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Abstract

We present a contour based approach to object recog-
nition in real-world images. Contours are represented
by generic shape primitives of line segments and ellipses.
These primitives offer substantial flexibility to model com-
plex shapes. We pair connected primitives as shape tokens,
and learn category specific combinations of shape tokens.
We do not restrict combinations to have a fixed number of
tokens, but allow each combination to flexibly evolve to best
represent a category. This, coupled with the generic na-
ture of primitives, enables a variety of discriminative shape
structures of a category to be learned. We compare our
approach with related methods and state-of-the-art contour
based approaches on two demanding datasets across 17
categories. Highly competitive results are obtained. In par-
ticular, on the challenging Weizmann horse dataset, we at-
tain improved image classification and object detection re-
sults over the best contour based results published so far.

1. Introduction
This paper addresses two goals of recognition: image

classification and category level object detection. The task
of image classification is to determine if an object category
is present in an image, while object detection localizes all
instances of that category from an image. Fueled by emerg-
ing consensus that shapes are often the more discrimina-
tive features shared between instances of a category as com-
pared to image patches [12, 14], contour based recognition
techniques have recently attracted strong interest in the re-
search community [10, 15, 16, 19].

In this work, we also use contours for recognition. How-
ever, unlike other methods, our novelty lies in the represen-
tation of contours by very simple and generic shape primi-
tives of line segments and ellipses, coupled with an efficient
approach to learn category specific primitive combinations.
Each combination is a two-layer abstraction of primitives:
connected pairs of primitives (termed shape tokens) at the
first layer, and a learned number of tokens at the second

layer. We do not impose combinations to have a fixed num-
ber of tokens, but allow them to automatically adapt to a
category. This number influences a combination’s ability to
represent shapes (and structures) where simple shapes favor
fewer tokens than complex ones. Consequently, discrim-
inative combinations of varying complexity can be used
to represent a category. We learn these combinations by
harnessing distinguishing geometric, structural and appear-
ance constraints of a category in a unified framework. Ge-
ometric constraints describe the spatial layout (configura-
tions) of tokens, while structural constraints enforce possi-
ble poses/structures of an object (e.g. XOR relationships of
tokens). Appearance constraints describe the visual aspect
of tokens, which we represent by line segments and ellipses.

Line segments and ellipses are complementary in nature;
the former models straight contours while the latter curved
contours. Unlike edge based local descriptors [12, 14], they
support abstract reasoning like parallelism and adjacency.
While one can also use contour fragments [15, 19] to rep-
resent shapes, the proposed primitives offer unique advan-
tages. Firstly, matching between primitives can be eas-
ily computed (by their geometric properties), unlike con-
tour fragments which require comparison between individ-
ual edge pixels. More importantly, as geometric proper-
ties can be easily scale normalized, they simplify matching
across scales. In contrast, contour fragments are not scale
invariant and one is forced either to rescale contour frag-
ments which introduces aliasing effects (e.g. edge pixels
are squeezed together), or to resize image before extracting
fragments which degrades image resolution.

In recent independent studies [6, 16], it was shown that
the generic nature of line segments and ellipses afford them
an innate ability to represent complex shapes and structures.
While individually less informative, by combining a learned
number of these primitives, we empower a combination to
be sufficiently discriminative. In this aspect, we attempt
to strike a winning tradeoff: exploit generic primitives to
achieve flexibility in describing local object shape struc-
tures at the lower level, and combine these primitives to
allow a combination to be sufficiently complex to capture
discriminative information at the higher level.
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1.1. Related Work

Ferrari et al. [10] used connected straight contour frag-
ments as features. This is similar to our work where
line segments (and ellipses) are combined. However, their
method requires the powerful Berkeley boundary detector
[13] to find meaningful object boundaries and to filter noisy
background contours before training or testing. In contrast,
our method extracts contours by the traditional Canny de-
tector and is robust to detected noisy edge pixels. More im-
portantly, they represent shapes by features extracted from
category neutral images. We depart from this framework
and instead explicitly tailor primitive combinations to a spe-
cific object category. Our choice for constructing category
specific features is motivated by the substantial success in
Shotton et al. [19] and Opelt et al. [15]. A difference be-
tween our work and theirs is that they represent local shapes
by contour fragments while we employ generic shape primi-
tives. Consequently, they suffer the shortcomings presented
earlier in Sect. 1. More importantly, to keep the learning
of discriminative features tractable, they limit each feature
to contain a fixed number of fragments (single fragment
in [19] and two fragments in [15]). Our approach imposes
no such restriction and instead learns category specific fea-
tures that have a variable number of shape primitives.

