in Figure P13.4 is used to produce
the profile.

Figure P13.4
Problem 13.9

RF

G

NT

p
2

pulse
t

t

Suppose the gradient strength is G = 1 G/cm and N = 256 sample points
are taken in the total sampling time NT = 10 ms (recall that T is the time
between sampling points in the readout direction).

(a) What is the spatial extent (i.e., the FOV) of the profile? What is the
bandwidth of the received signal?

(b) How many pixels does the profile of the object span?
(c) Suppose we set G = 0.5 G/cm, N = 256, and NT = 20 ms. How

does this affect (a) and (b)?
(d) Repeat (a) to (c) for the pulse sequence shown in Figure P13.5.
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Figure P13.5
See Problem 13.9(d).

RF

G

NT

p
2

pulse
t

t

13.10 In order to produce an actual image of T1, as opposed to one that is
merely T1-weighted, it is necessary to take at least two separate images
and use them to compute a pixel-by-pixel estimate of T1.

(a) Show that the imaging equation in (13.63) can be written as

f
sin α

= e−TR/T1
f

tan α
+ AM0e−TE/T2 (1 − e−TR/T1 ) .

(b) Assume that three images f1, f2, and f3 with tip angles α1, α2, and α3,
respectively, are acquired. Show that the points (fi/ tan αi, fi/ sin αi),
i = 1, 2, 3, should lie on a line.

(c) Using the fact shown in part (b), find a closed-form expression for
an estimate of T1 given only two images f1 and f2 with different tip
angles α1 and α2.

Sampling the Frequency Space

13.11 Suppose a pulse sequence uses the x- and y-gradients shown in
Figure P13.6. Draw its Fourier space trajectory, and carefully label the
axes.

Figure P13.6
The x- and y-gradients in
a pulse sequence for
Problem 13.11.1 ms 2 ms 3 ms

Gx

Gy

10 gauss/cm

10 gauss/cm
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13.12 Consider the pulse sequence shown in Figure 13.20. Suppose we want to
sample a radial line from (−0.25, −0.5) mm−1 to (0.25, 0.5) mm−1 and
measure 128 points along the line. Ignore the ramps at the ends of the
gradients.

(a) If the duration of the x- and y-gradients in the interval labeled 2 are
0.1 ms, what are the strengths of the gradients?

(b) If Ts = 10 ms, what are the readout gradients? What is the sampling
rate?

13.13 Draw the pulse sequence that scans two lines of Fourier space after
an excitation RF pulse. Start scanning Fourier space at (−1, 0.5) mm−1

and end at (−1, 0.4) mm−1 as shown in Figure P13.7. Assume that the
RF pulse is not slice-selective. Label your timing diagram including the
amplitudes of the gradients.

Figure P13.7
See Problem 13.13. 0

ky

kx

(1, 0.4) mm�1

(�1, 0.5) mm�1

13.14 We have been asked to phase encode two point objects offset in y.
Let us first turn to an example in which we have two point samples
in the imaging plane that both have the x coordinate x = xo, but they
have different y coordinates. In this case, the signal is the sum of the
individual signals from each object; therefore, we cannot determine their
individual y coordinates from a single measurement such as that shown
in Figure 13.15 and described by (13.42). Show that we can obtain two
measurements, each measurement having a different value of the phase-
encoding gradient amplitude Gy, to solve for y the position of the two
point objects.

13.15 Explain why the refocussing lobe, the phase-encoding gradient, and
the gradient echo formation lobe can all overlap in time. (Refer to
Figure 13.18.)

MR Image Reconstruction

13.16 2-D projection imaging (i.e., polar scanning) was an early MR imaging
technique that is enjoying a comeback because it is very fast. Consider
the pulse sequence shown in Figure P13.8 and let

Gx = G cos θ ,

Gy = G sin θ .
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Figure P13.8
Pulse sequence for
projection imaging. See
Problem 13.6.

90	
RF
excitation

Gz

Gx

Gy

MR
signal

(a) Find an expression for the signal given θ .
(b) If the cross section being imaged is f (x, y) = Aδ(x − 1, y) + Bδ(x, y +

1), sketch the recorded signal for θ = 0, and θ = 90◦.
(c) How can one obtain an image of the cross section using this pulse

sequence?

13.17 We wish to image two ‘‘point objects’’ that are sitting in slightly different
static fields due to magnet imperfections. Point object 1 is in a field Bo

and point object 2 is in a field Bo + �B. Describe why this is a problem
if we are going to use the 2-D projection method of MRI.

13.18 Consider the profile of an object in the readout direction. Show that the
inverse Fourier transform of the baseband signal s0(t) given in (13.27) is
a projection of the object Mxy(x, y; 0+) onto the x-axis convolved with
the Fourier transform of the T2 decay envelope F −1{e−t/T2}. (Assume
that T2 does not depend on x and y.)

MR Image Quality

13.19 We want to acquire an image of a sagittal slice (parallel to y-z plane).

(a) In what directions should the slice selection gradient, phase-encoding
gradient, and frequency-encoding gradient be?

(b) How can one prevent aliasing in the phase-encoding and frequency-
encoding directions?

13.20 We want to reconstruct a 2-D MR image with size of 256×256 pixels.

(a) What parameter(s) determine the spatial extent in the phase-encoding
direction?

(b) What parameter(s) determine the spatial extent in the readout direc-
tion?

(c) What parameter(s) determine the spatial resolution in the phase-
encoding direction?

(d) What parameter(s) determine the spatial resolution in the readout
direction?

13.21 A cross section of a sample of protons within a 25.6 cm × 25.6 cm square
is being imaged by an MR scanner. We want to reconstruct an image
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with matrix size 256 × 256. We use the Nyquist sampling rate in the u
and v directions.

(a) What is the extent of the object in the diagonal direction? How many
samples are there in each (main) diagonal direction?

(b) What is the Fourier space sampling rate for the diagonal directions?

13.22 A solenoid coil with N turns per unit length, a length of L, and a radius
of r0 is used to image an object of radius r0 with uniform resistivity of ρ.
The coil is excited with a current I(t) = cos(2πν0t).

(a) What is the average power dissipated in the object? What is the
voltage induced for a cylindrical shell of radius r?

(b) Given that the differential conductance of a cylindrical shell with
length L, radius r, and resistivity ρ is dG = Ldr/(2πrρ), show that
the effective electrical resistance of a solenoid is given by (13.79).

13.23 What repetition time TR should we use to generate the maximum signal
difference between the two tissues whose T1 values are Ta

1 and Tb
1? What

TR value will give the maximum signal difference to noise ratio? (Assume
that you can use a TE of zero and that all transverse magnetization has
decayed before each π/2 pulse.)

13.24 The resolution of optical imaging methods is equal to the Rayleigh limit,
which is one half of the wavelength of the optical frequency being used.
If MRI were performed using radio waves propagating into the body,
what would be the predicted resolution for a conventional magnet?

