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ABSTRACT

Due to their abnormal appearance, Multiple Sclerosis lesions
can influence the results of various image analysis techniques
such as segmentation and registration. As the multi-modal
characteristic intensity of the Multiple Sclerosis lesions is dif-
ferent that of non-pathological tissues, a local multi-modal
intensity similarity can be used to classify and segment le-
sions. In this work, lesions are segmented using a fast patch
matching approach, namely the optimised PatchMatch label
fusion algorithm. The optimised PatchMatch label fusion al-
gorithm is here extended to multimodal data, enabling an ac-
curate Multiple Sclerosis lesion segmentation.

Index Terms— patch-based, multimodal, lesion detec-
tion, mri, patchmatch

1. INTRODUCTION

Automatic detection and segmentation of Multiple Sclero-
sis (MS) lesions can help diagnosis and patient follow-up,
providing quantitative assessment of inflammatory activity
and lesion load. MS lesions appear with different intensi-
ties depending on the MRI sequence and have considerable
shape variability, making automatic segmentation a challeng-
ing task. Several automated segmentation techniques have
been developed, including some intensity-based k-nearest
neighbor algorithms [1]. Traditionally, these intensity-based
approaches were computationally expensive to solve this
problem and needed a learning set reduction to reduce the
computation time [2]. Recently, Ta et al. [3] presented a very
quick patch-based algorithm using PatchMatch technique.
PatchMatch was designed to look for similarities between
two 2D images [4]. Shi et al. [5] extended it to 3D MRI
images and applied it to cardiac images. Later, Ta et al. [3]
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presented an optimised version of the PatchMatch algorithm,
named Optimised PAtchMatch Label fusion (OPAL), produc-
ing accurate and fast segmentation of the hippocampus using
a library of associated segmented images and speeding up the
process of multi-atlas label fusion.

In this work, we propose to use the PatchMatch algorithm
for MS lesion detection. The main contributions of this work
are the generalisation of the optimised PatchMatch algorithm
to this context and its extension to multimodal data.

2. METHOD

The original PatchMatch algorithm was designed to look
for similarities between two 2D patches within the same
image [4]. Later, OPAL extended patch correspondences be-
tween a target 3D image and a reference library of 3D training
templates [3]. Here, the PatchMatch algorithm is used to lo-
cate pathological regions through the use of a template library
comprising a series of multimodal images with manually seg-
mented MS lesions. By matching patches between the target
multimodal image and the multimodal images in the tem-
plate library, PatchMatch can provide a rough estimate of the
location of the lesions in the target image.

We extend the OPAL algorithm to match patches between
multiple image modalities at the same time. In order to do
so, for each subject, we first register all the available modal-
ities to a common space and stack them to form a 4D vol-
ume of multimodal intensities. Patches are defined as in the
OPAL method, with the only difference being the estimation
of the patch similarity. Rather than calculating the sum of
the squared differences (SSD) between two patches over one
single modality, we estimate the l2-norm between multimodal
patches. While this extension is trivial, as it is equivalent to
the sum of the SSDs for each image modality independently,
it provides a crucial improvement in discrimination when dis-
tinguishing between pathological and healthy intensity pat-
terns. To improve computational speed, as in the original
OPAL method, we stop the computation of the patch simi-
larity if the current sum is superior to the previous minimal
multimodality SSD. Also of note is the fact that this Patch-



Split Union Inter.
TNR 99.84 (0.04) 99.77 (0.07) 99.92 (0.02)
TPR 78.48 (9.73) 81.43 (9.75) 72.33 (10.30)
FPR 0.16 (0.04) 0.23 (0.07) 0.08 (0.02)
PPV 38.91 (23.13) 33.47 (22.56) 49.87 (22.83)
VO 33.11 (16.75) 29.38 (17.23) 39.26 (13.43)
VD 201.3 (191.9) 282.7 (260.9) 97.5 (93.0)
SD 1.65 (0.16) 1.70 (0.17) 1.56 (0.12)

DSC 0.47 (0.19) 0.43 (0.20) 0.55 (0.14)
Score 1.86 (0.35) 1.50 (0.93) 2.64 (0.74)

Table 1. Evaluation results using different template libraries.
Mean (standard deviation) for each metric. True negative rate
(TNR), true positive rate (TPR), false positive rate (FPR),
positive predictive value (PPV), volume overlap (VO), vol-
ume difference (VD), average symmetric surface distance
(SD), mean dice score coefficient and mean global score.

Match algorithm can propagate more than one label at the
same time.

As the PatchMatch output is non-binary, we apply an
adaptive threshold value to binarise the probabilistic mask
obtained by the PatchMatch algorithm. For this purpose,
the robust range (assuming 2% outliers on both sides) of all
voxels with non-zero probabilities is calculated, and then the
mean of the values inside the robust range is computed. This
mean is then used as a threshold to binarise the probabilistic
segmentation. The algorithm also detects healthy controls by
taking into account the robust range obtained values: if the
highest probability within the robust range is below 0.1 we
consider that no lesions have been detected, meaning that the
patient is lesion free.

3. VALIDATION AND RESULTS

In our experiments, we used the parameters suggested by Ta
et al. [3]; the patch size was 5 × 5 × 5, the number of inner
iterations 5, and the number of threads and the number of
best-matches both 10.

For the sake of comparison and tuning, three template
libraries were built. For each subject the T1, T2, PD and
FLAIR images were stacked as 4D images. All libraries start
with 21 training datasets. In order to increase the size of the
libraries, all the scans were left-right flipped, resulting in 42
datasets in each template library. As multiple rater segmenta-
tions were available, a consensus segmentation was estimated
in two different ways: the first template library used the inter-
section of the segmentations of both raters, while the second
used the union mask of both raters. Finally, rather than es-
timating a consensus, a third database was obtained by using
the segmentations from both rater 1 and rater 2 independently,
resulting in a template library with 84 datasets.

In order to compare the results, we used the evaluation

metrics proposed in the MICCAI MS Segmentation Chal-
lenge [6], the average Dice score coefficient (DSC) when
compared to each of the human raters, and a compound score
ranging from 1 (worst) to 3 (best) (see Table 1). In order to
remove possible bias, a leave one out strategy was used for
the proposed method, i.e. when segmenting an image, all the
time-points of this image and their left-right flipped versions
were removed from the template library.

The best segmentation results, found to be the ones using
the intersected rater consensus database, were submitted to
the Challenge.

4. DISCUSSION AND CONCLUSIONS

The proposed generalised PatchMatch algorithm demon-
strated good performance for single time-point MS lesion
detection. It is important to note that, due to the patch search
nature of the proposed methodology, the template database
needs to encode several degrees of lesion severity and spa-
tial locations in order to appropriately capture the population
appearance variability. Future work will not only expand the
size and variability of the database but will also explore a
multi-time-point extension of the proposed algorithm.
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