Shape primitives have been used previously for object
recognition. Line segments were used in [16] to detect
objects in cluttered scenes. Their method does not model
curved object boundaries, which inhibits their ability to
learn complex class models. Jurie and Schmid [12] detected
circular arcs in edge image and described the spatial distri-
bution of edge pixels in a thin neighborhood of the circle.
As one weakness, circle represents a limited class of curved
shapes. Ellipses were defined on the second moment ma-
trix of image regions in [4, 18]. This differs from our pro-
posed framework, in which ellipses are extracted directly
from edge images and model curved image contours. Roth-
well et al. [17] computed projective invariant values from
lines and ellipses for object representation, where they fo-
cused on identifying specific planar objects, rather than rec-
ognizing object classes which we addressed here.

2. Shape Tokens

We extract line segments and ellipses from an edge im-
age by the method in [7]. A shape token is constructed
by pairing a reference primitive to its connected neighbor,
where edge gaps are bridged in a similar way as [11]. This
captures string-like shape structures. In our work, given two
connected primitives of different types, an ellipse will al-
ways be the reference primitive. For connected primitives
of the same type, we consider each primitive in turn as the
reference primitive. This gives the following types of shape
tokens: line-line, ellipse-line and ellipse-ellipse.

2.1. Describing shape tokens

A numerical descriptor comprising geometric attributes
is used to describe the appearance of a shape token. Let θ
denote the orientation of a primitive. For an ellipse whose
eccentricity is more than λε (fixed at 0.8), θ is assigned to be
the orientation of its major axis; orientation of a circle or an
ellipse whose eccentricity is less than or equal to λε is fixed
as π. We define [vx vy]T as the unit vector from the center
of the reference primitive to the center of its neighbor, and h
as the distance between their centers. The midpoint between
their centers is defined to be the token centroid. We denote
the length and width of a primitive as l and w respectively.
For an ellipse, the length is given by its major axis. We
fix the width of a line segment to be one pixel thick and
define the width of an ellipse by its minor axis. Given these
notations, the appearance descriptor of a token is

A = [θr lr wr θn ln wn h vx vy]T , (1)

where the superscripts r and n differentiate attributes of a
reference primitive from its neighbor.

2.2. Matching tokens across multiple scales

As stated before, three different types of shape tokens are
constructed. A token is compared only with similar typed
tokens. We first present our approach to compare tokens at a
single scale. For this purpose, we define a distance measure
between two tokens with descriptors Ai and Aj as
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and Dθ ∈ [0, 1] measures the difference in orientations,
Dl ∈ [0, 1] the difference in lengths, and Dv ∈ [0, 2] the
difference in relative primitive positions. Thus, eq. (2) com-
bines the difference in geometric attributes of the tokens
into a single useful dissimilarity measure, where the dis-
tance range for comparing line-line, ellipse-line and ellipse-
ellipse tokens are [0, 7], [0, 8] and [0, 9] respectively.

It is easy to extend the above matching to multiple scales.
Specifically, the descriptor of a token can be normalized
against an object scale bs as A = f(A, 1

bs
), where
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Matching at scale s between a scale normalized Ai and an
unscaled Aj is then readily computed as D(f(Ai, s), Aj).

3. Codebook of shape tokens

We build a codebook of representative shape tokens of
the target category, before selecting codewords into a dis-
criminative primitive combination. Here, explicit effort is
made to learn codewords which not only have coherent ap-
pearances and positions with a large number of tokens, but
also cover substantial spatial extent of the object model. To
learn this codebook, we extract an initial set of tokens from
within the bounding box bb of every training object. We
normalize the appearance descriptor of each token by the
object scale bs (diagonal length of bb). Each token is also
parameterized by a vector x that is directed from the object
centroid (center of bb) to the token centroid and normalized
by bs.