13.25 The location of ‘‘fatty’’ tissues in an MR image is displaced relative to
‘‘watery’’ tissues because of chemical shift. Explain how chemical shift
will affect the appearance of images containing both fat and water and
develop an approach to ‘‘suppress’’ the fat image using the knowledge
that T1(H2O) ≈ 4T1(fat).

13.26 It is often useful to consider what happens to image SNR when only a
single imaging variable (or small group of imaging variables) is changed.
Consider making each of the changes in the following parts and determine
how the SNR changes as a result.

(a) Gx → 0.5Gx.
(b) Ny → 2Ny.
(c) fs → 2fs (assuming that Nx → 2Nx as well).
(d) fs → 2fs (assuming that Nx stays constant).

Applications, Extensions, and Advanced Topics

13.27 Consider the imaging problem in Problem 13.3. Assume the effective spin
density within the cube is constant and equal to 1.

(a) Refer to Figure P13.1 and sketch the 2-D function f (x, y) that you
will image. Also sketch |F(u, 0)|.

You use the gradient echo pulse sequence shown in Figure P13.9 to image
the slice with gradient Gx = 0.5 G/mm and Gy = 0.

(b) Find the duration (in seconds) of the x-gradient preceding the readout
gradient in order to collect data in the range −0.4 cm−1 ≤ u ≤
0.4 cm−1.
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(c) How long (in seconds) after the gradient Gx changes sign will the
gradient echo occur and why?

(d) After reconstructing the data collected during the acquisition, will
we able to get a perfect reconstruction of g(�, 0◦), where g(�, θ ) is the
Radon transform of f (x, y)? Explain.

13.28 Consider a constant magnetic field B0 = 1.5 T is applied to an object. The
gyromagnetic ratio of the object is γ = 2π × 4, 258 (rad/s)/G. Suppose
the following RF pulse is applied

B1(t) = A�f sinc(�ft)ej2πν0t rect
(

t
τp

)
,

where �f = 4.258 × 104 Hz, A = 2 G/Hz, τp = 2 ms, and ν0 is the
Larmor frequency.

Figure P13.9
Pulse sequence for
Problem 13.27.
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(a) Find ν0. Write down an equation to calculate the tip angle.
(b) Assume τp is long enough so that B1(t) could be approximated as

B1(t) = A�f sinc(�ft)ej2πν0t.

What is the spectrum of B1(t)? Sketch it.

Suppose a slice selection gradient is applied in z direction while B1(t) is
applied and Gz = 2 G/cm.

(c) Where is this slice centered? What is the slice thickness?
(d) If you want to select another slice adjacent to the current slice (moving

in the +z direction) with the same slice thickness, how should you
change the RF pulse? Assume Gz stays the same.

(e) Right after the RF pulse in (d), what is the maximum phase difference
of the spins inside the current slice? How does one rephase the spins?

(f) Suppose you want to sample k-space using a sampling trajectory
that starts as shown in Figure P13.10. Assume that |Gx| = 2.5 G/cm
and |Gy| = 1.5 G/cm. Sketch a pulse sequence to achieve this part of
the trajectory. Indicate the acquired signal, the readout gradient, the
phase-encoding gradient, and the slice selection gradient.
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(g) For the sampling indicated in (e), if FOVx must be 50 cm, what is the
smallest sampling rate fs?

13.29 Suppose we wish to image an object in all three dimensions, that is, we
want our final image to be an N × N × N array of voxels with isotropic
dimensions. However, our ability to produce RF pulses is limited to short
bursts of unmodulated RF; therefore, we cannot use slice selection.

Figure P13.10
See Problem 13.28.

(0, 0)

ky

kx

(0, �3.19) cm�1 (21.29, �3.19) cm�1

(a) Can you think of a method to the object? (Hint: look at the phase
encoding section of the book and extend these ideas.)

(b) What would the equation for the signal be?
(c) How would you reconstruct the image?

13.30 Consider a generalized signal acquisition scenario for spatial encoding.
Show that given N point objects with amplitudes Aj (where the Aj

are real numbers), we can solve for their y coordinates yj from the N
equations derived from N separate signal acquisitions that have different
phase-encoding gradient amplitudes Gm

y (m = 0, 1, 2 · · · N).
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acoustic, 344
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ACD, See annihilation coincidence detection
acoustic dipole, 356
acoustic energy flux, 341
acoustic gel, 371
acoustic impedance, 371
acoustic intensity, 341, 342
acoustic pressure, 348
acoustic wave, 336

acoustic pressure, 337
backward-traveling wave, 339
characteristic impedance, 338
coefficient of nonlinearity, 348
forward-traveling wave, 339, 341
frequency, 339, 350
inward-traveling wave, 341
longitudinal wave, 336

acoustic wave (Continued)
mode conversion, 344
nonlinear wave propagation, 347–349
outward-traveling wave, 341
particle displacement, 337
particle velocity, 337
plane wave, 338–340
power, 342
propagation, 367
shear wave, 336
shock wave, 349
spherical wave, 340–341

acoustics, 335–366
active shimming, 442
ADC, See analog-to-digital converter
AEC, See x-ray tube, automatic exposure

control
air

as contrast agent, 143
air kerma, 128
airgap, 145
algebraic reconstruction technique,

See reconstruction, iterative, algebraic
reconstruction technique

aliasing, 81, 83
anti-aliasing filter, 85, 475
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aluminum, 144, 148, 149, 194
density, 140

amino acid transport, 293
amorphous selenium, 152
amorphous silicon, 152
amplitude attenuation factor, 345,

346
analog-to-digital converter, 455, 475
Anger camera, See gamma camera
Anger, Hal, 6
angiography, 8
angular momentum, 413, 414
annihilation coincidence detection, 299,

300, 309
anode, 115
ART, See reconstruction, iterative, algebraic

reconstruction technique
artifacts, 55, 86–87

beam hardening artifact, 87
motion artifact, 87
ring artifact, 87
star artifact, 87

atom
atomic number, 107, 119, 147, 240
binding energy, 119, 142, 240

curve of, 241
disintegration, 243
effective atomic number, 119
electron, 241
electron cloud, 116
excitation, 110, 114
ground state, 108
ion, 117
ionization, 109, 115
isobar, 240
isomer, 240
isotone, 240
isotope, 240
mass defect, 240, 241
mass number, 107, 240
neutron, 241, 245
nucleon, 107, 240, 241

atom (Continued)
nuclide, 107, 240
planetary, 107
proton, 241, 245
radionuclide, 107, 240
shell, 246
unified atomic mass unit, 240

attenuation
acoustic, 344–346
differential, 118
electromagnetic radiation, 120
mass attenuation coefficient, 129
tissue dependent, 120

attenuation coefficient, 345
attenuation correction, See reconstruction,

attenuation correction
Auger electron, 117
avalanche photodiode, 304
axial, 4
azimuth, 393

