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ABSTRACT

We present our entry for the Longitudinal Multiple Sclero-
sis Challenge 2015 using 3D convolutional neural networks
(CNN). We model a voxel-wise classifier using multi-channel
3D patches of MRI volumes as input. For each ground truth, a
CNN is trained and the final segmentation is obtained by com-
bining the probability outputs of these CNNs. Efficient train-
ing is achieved by using sub-sampling methods and sparse
convolutions. We obtain accurate results with dice scores
comparable to the inter-rater variability.

Index Terms— Multiple Sclerosis, 3D Convolutional
Neural Networks, Deep Learning, Neuroimaging

1. INTRODUCTION

Multiple Sclerosis (MS) is a chronic demyelinating disease
and affects over 2 million patients globally. The condition
is typically diagnosed based on hyperintense or hypointense
appearance on Magnetic Resonance (MR) Images. How-
ever, the complex appearance and visually vague edges of
lesions make segmentation by specialists a difficult and
time-consuming task. Methods such as Gaussian Mixture
Models[1] have been proposed for the automated segmenta-
tion of MS lesions. Motivated by the performance of Convo-
lutional Neural Networks(CNN) for visual recognition from
2D images[2], we decided to apply a 3D version of CNN for
this challenge.

2. MATERIAL AND METHODS

2.1. Pre-Processing

We use the data provided by the Longitudinal Multiple Scle-
rosis Challenge 2015. The data provided is skull-stripped and
corrected for bias. Further to this, we employ a normalization
technique similar to one described by G. Urban et al.[3]

The data is histogram matched to an arbitrary data point
(patient 1, time point 1) and normalized using the mean CSF
value. We also added an additional step of truncating the in-
tensity values to the quartile range of [0.01, 0.99]. The nor-

Fig. 1. Architecture of the 3D CNN: L1 - 60 filters of 4x4x4
with average pooling of 2x2x2, L2 - 60 filters of 3x3x3 with
average pooling of 2x2x2, L3 - Multi-layer Perceptron, L4 -
Softmax. O1, O2, O3 and O4 are respective outputs of L1,
L2, L3 and L4.

malization step was carried out using Advanced Normaliza-
tion Tools (ANTs)[4] and Atropos[5].

2.2. Convolutional Neural Network

We employ a voxel-wise classifier to perform the segmenta-
tion task. Three dimensional patches from each channel - T1,
T2, FLAIR and PD centered around the voxel of interest is
fed to the classifier. Thus, the classifier effectively analyzes 4
dimensions for each voxel.

2.2.1. Data Sampling

Since MS Lesions only constitute a very small percentage of
the MRI volume, we performed a data sampling method to re-
duce the class imbalance in our training data. In this method,
each image volume is divided into subvolumes of equal size.
Three dimensional patches for training are selected only from
those subvolumes that contain lesion voxels greater than a set
threshold.

In addition, this sampling technique allows the use of
sparse convolution method as described in [6] which has
proven to speed up the training of convolutional neural net-
works for segmentation.

2.2.2. Architecture

We developed a 3D Convolutional Neural Network which
performs 3D spatial convolutions as opposed to 2D convolu-



tion used in image classification tasks. The architecture has
been represented in Fig.1.

All convolutional layers use softplus activation function.
The model is trained using logarithmic likelihood as cost
function and optimization is carried out using mini-batch
gradient descent with a momentum. We gain a speed up
of several orders by processing 253 voxels in one gradient
optimization using the earlier mentioned sparse convolution
method. We were able to train our model within one day
and prediction took around 2 minutes per brain image on an
Nvidia Tesla K20 GPU.

We trained two Convolutional Neural Networks, one for
each radiologist mask with the same architecture and specifi-
cations. We used the posterior probability maps of the lesion
class from the CNNs to generate our final prediction.

2.3. Post-Processing

We add posterior probability values from both CNNs with
equal confidence and use it to arrive at our final segmenta-
tion. Since Multiple Sclerosis is only seen in white matter,
we apply a white matter mask on the prediction by registering
the test images with pre-built brain templates [7] and perform
grayscale dilation on the corresponding WM priors for each
patient.

3. RESULTS AND DISCUSSION

Table 1 shows the results on the dataset using mask1 as the
ground truth. Fig 2 shows an example prediction.

01 IRV 02 IRV 03 IRV
Dice 81.63 86.34 78.62 80.37 80.61 83.39
Jaccard 68.97 75.96 64.78 67.18 67.52 71.51
PPV 87.82 81.73 81.89 85.63 86.93 79.51
Sensitivity 76.26 91.50 75.61 75.71 75.15 87.66
LTPR 46.34 95.12 40.63 68.75 35.29 73.53
LFPR 41.67 59.14 74.14 45.65 63.16 43.48
VD 13.16 11.96 7.67 11.58 13.56 10.24
SD 57.29 63.57 129.32 83.98 84.24 65.83
SV 23354 30108 28995 2770 27224 34719
MV 26892 26892 31405 31405 31494 31494
VCC 99.04 -79.30 99.04 -79.30 99.04 -79.30
NLTPR 10.00 52.86 0.00 33.33 0.00 75.00
NLFPR 73.53 84.17 92.89 86.36 73.90 86.93

Table 1. Results obtained from ’training02’ time points. IRV
refers to the inter-rater metrics for the corresponding time
points. The metrics dice score, jaccard score, positive pre-
diction value (PPV), true positive rate (TPR), lesion true pos-
itive rate based on lesion count (LTPR), lesion false positive
rate based on lesion count (LFPR), volume difference (VD),
surface difference (SD), segmentation volume (SV), volume
change correlation (VCC), new lesion TPR (NLTPR) and new
lesion FPR (NLFPR) are used to evaluate the algorithm.

We demonstrate that our Convolutional Neural Network
(CNN) is able to classify MS lesions with dice score that

Fig. 2. Mask1, Mask2 and Prediction from training01 01

is comparable to inter-rater variability. The proposed sub-
sampling method reduced class imbalance and allowed us to
use sparse convolution method to gain a speed up of several
orders and train our model in one day.

The current model does not consider longitudinal correla-
tions among data and a model capable of incorporating this
information to predict future lesion voxels is under develop-
ment. We were also not successful in training deeper net-
works and intend to improve our performance for the final
submission along these lines.
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