3.1. Finding candidate codewords

Candidate codewords are found by two-step clustering
for the appearances and positions [19] of the initial set of to-
kens. In the first step, we adapt the computationally efficient
bisecting k-medoid method to find clusters whose members
have similar appearances. Specifically, we apply 2-medoid
clustering to similar typed tokens where distances between
tokens are computed using its scale normalized descriptors
with eq. (2). For each cluster, we evaluate its intra-cluster
appearance dissimilarity value by the average appearance
distance between the medoid and its members. A cluster
is repartitioned by 2-medoid clustering if its dissimilarity
value is more than th (fixed at 20% of the maximum range
of D(·) in eq. (2)). This method improves on k-medoid
clustering used by [19] in that it avoids specifying the num-
ber of clusters as input, which is unknown apriori and vary
between datasets.

In the second step, we apply the robust mean-shift algo-
rithm to each cluster on vectors x of its members. Tokens in
each mean-shift sub-cluster therefore have similar appear-
ances and are located at similar positions relative to the ob-
ject centroid. We identify the medoid (based on the appear-
ance distance measure) in each mean-shift sub-cluster as a
candidate codeword ϕ and associate it with an appearance
distance allowance τ . This allowance indicates the range
of appearance the candidate represents and is computed as
the mean appearance distance between the candidate and its
sub-cluster members plus one standard deviation. Each can-
didate is also parameterized with a scale normalized circular
window specifying where it is expected to be found relative
to an object centroid. We compute the relative center of
this window, c, as the mean of vectors x of the sub-cluster
members, and its radius, r, as the mean Euclidean distance
between c to x of each member plus one standard deviation.

(a) (b) (c)
Figure 1. Candidate codewords from (a) all mean-shift clusters, (b)
350 most populated clusters, and (c) 350 clusters selected by our
method for Weizmann horse dataset. Line segments are shown in
blue and ellipses in magenta. Yellow + denotes object centroid.

3.2. Selecting candidates into codebook

Fig. 1(a) shows all candidate codewords that are ob-
tained from an initial set of 330K tokens for the Weizmann
horse dataset [3], in which a candidate is shown darker if
it is from a more populated mean-shift sub-cluster. A sim-
ple heuristic to select candidates based on cluster size can
inadvertently pick non-salient candidates as shown in Fig.
1(b). Instead, we score each candidate as a product of i) its
intra-cluster appearance similarity value, ii) the number of
unique training bounding boxes its members are extracted
from, and iii) its value of 1/r. The first two terms seek
candidates that have distinctive appearance and are flexi-
ble enough to accommodate intra-class variations, while the
last term seeks candidates that estimate a stable and precise
location for its members.

To ensure selected candidates represent a large spatial
extent of the object model, as opposed to a localized por-
tion, we select high scoring candidates by a radial ranking
scheme. We emanate a pair of rays from the object cen-
troid to delineate a sector. Candidates within each sector
are identified and we collect the top scoring t candidates of
each sector. We illustrate this in Fig. 2, where the top row
shows three sectors with centroid positions of the t candi-
dates in each sector represented as small green ×, and the
bottom row visualizes the t candidates. Observe that spatial
layout of each sector has selected salient shape structures
corresponding to head, rear-end and leg of a horse. For all
experiments, we divide the object into 30 non overlapping
sectors and fix t to be 20. Finally, instead of using all col-
lected candidates as codewords, we retain the 350 highest
scoring candidates as codewords. This provides robustness
against collecting “poor” candidates when a sector has sub-
stantial overlap with the background.

Fig. 1(c) shows the 350 codewords selected by the de-
scribed procedure. Compared to Fig. 1(b), there is substan-
tial reduction of candidates from the background. In ad-
dition, a large spatial extent of a horse comprising salient
structures e.g. head, neck, legs and belly are accounted
for, with typically several codewords representing differ-
ent poses of the same object part. This provides tolerance
towards intra-class variations, small pose changes and par-



  

 

 

 

 

 

 

 

Figure 2. Radial method for selecting candidate codewords.

Figure 3. Codewords selected for four Graz-17 object categories.
From left to right: Cow-side, face, bottle and bike-front.

tial occlusion. Fig. 3 shows codewords selected for four
categories of the Graz-17 dataset [15]. As observed, most
salient shape structures, e.g. bike wheels, are represented.

