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ABSTRACT

Sparse representations allow modeling data using a few basis
elements of an over-complete dictionary and have been used
in many image processing applications. We propose to use
the sparse representation and dictionary learning paradigm to
automatically segment Multiple Sclerosis (MS) lesions from
longitudinal MR data. The dictionaries are learned for the
lesion and healthy brain tissue classes, and a reconstruction
error based classification approach is proposed for validation
on challenge data set.

Index Terms— Sparse Representations, Dictionary Learn-
ing, Magnetic Resonance Imaging

1. INTRODUCTION

Multiple sclerosis is a chronic and autoimmune disease of the
central nervous system and is characterized by structural dam-
age of axons. MRI is the best paraclinical method for the
diagnosis of MS and treatment efficacy. However, manual
segmentation of MS lesions is a complex and time consum-
ing task. In the past, several MS lesion segmentation methods
have been proposed, with an objective of handling large va-
riety of MR data and which can provide results that correlate
well with expert analysis [1]. These methods use different
image features, classification methods and lesion models.

Over the last few years, modeling signals using sparse
representation and dictionary learning framework has achieved
promising results in image classification [2]. Recently, its ap-
plications in disease detection have started evolving [3,4]. We
propose to explore the use of dictionary learning and sparse
representation techniques for the segmentation of MS lesions
in longitudinal data set.

In our approach, we learn class specific dictionaries for
the lesion and healthy brain tissues. Each dictionary promotes
the sparse representation of the class data. The lesion patches
are well adapted to its own class dictionary, as opposed to
the other. We then use the reconstruction error derived from
sparse decomposition of test patch on to these dictionaries for
classification. The size of the dictionaries play major role in
data representation as well as classification. In the data set,
the healthy class patches exhibit more variability as compared

to the patches from the lesion class. Thus we use different
dictionary sizes for modeling image patches for each class.

2. SPARSE CODING AND DICTIONARY LEARNING

Sparse coding is the process of finding a sparse coefficient
vector a ∈ RK for representing a given signal x ∈ RN using
a few atoms of an over-complete dictionary D ∈ RN×K . It is
given by mina ‖a‖0 s.t. ‖x−Da‖22 ≤ ε, where ‖.‖0 denotes
the l0 norm and ε is the error in representation. Replacement
of l0 norm with the l1 norm also results in sparse solution [5].
The sparse coding problem can then be given by

min
a
‖x− Da‖22 + λ ‖a‖1 , (1)

where λ balances the trade-off between the error and sparsity.
For a set of signals {xi}i=1,.,m, we can find a dictionary D

from the underlying data, such that each signal is represented
by a sparse linear combination of its atoms. It is given by

min
D,{ai}i=1,..,m

m∑
i=1

‖xi − Dai‖22 + λ ‖ai‖1 . (2)

The optimization is an iterative two-step process: Sparse cod-
ing with fixed D and the dictionary update with fixed a.

3. METHODOLOGY

We first preprocess MR images for noise removal and inten-
sity normalization. Image patches of a predefined size are
then extracted using brain mask and are normalized. With the
help of training data and manual segmentation images, the
image patches are labeled as either lesion or healthy. The dic-
tionaries are learned for each class and the classification of
image patches in the test data set is obtained. The final seg-
mentation image is obtained using majority voting.

3.1. Preprocessing

The set of MR images used in this study includes T1-weighted
MPRAGE, T2-weighted, PD-weighted and T2-weighted
FLAIR with 4-6 time-points for each patient. The pro-
vided preprocessed MR images still contain MR artifacts.



We removed such artifacts using non-local means based de-
noising [6]. These images also have large intensity variations
across various modalities and time-points. In order to reduce
such intensity variations, each subject-timepoint data volume
is rescaled in the intensity range 0-255 and longitudinal in-
tensity normalization is applied to all images [7]. We limit
our further analysis to the brain region.

3.2. Patch Labeling

In this step, the intra-cranial MR volume is divided into mul-
tiple 3-D image patches of a predefined size. The extracted
patches for all MR modalities are then flattened and concate-
nated together. Keeping the computational complexity of fur-
ther analysis in mind, we extract a patch every 2 voxels in
each direction. Next, the patches corresponding to training
data are labeled as belonging to either healthy or lesion class
using lesion segmentation masks obtained from two raters and
a predefined threshold TL that defines the number of lesion
voxels in a given patch. These patches are finally normalized
to limit their individual norms below or equal to unity.

3.3. Patch Classification using Dictionary Learning

Using training data, we learn class specific dictionaries Dc,
for the healthy (c = 1) and lesion (c = 2) classes. The dictio-
naries learned in this manner consist of a set of basis signals
which are better suited to represent the corresponding class
data. The decomposition of the test patch using other class
dictionary would give rise to a higher representation error.

Given a test patch yi, the patch classification is performed
in two steps: In the first step, the sparse coefficients ac

i are
obtained using Eq (1) for each class c. The test patch is then
assigned to class k such that

k = argmin
c
‖yi −Dcac

i‖
2
2 . (3)

The dictionaries learned for each class are aimed at better
representation of an individual class. However, if there exists
differences in the data-complexity between classes, the rela-
tive under- or over-representation of either class will lead to
worse classification. Now, since the healthy class data rep-
resents complex anatomical structures such as white matter
(WM), grey matter (GM) and cerebrospinal fluid (CSF), it
is associated with more variability as compared to the lesion
class. To account for more variability, we allow larger dic-
tionary size for the healthy class and study its effect on MS
lesion segmentation.

3.4. Voxel-wise classification

As already stated, we classify patches centered around every
2 voxels in each direction. For voxel-wise classification, we
assign each voxel to either of the classes by using majority

voting. The voxel is assigned to a particular class using ma-
jority votes of all patches which contain that voxel.

4. EXPERIMENTS

We implemented our method using MATLAB. The software
SPArse Modeling Software (SPAMS) was used for dictionary
learning and sparse coding [8].

For labeling patches, we used threshold TL = 15, as men-
tioned in Section 3.2. The experiments performed on 5 train-
ing subjects using Leave-One-Subject-Out-Cross-Validation
yielded the optimal patch size of 5 × 5 × 5, the sparsity pa-
rameter of λ = 0.95 and the dictionary size of 5000 for the
healthy class data. The size of the lesion class dictionary var-
ied from 700 to 2500 depending on the total lesion load.

5. CONCLUSION

We proposed MS lesion segmentation technique based on dic-
tionary learning and sparse representations for longitudinal
MR data. Learning class specific dictionaries of different
sizes not only allows to represent each class data but also
avoids relative under- or over-representation of either class
data. To further improve the results, it would be interesting to
derive dictionaries specific to WM, GM and CSF, instead of
learning single dictionary for healthy brain tissues.
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