B

B-mode, See ultrasound imaging,
B-mode scan

background, 60
backprojection, 201–202, 207

fan-beam, 211
image, 201, 203
summation, 202

bar phantom, 68
barium, 142, 143
beam hardening, 139, 214, 221
beam softening, 127
beamforming, 389
Becquerel, 243
BGO, See bismuth germanate
bias, 89
BIBO stability, 31
binding energy, 119, 142, 240, 241

electron, 241
nuclear, 242
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biopsy needle, 334
bismuth germanate, 195, 301
bladder, 143, 235
Bloch equations, 410, 413, 425–426, 453
Bloch, Felix, 6
blood, 105

flow, 293
hemoglobin, 415, 485
oxygenation level dependent, 485

Bohr, 107
BOLD, See blood oxygenation level dependent
Boltzmann’s constant, 413, 479
bone, 222, 235

cancellous, 105
cortical, 105
marrow, 102
marrow edema, 408
mineral density, 194

boron, 245
bowel, 143
Bq, See Becquerel
brain, 101, 222
breast, 154, 332

cancer, 154
compression, 154

breath-hold, 193
bremsstrahlung radiation, See radiation,

bremsstrahlung
broad beam geometry, See x-ray, broad beam

geometry
Bucky, Gustav, 144
bulk modulus, 336
Butterworth filter, 307

C

cadmium tungstate, 195
cadmium-zinc-telluride, 264, 297
calcium tungstate, 147, 166
cancer

breast, 154
carbon, 245, 293, 415

Cassen, Benedict, 6
CBP, See reconstruction, convolution

backprojection
center of mass, 265
central limit theorem, 72
cerebrospinal fluid, 429
cerium-doped lutetium oxyorthosilicate (LSO),

301
cesium iodide, 195, 264
characteristic radiation, 114, 139
chemical shift, 416, 435, 483

shielding constant, 416
chest, 105, 145
circular polarization, 420
circular symmetry, 43–47
coincidence

random, 301
coincidence detection, 294

line, 293, 299
scatter, 301

collimation
grid, 144
grid ratio, 144
source, 188

collimator, 141, 256
all-purpose, 296
converging, 257
diverging, 257
effective hole length, 274
efficiency, 276–278
holes, 276
line, 195
parallel-hole, 256
pinhole, 257
sensitivity, 276–278
septa, 275
septum, 256

comb function, 19–20, 81
combined PET/CT, 303
combined PET/MRI, 303–304
combined SPECT/CT systems, 297–298
compensation filter, 141–142
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compressibility, 336
Compton, 116-118, See also scattering,

Compton
edge, 262
event, 119
photon, 117
plateau, 261, 302
scattering, 116, 173–174, 258
energy discrimination, 261
scatter-to-primary ratio, 174

computed radiography, 149
computed tomography, 9–10, 101,

186–234
aliasing, 221
artifacts, 221–222
beam hardening, 221–222
collimation, 194, 196
cone beam, 213
CT number, 198
data processing, 193
dual source, 195
dual-energy, 194–195, 222
electron beam, 192
fan-beam, 194
fan-beam projections, 208
filtration, 194
gantry, 9
generations, 188, 191–193, 199
helical, 9, 187

CT, 193, 196, 212–213, 303
image quality, 213–222
interpetrous lucency artifact, 222
metal artifact, 222
motion artifact, 222
multiple-row detector (MDCT), 9, 187,

193, 196
multislice, See computed tomography,

multiple-row detector
noise, 216–221
patient table, 9
point spread function, 215
pulsed mode, 195

computed tomography (Continued)
reference intensity, 197
resolution, 214–216
scan time, 192
scanner, 105, 186

cost, 193
gantry, 196, 212
good design, 219
patient table, 196, 212
slip ring, 196

signal-to-noise ratio (SNR), 219–221
slice thickness, 196
slipring, 193
spiral, See computed tomography, helical
streak artifact, 222

computer vision, 194
computer-aided diagnosis, 154
contrast, 54–61, 135, 143, 174, 219

local, 60
contrast agent, 105, 119, 142–143, 170
conventional radiography, See projection

radiography
conversion efficiency, 147
convolution, 26

associativity property, 28
commutativity property, 28
distributivity property, 28
equation, 26, 42
implementation, 43
integral, 26
theorem, 39

convolution backprojection,
See reconstruction, convolution
backprojection

coordinate system
laboratory, 305

copper, 194
characteristic photons, 140

Cormack, Allan, 5
coronal, 4
coronary angiography, 237
coronary artery, 237
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critical angle, 343
Crooke’s tube, 5, 106
cross section

axial, 305, 447
conventional radiographic view, 305
coronal, 447
double-oblique, 448
oblique, 448
sagittal, 447

cryostat, 441
CSF, See cerebrospinal fluid
CT number, See computed tomography, CT

number
CT scanner, See computed tomography, scanner
cumulative distribution function, See random

variable, distribution function
curie, 243
cutoff frequency, 43
cyclotron, 249
CZT, See cadmium-zinc-telluride

D

Damadian, Raymond, 6
dB, See decibels
de Hevesy, George, 6
decibels, 80
delta function, 17
delta ray, 114
density, 336
depth of penetration, 384
detective quantum efficiency, 171–173
detector

area detector, 214
area of, 311
block, 300
calibration, 197
coincidence, 299
coincident, 10
collimation, 127, 190
computed tomography, 195–196
efficiency, 166, 171, 190, 219, 271, 278, 282

detector (Continued)
energy-sensitive, 144
movement, 297
ring, 300
solid-state, 195, 196
spacing, 219
width, 219
x-ray, 8
xenon gas, 195

DEXA, See dual-energy x-ray absorptiometry
diagnostic accuracy, 90
diagnostic radiography, 7
diaphragm, 103, 140

Potter-Bucky, 145
diffusion, 486
diffusion tensor imaging, 487

fractional anisotropy, 487
mean diffusivity, 487
principal eigenvector, 487

digital radiography, 8, 149–153
computed radiography, 149
photostimulable imaging plate,

149
Dirac function, 17
discrete random variable, 72–74
discretization, 80
disintegrations per second, 243
distortion, 55, 88

magnification, 88
shape distortion, 88
size distortion, 88

distribution function, 70
Doppler

effect, 349, 351
frequency, 351
motion monitor, 353
pulse–echo mode, 352
shift, 349, 351
velocimeter, 353

dose, 113
effective, 130
x-ray, 140
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dose equivalent, 129
dps, See disintegrations per second
DQE, See detective quantum efficiency
Driffield, Vero Charles, 168
dual-energy x-ray absorptiometry, 194
dynamic focusing, 390
dynode, 258

E

EBCT, See computed tomography, electron
beam

ECG, See electrocardiogram
echo time, 427, 429
echocardiography, 331
ECT, See emission computed tomography
Edison, Thomas, 147
effective dose, 130
effective energy, 170, 197
efficiency, See quantum efficiency and detective

quantum efficiency
electrocardiogram, 267, 269, 446
electromagnetic energy, 6
electromagnetic radiation, See radiation,

electromagnetic
electron

Auger, 117
beam, 192
binding energy, 109
bound, 109
collisional transfer, 114
Compton

kinetic energy, 118
delta ray, 114
density, 119
energetic, 114
free, 107, 109
kinetic energy, 114
radiative transfer, 114
rest mass, 117
shells, 108

electron capture, 245

electron volt, 7, 109, 241
electron-hole pairs, 264
elevation, 393
emission computed tomography, 238,