4. Discriminative primitive combinations
This section presents our method, which capitalizes on

distinguishing appearance, geometric and structural con-
straints of a category, for learning discriminative primitive
combinations. Each combination has a variable number of
x codewords, and is termed in the following as a x codeword
combination or xCC.

4.1. Matching xCC in an image

We first describe the matching of a xCC in an image,
before explaining how discriminative xCC are learned. A
xCC is matched at scale ŝ in an image if i) appearance dis-
tance at scale ŝ between each codeword in that combination
and a token of the image is within the appearance distance
allowance τ of the codeword (appearance constraint), and
ii) centroid predictions by all codewords in the combination
concur (geometric constraint). A codeword which satisfies
the appearance constraint with a token that is located at po-
sition x in the image will predict an object centroid by a
circular window with center x̂ = x− ŝ× c, and radius ŝ× r.
These centroid predictions concur if there is a common re-
gion among their windows.

Fig. 4 exemplifies the appearance and geometric con-
straints for matching a xCC, where codewords, matched to-
kens and centroid predictions are shown color coded. A
combination comprising four codewords is depicted in Fig.
4(a). Using a same scale ŝ, tokens from a positive and
a negative image which satisfy the appearance constraints
with the codewords are shown in Fig. 4(b), where colored
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Figure 4. Matching a combination of four codewords in a positive
image and a negative image. Best viewed in color.
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Figure 5. Illustration for finding matched xCC. See text for details.

‘×’ denote token centroids. Centroid windows predicted by
these codewords are shown in Fig 4(c), and colored arrows
denote scaled vectors -̂s × c. These windows share a com-
mon region in the positive image but not the negative image,
and hence this xCC is matched only in the positive image.

4.2. Finding all xCC matched in training images

Discriminative xCC are learned by harnessing the set of
xCC that are matched in training images. Here, we pro-
pose an efficient method (linear in codebook size) to find the
exhaustive set of matched xCC for unconstrained x values.
The following theorem states the basic idea of this method.

Theorem. For a scale ŝ and location x̂ in image I , all codewords
which satisfy the appearance matching constraint with at least one
token located within its estimated window of center x̂ + ŝ× c and
radius ŝ× r in I also fulfill the geometric matching constraint.

Proof. Consider Fig. 5. Let x̂ = (0, 0) be the origin in image
I. For scale ŝ and location x̂ in I, let the scaled vector ŝ × c of a
codeword be [a b]T . Thus, this codeword estimates a window cen-
ter (a, b) and radius ŝ × r. Suppose a token in I satisfies the ap-
pearance matching constraint with this codeword, and is located
at position (a+ dx, b+ dy) in this window. Then, it follows that√

dx2 + dy2 ≤ ŝ× r. (4)

From Sect. 4.1, this codeword also predicts an object centroid in I
by a window of center (a+dx, b+dy)−(a, b) = (dx, dy) and ra-
dius ŝ×r. From eq. (4), the point x̂ = (0, 0) is within this window.
Thus, at a same scale ŝ and location x̂, all codewords which sat-
isfy the appearance matching constraints with a token located in
its estimated window will predict centroids that contain a common
point x̂, and also satisfy the geometric matching constraint.

For a scale ŝ and location x̂ in I, we use a numerical
value <i(ŝ, x̂) to indicate if a codeword γi finds matching



tokens that satisfy the appearance matching constraint and
that are also located within its estimated window. Let A′

be the appearance descriptor of a token t′ located at posi-
tion x′ in I. The token which best matches codeword γi is
defined as one whose appearance is most similar to γi (and
within appearance distance allowance τi of the codeword),
and whose position is closest to its expected position (and
within the estimated window of the codeword),

t∗ = arg min
t′

(
dapp(γi, t′ ) + dgeo(γi, t′ )

)
, (5)

where

dapp(γi, t′ ) =

{
D(ŝAi,A

′ )
τi

if D(ŝAi, A′ ) ≤ τi
∞ otherwise

,

dgeo(γi, t′ ) =

{
‖x̂+ŝ×ci −x′ ‖2

ŝ×ri
if ‖x̂ + ŝ× ci − x′ ‖2 ≤ ŝ× ri

∞ otherwise

and ‖ · ‖ is the L2 norm. <i(ŝ, x̂) for codeword γi at scale ŝ
and location x̂ in an image is then computed as

