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ABSTRACT

In this paper, we present an automatic hierarchical frame-
work for the segmentation of a variety healthy tissues and le-
sions in brain MRI of patients with Multiple Sclerosis (MS).
At the voxel level, lesion and tissue labels are estimated
through a Markov Random Field (MRF) segmentation frame-
work that leverages spatial prior probabilities for 9 healthy
tissues through multi-atlas fusion (MALF). A random for-
est classifier then provides region level lesion refinement.
Validation is performed on the data provided by the ISBI
2015 Longitudinal Multiple Sclerosis Lesion Segmentation
Challenge.

Index Terms— Segmentation, Multiple Sclerosis, MRI,
MAP-MRF, MALF, Random Forest

1. INTRODUCTION

Automatic segmentation of Multiple Sclerosis (MS) lesions
in patient brain MRI is a challenging task due to their wide
variability in texture, shape, size, and location. A variety of
MS lesion segmentation strategies have been developed [1–
4]. The premise of this work is that by carefully modelling
a variety of healthy structures in the presence of pathology,
lesion segmentation can be further improved. The framework
consists of building atlases for lesions and a wide variety of
healthy tissues off-line during training. Multi-atlas label fu-
sion (MALF) is then performed from the atlases to patient
images to use as spatial priors for a voxel-based Markov Ran-
dom Field framework that leverages intensity distributions
and local contextual constraints. A Regional Random Forest
(RRF) classifier then refines candidate lesions segmentations.
The method was tested on the MICCAI 2008 MS Lesion Seg-
mentation Challenge (MSLSC) [5] where it is currently the
top performing methods on the leader board. The strategy has
been tested in a leave-one-out fashion on the training data pro-
vided by the ISBI 2015 Longitudinal Multiple Sclerosis Le-
sion Segmentation Challenge, and show comparable results
to the manual raters.

2. METHOD

We now describe the details of the method, including the im-
plementation details.

2.1. Training

Training consists of three stages: Stage one involves building
a set of lesion and healthy tissue atlases, referred to as patho-
logical atlases as they are based on MS patient data. These
are to be used as spatial priors for new test data. Stage two
involves performing an initial segmentation of 9 healthy tis-
sue structures in each of the patient training cases in order to
build proper healthy and lesion intensity distributions. Stage
three involves training the Random Forest. We now describe
each of these stages in detail.

For the purposes of the ISBI challenge, stage one consists
of building 25 multi-modal (T1, T2, and FLAIR) pathological
atlases: 5 from each provided training subject (intensity val-
ues averaged over several timepoints), and 20 from the train-
ing set provided by the MSLSC [5]. Healthy labels for each
pathological atlas are generated through MALF from multi-
ple labels from 35 subjects from the 2012 MICCAI Chal-
lenge on Multi-Atlas Labelling (CMAL). Here the 134 la-
bels provided are concatenated into 9 healthy structures: cere-
brospinal fluid, lateral ventricle, other ventricle, deep gray
matter, cortical gray matter, cerebellar gray matter, white mat-
ter, cerebellar white matter, and brainstem. Healthy labels are
merged with the ground truth lesion segmentations provided
from each dataset in order to create the complete atlases.

Stage two involves performing the same procedure as in
stage one on the 21 training time points provided. This leads
to a set of healthy and lesion labels and associated weights,
which are used to guide voxel sampling used for building
healthy tissues and lesion intensity distributions. Here in-
tensity distributions of each class are modelled as Gaussian
mixture models (GMM).

Stage three involves determining the labels at each voxel
for each time points of each training subject using the mod-
els determined in stages one and two. The resulting segmen-
tations are used to group together lesion voxels into lesion
candidates. A regional random forest model (RRF) is then
trained using the distance minimum, mean, and variance of



each candidate lesion to each healthy tissue, the size, volume,
and solidity of each candidate lesion, and the principal mo-
ments and inertia matrix of the ellipse estimating the shape of
each candidate lesion, as features.

2.2. Classification

For each test case, tissue priors are first generated through
MALF of the 25 pathological templates in a MALF frame-
work. The MRF incorporates these tissue priors, the intensity
distributions, and a Potts model to perform voxel level infer-
ence. The MRF solution is then refined by the RRF.

2.3. Implementation Details

For the MALF estimation of spatial tissue priors, all rigid and
affine transformations are determined through the antsReg-
istration tool [6], and deformation fields are computed using
the deeds/MIND non-linear registration framework [7,8]. La-
bel fusion is perfomed through a regional similarity method,
and lesion priors are augmented through outlier detection. In
addition to the pre-processing provided by the challenge, in-
tensity normalization uses a sigmoidal function, where the pa-
rameters are determined by the mean and variance of intensi-
ties over several regions of interest. De-noising is based on a
non-local means method [9].

3. RESULTS

In order to validate our results, we performed leave one out
cross validation on the five training subjects provided. Tables
1 and 2 show the averaged results over the 21 timepoints for
the proposed method and compares them against the inter-
rater results. Metrics used are the Dice and Jaccard coef-
ficients, voxel and lesion-wise true positive rate (TPR and
LTPR), and lesion-wise false positive rate (LFPR). Figure 1
shows slices from a typical output segmentation.

Table 1. Training Data Results: Proposed Method Segmenta-
tion Results against Rater One Results

Dice Jaccard TPR LTPR LFPR

Proposed 0.704 0.550 0.812 0.610 0.135
Rater Two 0.734 0.589 0.808 0.832 0.348

Table 2. Training Data Results: Proposed Method Segmenta-
tion Results against Rater Two Results

Dice Jaccard TPR LTPR LFPR

Proposed 0.681 0.528 0.721 0.501 0.127
Rater One 0.734 0.589 0.687 0.652 0.168

T1 Rater One Proposed: Lesions Full Labels

Fig. 1. Top to Bottom: Slices 76 and 98 from subject train-
ing01 04. Left to Right: MPRAGE T1, rater one ground truth
lesions, proposed lesion segmentation, proposed healthy tis-
sue and lesion segmentation. Color coding for the full label
segmentation: lesion, red; white matter, purple; cortical gray
matter, cyan; deep gray matter, green; lateral ventricles, yel-
low; other ventricles, light green

4. CONCLUSION

These preliminary results show that our method performs
similarly to a human rater. This is promising considering the
relatively small training data set. While our method produces
excellent Dice/Jaccard, TPR, and LFPR scores, we seem to
be under performing in LTPR. The majority of missed lesions
occur near cortical gray matter, within deep gray matter struc-
tures, and in the posterior fossa. Further work will examine
modelling these lesions as distinct classes, increasing the
size of our atlas database, and increasing the size of training
dataset.
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