255, 294
emission imaging

event, 256
emission tomography

activity concentration, 314
attenuation and scatter, 319–320
attenuation correction, 307–309
contrast, 320–321
image quality, 317–321
noise, 321
signal-to-noise ratio, 321
spatial resolution, 318–319

energy, 48
energy density

acoustic, 341
kinetic, 341
potential, 341

energy fluence, 121
equivalent aluminum, 140
Ernst, Richard, 6
error function, 71
eV, See electron volt
excitation, 110
exponential signal, 22–23
exposure, 128, 171
extremities, 145

F

f-factor, 129
fan-beam, 191

geometry, 208
reconstruction formula, 211

Faraday induction, 417
principle of reciprocity, 417

fast Fourier transform, 43, 459, 471
fat, 343, 344
FBP, See reconstruction, filtered backprojection
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FDA, See Food and Drug Administration
FDG, See radiotracer, fluorodeoxyglucose

(FDG)
fetal imaging, 331
FFT, See fast Fourier transform
fibular, 103
FID, See nuclear magnetic resonance, free

induction decay
field of view (FOV), 188, 213, 444, 475
field pattern, 353, 372

beamwidth, 354
definition, 358
diffraction formulation, 355–361
far field, 354
focusing, 372
Fraunhofer approximation, 360–361, 374,

379–380
Fraunhofer region, 354
Fresnel approximation, 354, 358–360, 374,

379
Fresnel region, 354
geometric approximation, 354,

378–379
geometric region, 354
main lobe, 354
paraxial approximation, 358
plane wave approximation, 357–358
received signal, 356–357
side lobe, 354

filament, 136–139
film, 5, 105, 166–168, 263

darkroom, 148
gamma, 167, 168
H&D curve, 168
latent image, 167
latitude, 167, 168
optical density, 167
optical opacity, 167
optical transmissivity, 167
radiographic, 147
radiographic cassette, 147

contaminant, 148

film (Continued)
size, 147
speed, 147, 168
spoil exposure, 147

filter
anti-aliasing, 85
ideal low-pass, 43

filtered backprojection, 205, 472
filtration, 139
FLAIR, See fluid attenuated inversion recovery
flip angle, See tip angle
fluence rate, See x-ray, photon fluence rate
fluence, See x-ray, photon fluence
fluid attenuated inversion recovery, 433
fluorescence, 146
fluorescent, 147
fluorine, 250, 293
fluoroscopy, 5, 7, 136, 148

dynamic, 5
static, 5

fMRI, See functional magnetic resonance
focusing cup, 137
Food and Drug Administration, 444
foot, 103, 158
forced precession, 420, 449, 453
Fourier method, 204
Fourier resolution, 478, 479
Fourier scanning

180◦ pulse, 465
rectilinear, 477

Fourier space, 458
aliasing, 477
sampling, 471, 477
scanning, 458–460
trajectory, 458

Fourier transform, 31–36, 203, 457
conjugate symmetry property, 37
conjugation property, 37
convolution property, 38
fast, 43, 459, 471
inverse, 32, 472
linearity property, 36
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Fourier transform (Continued)
magnitude, 32
Parseval’s theorem, 40
phase, 32
product property, 39
properties, 36
rotation property, 38
scaling property, 37
separability property, 40
slice, 203
translation property, 37

FOV, See field of view
Fraunhofer approximation,

See field pattern, Fraunhofer
approximation

free fatty acid metabolism, 293
frequency, 32, 112

spatial, 203
frequency encoding

gradient, 460
frequency response, 41
Fresnel approximation, See field pattern,

Fresnel approximation
full width at half maximum (FWHM), 62–63,

273, 275, 279, 478
function, 16

antisymmetric, 37
symmetric, 37

functional magnetic resonance imaging, 407
fundamental frequency, 22
FWHM, See full width at half maximum

G

gadolinium oxyorthosilicate (GSO), 301
gallium, 263
gamma camera (Anger camera), 6, 10, 255,

256, 293, 305
crystal, 278
detector system, 279
discriminator circuit, 265
efficiency, 258

gamma camera (Continued)
energy resolution, 279–280
event positioning, 264–266
gating circuit, 262–263
imaging equation, 269
multiple, 295
nonuniformity, 296
positioning logic, 260
pulse height analyzer, 260–262, 279
pulse pileup, 282
resolution, 258
rotating, 294
scintillator, 275
sodium iodide crystal, 299
uniformity, 278–279
Z-pulse, 260, 265

gamma ray, 106, 124, 245, 246
Gaussian random variable, 71
GCV, See grid, conversion factor
glucose, 293
GM, See gray matter
gradient echoes, 461–462
gray, 128
gray matter (GM), 429
grid, 144–145

conversion factor, 145
crosshatch, 144
focused, 144
focused grid, 144
frequency, 144
stationary, 145

grid frequency, See grid, frequency
GSO, See gadolinium oxyorthosilicate
gyromagnetic ratio, 411

H

H&D curve, 168
half value layer (HVL), 124
half-life, 244, 293
Hamming window, 453
hand, 101
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Hankel transform, 43–47, 215
inverse, 478

heart, 102
apex, 332
chambers, 332
horizontal long axis, 238
mitral valve, 334
short axis, 238
vertical long axis, 238

helical computed tomography, 9,
187

helix
pitch, 193, 212

hemoglobin, 415, 485
deoxygenated, 485
oxygenated, 485

Hounsfield unit, 187, 198
Hounsfield, Godfrey, 5
HU, See Hounsfield unit
Hurter, Ferdinand, 168
HVL, See x-ray, half value layer
hydrogen

in fat, 416

I

image, 16
image contrast, 173
image quality, 54–99
image reconstruction, See reconstruction
imaging

anatomical, 10
computed tomography, 9
cross sectional, 5
dynamic, 5
functional, 10
magnetic resonance, 12
nuclear medicine, 10, 144
projection, 8
projection radiography, 7
radionuclide, 10
reflection imaging, 7

imaging (Continued)
static, 5
ultrasound, 11

imprecision, 89
impulse, 16–19, 340

function, 17
response, 25

in-plane direction, 448
indicator function, 357
intensifying screen, 146–147, 166

blurring, 165–166
conversion efficiency, 147
speed, 147

intensity, 121, 157
reflectivity, 344
transmittivity, 344

interpetrous lucency artifact, 222
invasive techniques, 1
inverse Radon transform, 186, 214
inverse square law, 312
iodine, 142, 249
ion, 107, 109
ionization, 107–110

chamber, 127, 138
ionizing radiation, 101

attenuation, 101
bremsstrahlung, 137
characteristic, 137
electromagnetic

interactions, 116
particulate

collisional transfer, 137
radiative transfer, 137

properties, 113–120
shield, 118
transmission, 101

irradiance, 167
isocenter, 208
isochromat, 416, 452, 455
isotropic, 58
iterative reconstruction, See reconstruction,

iterative
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J

Jacobian, 210
Johnson noise, 479

K

K-edge absorption, 142
k-space, See Fourier space
Kaczmarz, 314
kerma, 128
kidney, 143, 249, 332
Klein-Nishina formula, 119
knee, 102
kVp, See x-ray tube, peak tube voltage