<i(ŝ, x̂) = dapp(γi, t∗) + dgeo(γi, t∗). (6)

It is easily verified that a codeword which finds a token that
satisfies its appearance matching constraint and that is in its
estimated window has <(·) value in the range [0, 2], where
a lower value indicates better matching. In contrast, a non-
matching codeword has infinity <(·) value. Then, from the
above theorem, at ŝ and x̂ in image I, every combination of
codewords whose <(ŝ, x̂) values are less than infinity are
matched in I. By iterating through all scales and locations
across all training images, the exhaustive set of matched
xCC can thus be found. The computational complexity of
this search is O(lσN), where N is the codebook size, and
l and σ are respectively the number of locations and scales
being searched. For greater efficiency, we sample locations
at every 15 pixels in each direction, and use a number of
scales that covers the range of object scales in training im-
ages. This reduces computation overheads, and is similar in
concept to the efficient sliding window technique.

4.3. Learning an ensemble of discriminative xCC

We seek a xCC which models discriminative appearance,
geometric and structural constraints of a category to reliably
predict object locations. The formulation for <(·) in eq. (6)
provides a mathematically convenient method to find such
a xCC. We take as input <(·) values of all codewords at ev-
ery sampled scale and location (ŝ, x̂) for all training images.
Each (ŝ, x̂) represents an object hypothesis, and we pair it
with a binary label to indicate if it localizes an object.

Consider first a xCC which comprises two codewords γi
and γj . From Sect. 4.2, the matching of this xCC at (ŝ, x̂)
in image I can be mathematically represented as

<i(ŝ, x̂) ≤ θi and <j(ŝ, x̂) ≤ θj ,

where θ is a threshold in the range [0, 2]. Note that since
this xCC is matched at the hypothesis, it therefore implic-
itly models the appearance and geometric configurations of
shape tokens at this hypothesis. This representation can be
further generalized to the following form,

pi<i(ŝ, x̂) ≤ piθi and pj<j(ŝ, x̂) ≤ pjθj ,

where p has value +1 or -1 to indicate the direction of the in-
equality, and θ is relaxed to take on any real number value.
With this representation, structural configurations e.g. XOR
relationships between codewords at this hypothesis (match-
ing of γi implies γj is weakly matched or unmatched) can
be integrated with the appearance and geometric configura-
tions of shape tokens at the same hypothesis. This repre-
sentation can be modeled by a xCC, with each of its code-
word having a p and θ values. Additionally, by allowing a
xCC to have a variable number of codewords, we can impart
greater flexibility to this xCC to model shapes and structures
of varying complexity. Our aim here is to learn such dis-
criminative xCC (i.e. codewords in the xCC, and its p and θ
values) which can reliably predict the presence/absence of
an object instance at an object hypothesis (ŝ, x̂).

We exploit decision tree to learn such a xCC. It is easily
shown that a path from a root node to any leaf node in a bi-
nary tree encounters between 1 to k non-leaf nodes, where
each non-leaf node is a predicate of the form pi<i(ŝ, x̂) ≤
piθi, and k is the number of splits in the tree. Each path (i.e.
the number of non-leaf nodes and their predicates, and the
predicted label at the leaf node) automatically adapts to an
object category, and is discriminatively learned to predict
the presence/absence of an object at an object hypothesis.
Hence, by learning a binary tree with k splits, discrimina-
tive xCC can be found by simple path transversal from a
root node to each leaf node, where each xCC has a variable
number of between 1 to k codewords, and a hypothesis is
assigned a predicted label by exactly one xCC of the tree.

We learn an ensemble of discriminative xCC by Ad-
aBoost, where each boosting round outputs a CART de-
cision tree with k splits. For all experiments, we use 300
boosting rounds. Rather than fixing a same k value for all
categories, we learn a k value for each category by 3-fold
validation over values 1 to 10 on the training hypotheses.
This approach to optimize parameter values for each cate-
gory was used in [19], and further customizes the ensemble
for the category. After finding the optimal k value, we learn
the ensemble of xCC from the entire training hypotheses.

