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ABSTRACT

Accurate and consistent multiple sclerosis (MS) brain lesion
segmentation and volumetry could be an added value to MS
clinicians. In this paper, MSmetrix is presented, an automatic
and reliable method, which uses 3D T1-weighted and FLAIR
MR images in a probabilistic model to detect white matter
lesions as an outlier with respect to the normal brain, while
segmenting the brain tissue into grey matter, white matter and
cerebrospinal fluid. The actual lesion segmentation is per-
formed based on prior knowledge about the location (within
white matter) and the appearance (hyperintense on FLAIR)
of lesions. The randomness in longitudinal lesion segmenta-
tion for each subject is reduced by harmonising the trade-off
between temporal consistency across time points and segmen-
tation diversity at each time point. The method has been vali-
dated on the dataset available from the longitudinal MS lesion
segmentation challenge 2015.

Index Terms— multiple sclerosis, Magnetic Resonance
Imaging, white matter lesions, brain segmentation, MSmetrix

1. INTRODUCTION

Visual assessment of multiple sclerosis (MS) brain lesions in
longitudinal MRI is an important clinical procedure for dis-
ease prognosis. Manual delineation of lesions, although most
trustworthy, is time consuming, costly and suffers from intra-
and inter rater variability. To improve the accuracy of manual
segmentation in a follow-up scan, image subtraction between
the reference scan and follow-up scan [1] is often used to find
new lesions. This is followed by a visual evaluation which
is always subjective. Several automatic MS lesion segmenta-
tion approaches have been proposed in the past two decades
to address the problem of accurate lesion segmentation and its
temporal consistency. The first category of methods are single
MRI time point based (for example, [2]) that can find lesions
by processing each time point separately. The segmentation
performance of an automatic method is usually dependent on
the image quality, which often differs between the time points
in a clinical environment due to different scanners, artefacts
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etc. This difference in the image quality introduces random-
ness in the segmentation at each time point, which decreases
the consistency of automatic methods. Therefore, the second
category of methods take the patient’s MRIs from multiple
time points and find MS lesions at each time point such that
the randomness in the longitudinal segmentation could par-
tially be reduced (for example, [3]). Although our method
primarily belongs to the first category, segmentation random-
ness is reduced by encouraging temporal consistency of spa-
tial neighbours, while still maintaining segmentation diversity
(e.g., a lesion appearing or disappearing in-between the time
points).

2. METHOD

Fig. 1 shows the architecture of MSmetrix for the longitu-
dinal MS lesion segmentation. The longitudinal segmenta-
tion is performed in two steps: lesion segmentation for each
time point individually and temporal consistency. We de-
scribe each of the steps into more details below.

2.1. Lesion segmentation

The lesion segmentation [4] takes as inputs 3D T1-weighted
image and a pre-processed 3D FLAIR (co-registered to T1)
image available from an MS patient. The lesion segmentation
step has four stages: brain segmentation, outlier estimation,
pruning and lesion filling. In the brain segmentation stage, a
probabilistic model is formulated to segment the T1-weighted
image into grey matter (GM), white matter (WM) and cere-
brospinal fluid (CSF) using an expectation-maximisation al-
gorithm. In the outlier estimation step, an outlier class is es-
timated from the co-registered FLAIR image of the same pa-
tient using the three tissue class segmentations from the pre-
vious step as prior information. This is performed using the
same EM algorithm as mentioned above, but now an outlier
map is included. This map is iteratively updated by the EM
algorithm and, after convergence, an outlier belief image is
produced. In the pruning stage, we segment the lesions in
the outlier map, i.e., we ’prune’ the outlier map, as not ev-
ery outlier is a lesion. In order to differentiate the MS lesions
from such non-lesion outliers, some extra a priori information
about the location and the appearance of the lesions needs to



Fig. 1. MSmetrix architecture for the longitudinal MS lesion
segmentation.

be incorporated. The outliers need to be in the WM region
and the underlying intensities of the outliers should be hyper-
intense compared to the GM intensities on bias field corrected
FLAIR image. In the lesion filling stage, this lesion segmen-
tation is then used to fill in the lesions in the bias corrected
T1-weighted image with WM intensities. These four stages
are repeated until convergence and the lesion segmentation is
produced as an output.

2.2. Temporal consistency

Since each time point was processed independently, the seg-
mentations could be inconsistent in time. Temporal consis-
tency has two aspects. Firstly, the randomness in temporal
segmentation because of varying image quality should be ei-
ther absent or minimal. Secondly, if a lesion is present on
a few or on every time point, it is expected that any auto-
matic method could segment it at each time point. There-
fore, the temporal consistency for a voxel p at time point t
(Cp,t ∈ [0, 1]) is defined based on its temporal neighbour-
hood N time

p,t ∈ {t− 1, t, t+ 1}, similar to [5] as:

Cp,t = 1−
δNtime

p,t

|N time
p,t | − 1

(1)

where δNtime
p,t

is defined as number of times the segmentation
label changes in N time

p,t for voxel p. The quantity δNtime
p,t

is
a measure of randomness in the temporal segmentation. The
higher the number, the lower its temporal consistency.

The new temporal consistent label for the voxel p at time
point t (fp,t) is defined based on the temporal consistency of
its 3× 3× 3 spatial neighbourhood (Nspace

p,t ) as follows:

fp,t =

{
fp,t if Cavg

p ≥ 0.5

mode{fQ} otherwise
(2)

where Cavg
p is the average consistency for voxel p based on

all time points and Q = argmax
i∈Nspace

p,t

Ci,t. From equation 2, we

notice that the fp,t is changed only if Cavg
p is < 0.5. This

way the diversity at a particular time point is ensured as the
voxel is quite consistent in time. If the segmentation label fp,t
is less consistent, then it is replaced with the modal value of
segmentation labels of its most consistent neighbours.

Encouraging temporal consistency on the challenge’s
training dataset, our average consistency over the lesions was
increased from 65% (range: 59%-68%) to 79% (range: 73%-
86%). For comparison, the average consistency for rater-1 for
training data was 72% (range: 67%-79%) and for the rater-2
was 67% (range: 58%-75%).
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