L

laminogram, 202
lanthanum bromide, 302
Larmor frequency, 414–416, 419, 447, 452,

454, 457, 460, 475, 480, 486
spatial dependence, 448, 449

laser scanner, 149
latent image, 146
Lauterbur, Paul, 6
lead, 145
lead zirconate titanate (PZT), 368
least squares, 315
LET, See radiation, linear energy transfer
light, 195
light box, 167
likelihood function, 316
line, 198

angle, 198
lateral position, 198

line impulse, 19, 61
line integral, 197, 198
line of stability, See nuclide, line of stability
line pairs per millimeter, 68
line spread function, 61–62
linear attenuation coefficient, 306

linear attenuation coefficient,
See x-ray, linear attenuation
coefficient

linear energy transfer (LET), 128
linear polarization, 420
linear tomography, See tomography, linear
linearity, 24
liquid helium, 441
liver, 340, 343, 344
local contrast, 60–61, 169
longitudinal magnetization, 416, 424,

432, 473
longitudinal relaxation time, 455
LOR, See positron emission tomography, line

of response
Lorentz force, 443
lp, See line pairs per millimeter
LSF, See line spread function
LSI systems, See systems, linear shift-invariant
LSO, See cerium-doped lutetium

oxyorthosilicate
luminescence, 146
lungs, 102, 143

M

M-mode, 11, 381
mA, See x-ray tube, tube current
magnesium oxide, 146
magnet

active shielding, 442
fringe field, 442
passive shielding, 442
passive shimming, 442
shimming, 415, 442
superconducting, 441

magnetic field
external, 412
fluctuations, 415
macroscopic, 411
microscopic, 411
static, 412, 414
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magnetic resonance imaging, 7, 12–13, 407,
410, 439–496

T1-weighted contrast, 430–432
T2-weighted contrast, 430
antenna noise, 451
artifacts, 482–483
baseband signal, 456, 463, 466
contrast agent, 407
contrast mechanism, 472
coordinate system, 447
diffusion imaging, dMRI, 13
diffusion-weighted imaging, 486–487
echo time, 462
echo-planar imaging, 12
eddy current, 444
field of view (FOV), 476
field sensitivity, 445, 480
Fourier resolution, 478, 479
Fourier trajectory, 458
frequency encoding, 448, 455–460
functional imaging, fMRI, 12
functional magnetic resonance, 485–486
geometric distortion, 482
ghosts, 482
gradient amplitude, 443
gradient strength, 450
gradient-echo imaging, 456
image quality, 475–483
imaging equations, 472–475
inversion pulse, 432
inversion recovery, 432–433
inversion time, 433
noise, 479–481
noise reduction, 480
observed signal, 417
peripheral nerve stimulation, 444
phase accumulation, 462
phase coherence, 461
phase encoding, 448
point spread function, 478
polar data, 471–472
polar sampling, 478

magnetic resonance imaging (Continued)
polar scanning, 460
practical RF waveform, 452–453
proton density–weighted contrast, 429–430
pulse repetition interval, 467
pulse sequence, 407, 413
readout direction, 457
readout gradient, 457–458, 475
received signal, 456
receiver bandwidth, 475, 476
refocusing gradient, 453–454
refocusing lobe, 454
resolution, 477–479
RF center frequency, 450
RF frequency range, 450
ringing artifact, 483
sampling, 475–477
shading artifact, 480
signal-to-noise ratio, 481–482
slab, 449
slice dephasing, 454
slice position, 451
slice profile, 453
slice selection, 449–455
slice thickness, 451
spectroscopy, 12
spin density, See spin density
spin rephasing, 454
spin-echo imaging, 456
spoiled gradient echo (SPGR), 433, 467
spoiler pulse, 467
superconducting magnet, 13
susceptibility-weighted imaging (SWI),

484–485
tissue contrast, 429
wraparound artifacts, 483

magnetic resonance scanner
Aldermann-Grant coil, 446
birdcage resonator, 445
body coil, 445, 480
console, 446
field strength, 441
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magnetic resonance scanner (Continued)
gantry, 407
gradient amplifier, 444
gradient coil, 442–445

shielding coil, 444
slew rate, 444, 445

head coil, 446, 480
magnet, 441–442, 444
phased array, 446
pulse sequence, 408
radio frequency coil, 445–446
receiver coil, 407
saddle coil, 444
surface coil, 445, 480
system components, 439–441
volume coil, 445

magnetic susceptibility, 415
diamagnetic, 415, 485
ferromagnetic, 415
paramagnetic, 415, 485

magnetization vector, 412, 448
equation of motion, 413
longitudinal component, 416
transverse component, 416

magnification, 88, 160, 162, 165
main lobe, 354
mammography, 7, 136, 137, 144, 148, 154

full field digital, 154
paddle, 154
stereo digital, 154

Mansfield, Peter, 6
marrow, 105
mAs, See x-ray tube,

milliampere-second
mass

relativistic, 110
mass attenuation coefficient, 129
matrix

inverse, 315
maximum likelihood, 316
MDCT, See computed tomography,

multiple-row detector

medical imaging, 1–4
emission imaging, 7, 235, 239
functional imaging, 235
history, 5–6
modality, 1, 7
multimodal imaging, 13
Nobel Prize, 5, 6
physical signals, 6–7
projection radiography, 7
signals and systems, 2
transmission imaging, 7

metastable, See nuclide, metastable
microcalcification, 154
mirror, 148
ML, See maximum likelihood
ML-EM, See reconstruction, iterative,

maximum likelihood by expectation
maximization

modulation, 56
modulation transfer function, 56–60, 166

of system cascade, 66
molybdenum, 137, 251
motion tomography, 7
MTF, 57, 59
multiple sclerosis, 408
multislice computed tomography, See computed

tomography, multiple-row detector
(MDCT)

N

narrow beam geometry, See x-ray, narrow
beam geometry

narrowband pulse, 355–356
complex envelope, 355
complex signal, 355
envelope, 355

narrowband signal, 376
National Council on Radiation Protection and

Measurement (NCRP), 140
NCRP, See National Council on Radiation

Protection and Measurement
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NEC, See positron emission tomography, noise
equivalent count rate

negative predictive value, 91
neper, 345
neuron, 485
neuroradiology, 8
neuroreceptor density, 293
neutrino, 245
niobium-titanium wire, 441
nitrogen, 293
NMR, See nuclear magnetic resonance
noise, 55, 69–76, 169

photons, 169
power spectrum, 78
thermal vibrations, 69
white, 78
wide-sense stationary, 78

noise equivalent count rate (NEC), 321
noninvasive techniques, 1
normal equation, 315
NPS, 78
nuclear magnetic resonance (NMR), 6, 7, 12,

407, 410–438
T∗

2, 423
basic signal, 418
Bloch equations, 410, 413, 425–426, 453
contrast mechanisms, 429–433
echo, 423
equilibrium, 424, 473
Faraday induction, 7
forced precession, 420, 449, 453
free induction decay, 422
inversion pulse, 421
isochromat, 416, 452, 455
longitudinal relaxation, 423
longitudinal relaxation time (T1), 424
multiple echoes, 428
nuclear magnetism, 411
nuclear spin system, 411
pi over two pulse, 421
precession, 7, 12, 419
pulse sequence, 427

nuclear magnetic resonance (NMR)
(Continued)

radio frequency excitation, 419–421
refocusing, 423
relaxation, 422–425
sample volume, 418
short TI inversion recovery (STIR), 433
spin echoes, 426–428
spin system, 410
steady-state, 424
transverse relaxation, 422, 426
transverse relaxation time (T2), 422, 455

nuclear medicine, 10, 235–329
biodistribution, 235
dynamic studies, 268
hot spot, 235
rectilinear scanner, 6

nuclear spin system, 7
nucleon

binding energy, 241
nucleus

angular momentum, 410
charge, 410
spin, 410
spin quantum number, 412
strong force, 242

nuclide, 107, 240
line of stability, 242
metastable, 246
radioactive, 108, 242
stable, 242

Nyquist rate, 268
Nyquist sampling theorem, 84, 268

O

object
sinusoidal, 56

oblique, 4
obliquity, 157
obstetrics, 332
optical density, 167
optical transfer function, 41
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organ boundaries, 335
orthopedic surgery, 105
OSEM, See reconstruction, iterative, ordered

subsets expectation maximization
OTF, See optical transfer function
oxygen, 250, 293, 415, 485

P

pair production, 116
parallel ray geometry, 188, 198, 199
Parseval’s theorem, 40
partial differential equation, 338
partial volume effect, 319
particulate radiation, 106, 110–112, 245
pdf, See random variable, density function
PDF, See random variable, distribution function
pelvis, 103
perfusion imaging

myocardial, 237
permeability constant, 480
Perrier, Carlo, 6
PET, See positron emission tomography
phase encoding, 462–465
phosphor, 146, 148
phosphorescence, 147
phosphorescent, 147
photocathode, 258
photoelectric effect, 116–117, 123, 166, 195,

258, 319
photoelectron, 117
photomultiplier tube, 149, 195, 256, 258, 259,

275, 279, 300
anode, 259
dynode, 259, 280
output pulse, 260
photocathode, 258
window, 258
Z-pulse, 261, 262

photon, 112, 169, 172
absorption, 118
annihilation, 246, 293

photon (Continued)
attenuation, 124
Compton, 117
energy, 112, 119, 170
fluence, 121
light, 147
monoenergetic, 123
quanta, 169
scintillation, 260
x-ray, 147

photon fluence, 271
photon fluence rate, 270, 271, 306, 310
photons, 69
photopeak, 261, 279, 301
piezoelectric crystal, 367
piezoelectric effect, 368
pitch, See helix, pitch
pixel, 16, 267
pixel size, 478
planar scintigraphy, 238, 251, 255–292

acquisition modes, 266–269
activity concentration, 272
collimator, 270
collimator resolution, 273–275
Compton scattering, 118
contrast, 281
dynamic frame mode, 268
effective resolution, 276
factors affecting count rate, 281–282
frame mode, 280
image contrast, 279
image formation, 264–272
image quality, 272–282
imaging equation, 269–272
intrinsic resolution, 275–276
list mode acquisition, 266
mean pixel count, 272
multiple-gated acquisition, 268, 269
noise, 280–281
patient motion, 281
planar source, 271–272
point spread function, 274
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planar scintigraphy (Continued)
resolution, 273–276
sensitivity, 276–278
signal-to-noise ratio, 280
solid state camera, 264
spatial distortion, 279
static frame mode, 267
total counts, 268
uniform flood, 278
whole-body acquisition, 268

Planck’s constant, 112, 117
plane waves, 338
plastic, 144, 146
PMF, See random variable, probability mass

function
point, 16
point impulse, 17, 23, 24, 199

scaling property, 19, 20
sifting property, 18, 199, 203, 272

point spread function (PSF), 25, 275
absolutely integrable, 31
circularly symmetric, 56, 478
Gaussian, 31
isotropic, 61

Poisson counting process, 248
Poisson random variable, See random variable,

Poisson
positive predictive value, 91
positron, 245

annihilation, 298
positron decay, 245
positron emission tomography (PET), 10, 238,

255, 298–304, 309–312
3D mode, 301
attenuation correction, 313
coincidence line, 299
detector ring, 300
energy discrimination, 301
glucose metabolism, 238
image formation, 309–313
image reconstruction, 312
imaging equation, 310–312

positron emission tomography (PET)
(Continued)

instrumentation, 298–304
line of response (LOR), 309–310
noise equivalent count rate, 321
random coincidence, 320
septa, 301
time window, 299, 320
time-of-flight, 302

positron range, 318
positron range function, 318
Potter-Bucky diaphragm, 145
power, 48
precession, 414
pressure

reflectivity, 344
transmittivity, 344

prevalence, 91
probability, 70

Compton event, 119
photoelectric event, 119

probability density function, 70
probe, See ultrasound probe
projection, 5, 9, 105, 135, 186, 197, 199, 200

cone beam, 193
fan-beam, 191, 193, 208
parallel-ray, 188, 198, 199
redundant, 201
truncated, 213

projection image, 3
projection radiography, 7–9, 101, 135–185

beam divergence, 157–158
chest x-ray, 135
density maintenance formula, 156
depth-dependent blurring, 160
depth-dependent magnification, 160–161
exposure time, 135
extended source, 162–165
film, 10
geometric effects, 155–162
imaging equation, 162, 164
inverse square law, 155–157, 165
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projection radiography (Continued)
obliquity, 157
path length, 158–160
patient positioning, 158
radiation exposure, 135
resolution, 163
shading artifact, 159
source magnification, 164

projection-slice theorem, 203–204, 215, 472
proton density, 413, 455
PSF, See point spread function
pulse height, 259
pulse height analyzer, 260–262, 279

acceptance window, 262
offset window, 263

pulse repetition interval, 429
pulse sequence

2-D gradient echo, 463
bipolar pulse, 486
fast imaging sequence, 467
FLAIR sequence, 433
gradient echo, 485
low-pass filtering process, 477
slice selection, 454–455
slow imaging sequence, 467
spin echo, 487
spoiled gradient echo (SPGR), 467
steady state, 473
STIR sequence, 433

Purcell, Edward, 6
PVDF, See ultrasound transducer,

polyvinylidene fluoride
PZT, See lead zirconate titanate

Q

quality factor, 129
quanta, 69
quantum efficiency, 171–172
quantum mottle, 69, 169
quantum physics, 412
quartz, 369

R

rad, 128
radiation, 107

absorbed dose, 128
bremsstrahlung, 114, 115, 122
characteristic, 114, 139
detection

scintillation, 258
dose, 128, 170
dose equivalent, 129
dosimetry, 127–131
effective dose, 130
electromagnetic, 112–113, 245, 319
exposure, 128, 171
f-factor, 129
infrared, 114
inverse square law, 128, 270, 271, 306
ionizing, 106, 107, 331
linear energy transfer (LET), 128
particulate, 106, 110–112, 245
positron, 298
quality factor, 129
specific ionization, 128
units, 127

radiative transfer, 114
radio frequency coil, 417
radio frequency field, 446
radio wave, 11, 417
radioactive decay, 239, 245
radioactive decay law, 243–245
radioactivity, 243, 244

alpha decay, 245
beta decay, 245
curie, 243
daughter atom, 242
decay, 242
decay constant, 244, 270
decay factor, 244
decay law, 243–245, 247
disintegrations per second, 243
effective half-life, 249



Index 513

radioactivity (Continued)
half-life, 244, 293
isomeric transition, 245
parent atom, 242
statistics of decay, 247

radiogenic carcinogenesis, 130
radiograph, 135

planar, 5
radiographic cassette, 147–148
radiography

conventional, 135
planar, 5

radionuclide, 107, 240, 242, 244
radiopharmaceutical, See radiotracer
radiotracer, 6, 7, 10, 235, 239, 249–251,

293
activity concentration, 270
biodistribution, 269
cyclotron, 249
energy, 249
fluorodeoxyglucose (FDG), 238, 250
gamma emitter, 255
half-life, 249
iodine, 10
low-energy, 271
monoenergetic, 250
positron emitter, 255
redistribution, 268
safe, 249
uptake, 268
washout, 268

radium, 243
radon, 243
Radon transform, 186, 199, 312,

472
convolution property, 214
inverse, 186, 214
sinogram, 200–201, 309

ramp filter, See reconstruction, ramp filter
random coincidence, 320
random process

Poisson counting process, 248

random variable, 70–76
continuous, 70
density function, 70
discrete, 72–74
distribution function, 70
expected value, 70, 73
Gaussian, 71
independent, 75, 217
mean, 70, 217, 247
mean value, 73
Poisson, 73, 170, 216, 217, 247, 280, 316
probability mass function, 73, 247
random deletions, 216
Rayleigh, 379
standard deviation, 71, 169
transformation, 217
uniform, 71
variance, 70, 73, 170, 217

range, 393
range equation, 378
rayl, 338
Rayleigh, John, 6
RBW, See magnetic resonance imaging, receiver

bandwidth
receiver coil

electrical resistance, 479
reconstruction, 3, 105, 206–207, 293, 446

attenuation correction, 294
cone beam, 213
convolution backprojection, 206, 217, 312,

313, 459, 472
fan-beam, 208–212
Feldkamp algorithm, 213
filtered backprojection, 205, 313
forward problem, 314
forward projection process, 315
Fourier method, 204–205
Fourier rebinning, 309, 312
iterative, 213, 313–317

algebraic reconstruction technique,
314–316

convergence, 315
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reconstruction (Continued)
forward model, 317
initial guess, 314
maximum likelihood by expectation

maximization, 316–317
ordered subsets expectation maximization

(OSEM), 317
sensitivity factor, 317
stopping rule, 314

parallel ray, 198–207
ramp filter, 205, 206, 214, 217, 307, 313,

318
time-of-flight constraint, 302
window, 219
windowing, 206

rect function, 20–22, 38, 161, 169, 196,
318

reflection coefficient, 347
reflectivity, 392
reformat, 105
relativity

theory of, 110
relaxation, 422–425

matrix, 425
rem, 129
repetition time, 381
resistivity, 480
resolution, 55, 61–69

energy, 262
modulation transfer function, 63–65
spatial, 61
spectral, 61, 69
temporal, 61, 69
test pattern, 68
tool, 68

resolution cell, 378
resolution tool, 68
resolving time, See scintillator, dead time
resonator, See magnetic resonance scanner,

radio frequency coil
restriction, 139–141
RF pulse, 419

ribs, 103
roentgen, 128
Roentgen, Wilhelm, 5, 106, 146, 147
Rose model, 80
rotating frame, 419

S

sagittal, 4
sampling, 16, 80–86

aliasing, 81, 83, 212
coarse sampling, 80
fine sampling, 80
function, 19–20, 81
Nyquist sampling period, 84
rate, 475
rectangular, 80
sampling frequency, 80
sampling period, 80
sampling theorem, 84

scanning slit, 145–146
scatter rejection, 145
scatter-to-primary ratio, 174
scatterer, 357, 367, 378
scattering

acoustic, 344, 347
angle, 117, 118
backscatter, 118
Compton, 116–118, 140, 144, 145, 188,

192, 196, 275, 278, 319
reduce effects of, 144

scintigraphy, 10
scintillation, 239, 258
scintillation crystal

cut, 300
scintillator, 195

cesium iodide, 152
dead time, 282, 320
decay time, 301
sodium iodide, 256

SCR, See silicon-controlled rectifier
Segre, Emilo, 6
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selenium
amorphous, 152

sensitivity, 89
separable signals, 23
separable systems, 30–31
septum, 256, 275
shadow, 135
shield, 118
shift invariance, 25–27
shoulder, 101
SI, See radiation, specific ionization
side lobe, 354
sifting property, 18, 199, 203, 272
signal, 15, 16, 76

band-limited, 83
bounded, 31
circularly symmetric, 44
comb and sampling functions, 19–20
complex exponential, 22
continuous, 15, 16
discrete, 15
energy, 48
exponential and sinusoidal signals, 22–23
input, 24
line impulse, 19
mixed, 15
output, 24
period, 24
periodic, 23–24
point impulse, 16–19, 340
power, 48
rect function, 20–22, 38, 161, 169, 196, 318
representation, 16
sampling function, 20
sawtooth, 349
separable, 23
sinc function, 20–22, 215
sinusoid, 349, 350, 418
sinusoidal, 22, 339
smoothing, 43
total power, 48
visualization, 16

signal-to-noise ratio (SNR), 76–80, 169, 174,
214, 219

amplitude, 77
background, 169
differential, 79
frequency-dependent power, 79
power, 77, 78
target, 169

silicon
amorphous, 152

silicon-controlled rectifier, 138
similar triangle, 160
sinc function, 20–22, 215
single photon emission computed tomography

(SPECT), 10, 255, 294–298, 304–309
bone scan, 295
cardiac, 295
dual head system, 295
instrumentation, 294–296
multihead system, 296
myocardial perfusion, 237
patient table, 10
sensitivity, 295
specialized geometry systems, 297

single photon emission tomography, 251
sinogram, 200–201, 206, 207, 309
sinusoidal signal, 22–23
slab

thin, 118, 123, 126
Snell’s law, 342
SNR, See signal-to-noise ratio
sodium iodide, 124, 195, 256, 258, 264
soft tissue, 101
solenoid, 480
solid-state photodiode, 195
sound, 335

propagation, 335
sound wave, See acoustic wave
source magnification, 164
specific ionization, 128
specificity, 89
speckle, 378, 392
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SPECT, See single photon emission computed
tomography

spectral line, 122
spectral resolution, 61, 69
spectrum, 32

bremsstrahlung, 115
line, 122
magnitude, 33
phase, 33
power, 33
x-ray, 122

speed of sound, 336, 348
SPGR (spoiled gradient echo), 433, 467
spin density

effective, 456, 473
spin echo, 426, 465–466
spin-lattice relaxation, See nuclear magnetic

resonance, longitudinal relaxation
spin-spin relaxation, See nuclear magnetic

resonance, transverse relaxation
spiral computed tomography, See computed

tomography, helical
spot size, 162, 164
stability, 31
standard deviation, 71, 169
strain, 367
streak artifacts, 222
STIR (short TI inversion recovery), 433
superposition, 165
superposition integral, 25
surgery, 1
SWI, See magnetic resonance imaging,

susceptibility-weighted imaging
system

subsystem cascade, 65–68, 318
systems, 15, 24

BIBO stable, 31
cascade connection of, 28, 65
connection of, 28
continuous, 24
continuous-to-continuous, 16, 24
continuous-to-discrete, 16

systems (Continued)
frequency response, 41
linear, 24–25
linear shift-invariant (LSI), 26
optical transfer function, 41
parallel connection of, 28
point spread function, 25
separable, 30–31
serial connection of, 28
shift invariant, 25–27
stable, 31
superposition integral, 25
transfer function, 41

T

target, 60
technetium, 6, 124, 240, 243, 251, 261, 278
temperature, 413, 479
temporal resolution, 61, 69
TGC, See time-gain compensation
thallium, 251, 278
through-plane direction, 448
thyroid, 142, 249
tibia, 103
time-gain compensation (TGC), 375
time-of-flight PET (TOF-PET), 302
tip angle, 418, 421, 429, 452, 472

small tip angle approximation, 453
titanium, 148
titanium dioxide, 146
TOF-PET, See time-of-flight PET
tomogram, 186
tomographic image, 4
tomography, 9

linear, 154
tomosynthesis, 154
torque, 414
total power, 48
transducer, 11, 335

beam divergence, 362
field pattern, 353–362
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transducer (Continued)
focusing, 361–362

electronic, 361
lens, 361

transducer beam
steering, 386

transducer, See ultrasound transducer
transfer function, 41
transistor

thin film, 152
transmittivity, 162, 165
transverse magnetization, 416–418, 446, 447,

453, 455, 484, 486
dephasing, 422
phase, 417
spoiling, 467

transverse relaxation time, 422, 455
true-negative fraction, 89
true-positive fraction, 89
tube current, 136, 138
tube voltage, 137–139
tungsten, 137

U

ultrasound, 335
frequency, 335
fundamental frequency, 349
harmonic frequencies, 348, 349
propagation, 335
wave equation, 336–341

ultrasound beam
steered, 372

ultrasound imaging, 11–12, 331, 367–405
A-mode scan, 11, 380–381
A-mode signal, 377
B-mode scan, 11, 381–385
basic pulse-echo signal equation, 358
compound B-mode scan, 382
compound scanning, 395–396
depth of penetration, 384
displaced aperture, 396

ultrasound imaging (Continued)
Doppler effect, 334
Doppler imaging, 11, 349–353
dynamic focusing, 389
echo, 11, 335
embryo, 12
envelope detection, 376
frame rate, 385
grating lobe, 383
harmonic, 372
imaging modes, 380–385
instrumentation, 367–374
M-mode scan, 11, 381
pulse repetition rate, 384–385
pulse-echo, 374–377
pulse-echo equation, 374–377
pulse-echo mode, 367
range equation, 378
real-time, 334
reflection, 331
resolution cell, 378
scan conversion, 383
slice thickness, 393–394
speckle, 12, 332
steering and focusing, 386–392
system, 12, 331, 392
three-dimensional, 391–392
transducer, 12
transducer motion, 377–380

ultrasound probe, 370, 372–374
1.5D array, 393
beamforming, 389
delay element, 386
dynamic focusing, 390
electronic scanner, 373–374
focusing, 387
linear array, 373
linear scanner, 383
matching layer, 371
mechanical scanner, 373
mechanical sector scanner, 383
phased array, 373, 387
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ultrasound probe (Continued)
phased array sector scanner, 383
rocker, 373
steering, 387
wobbler, 373

ultrasound transducer, 367–372
bandwidth, 372
broadband, 371–372
damping, 371
damping and matching, 370–371
polyvinylidene fluoride (PVDF), 369
quartz, 369
receiving constant, 369
resonance, 369–370
shape, 369
shock excitation, 370
transmitting constant, 369

uniform random variable, 71
uniformity, 278–279
unit disk, 45

V

vacuum, 148
vein, 235
voxel

size, 419

W

wave equation
plane wave, 338
propagation, 341
spherical, 340
three-dimensional, 338

wave number, 339, 458
wavelength, 112, 339
white matter (WM), 408, 429
whole body scan, 9
WM, See white matter

X

x-ray
added filtering, 140
attenuation, 123, 142, 147, 188

integral form, 125
beam, 136
beam hardening, 139, 214, 221
beam softening, 127
beam strength, 121
broad beam geometry, 127
characteristic, 115
chest, 101, 186
diverging beam, 155
dose, 127, 170
effective energy, 123, 139, 216, 222
energy fluence, 121
energy fluence rate, 280
equivalent monoenergetic beam, 122
exposure, 167
filtration, 158
flux, 157
half value layer (HVL), 124
image intensifier, 148–149

anode, 149
dynode, 149
photocathode, 148

intensity, 121, 157
linear attenuation coefficient, 124, 147, 154,

194, 197, 274, 308
energy dependence, 125

monoenergetic, 197
narrow beam geometry, 123, 125
penetration, 136
photon fluence, 121
photon fluence rate, 121, 122
polyenergetic, 122, 139, 170, 197,

222
spectrum, 139, 155, 170, 194, 197,

222
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x-ray imaging
cone beam, 9

x-ray systems
mobile, 8

x-ray tube, 8, 104, 115, 136, 140, 192, 194
added filtering, 139
anode, 137, 139, 140, 158, 170, 192

rotating, 138
anode heel effect, 158
automatic exposure control, 138
cathode, 136, 158
dielectric oil, 139
exposure, 138
filament, 136–139
filament current, 148, 170
filtration, 139
focusing cup, 137
glass housing, 139
heat, 138
housing, 140

x-ray tube (Continued)
inherent filtering, 139
milliampere-second, 138
peak tube voltage, 137, 170
restriction, 139–141
spot size, 162, 164
thermionic emission, 136
tube current, 136, 138
tube voltage, 137–139

x-rays, 5, 106, 136
XRII, See x-ray, image intensifier

Y

yttrium, 195

Z

Z, See atom, atomic number
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