5. Object Detection
We detect objects in a test image by a multi-scale slid-

ing window approach. The sliding and scale steps for each
object category are the same as that used during training
in Sect. 4.2, and the aspect ratio of a window is equal to
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Figure 6. Image classification and object detection performance on
the Weizmann horse dataset, with comparison to [19].

that of the average training bounding box. Each window
is an object hypothesis (ŝ, x̂) and we evaluate the detection
confidence of each window with the boosted ensemble of
xCC. We consider local maxima as candidate detections and
apply a post-filtering step to remove candidate detections
whose windows overlap with a stronger candidate. The re-
tained detections yield the final set of detections.

6. Experimental evaluations
We evaluate our technique on two challenging datasets

which cover 17 categories, and compare against the best (to
our knowledge) contour based recognition results and other
published results. Both object detection and image classifi-
cation results are reported, and we adhere to the evaluation
criteria of other methods. As closely as possible, we use the
same training and testing object images as other methods
for comparing performances.

An object is correctly detected if overlap of the ground
truth and detected bounding boxes is above 50%, and multi-
ple detections of a same object count as false positives. We
compare detection performance by two scores of a recall-
precision (RP) curve: equal error rate (RP-EER) and area
under curve (RP-AUC). RP-EER reports recall at a single
precision value, while RP-AUC measures detection perfor-
mance across all precision levels and so give a more repre-
sentative score for comparison purposes. For image classi-
fication, we use the strongest detection in each test image.
An image is correctly classified if it contains the object cate-
gory. We compare classification performance by two scores
of a ROC-curve: the ROC-EER and the ROC-AUC scores.

6.1. Evaluating on Weizmann horse dataset [3]

This challenging dataset contains near-side views of
horses under varying scales and illuminations, strongly
varying poses and substantially cluttered backgrounds. We
use the first 100 horse images for training and the remain-
ing 228 horse images for testing, and pair the object im-
ages in the training and testing sets with an equal number of
Caltech-256 background images. Following [19], we down-
sample all images to a maximum 320 pixels width or height.

We report quantitative results in Fig. 6. The best (as far

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

Figure 7. Example detections on Weizmann horse test images. The
top row shows the bounding box of the detection, and the bot-
tom row the codewords that contributed positively to the detection.
Codewords are visualized at their detected positions and scales.

as we know) results obtained by contour based approach on
this dataset are also included in Fig. 6, and we denote these
methods as Shotton-I and Shotton-II [19]. While Shotton-I
used the same training object images as us, Shotton-II aug-
mented a set of object hypotheses from the test images to
the training data, and retrained their system on the aug-
mented data. In this aspect, Shotton-II learned from a larger
and more diverse set of training images. Nevertheless, we
achieve better classification and detection performances as
evident from the higher ROC-AUC and RP-AUC scores
(given in legends). The plot of recall against false posi-
tives per image (fppi) in Fig. 6(b) further reveals the better
detection performance of our method in which 93% of test
objects are correctly detected at a low fppi of 0.15 (around
1 false positive every 7 images). In contrast, Shotton-I and
Shotton-II managed a recall of 87% and 90% respectively.

Our detection result is also superior to that achieved very
recently by the contour based method of Bai et al. [1],
which obtained 0.8032 RP-AUC. While their method used
a smaller training subset, this is due to their necessity of
obtaining figure-ground segmented training objects. In con-
trast, since our method needs only bounding boxes, we fully
exploit all training images, which likely account for some
part of the improvement. We show example detections by
our method in Fig. 7, where codewords which contribute
positively to detections are back-projected at their detected
positions and scales and shown at the bottom of test images.

6.2. Evaluating on Graz-17 dataset [15]

This demanding dataset features 17 diverse object cate-
gories. Object instances for each category are presented at
varying scales, and considerable intra-class variations are
evident. Images contain one or more object instances, and
many images have substantial background clutter. We use
the same experimental setup as [15,19]. Except for the num-
ber of scales (which we optimized against the training data),
parameter values remain unchanged as the previous Weiz-
mann horse experiment. We show example detections in
Fig. 8. Table 1 reports quantitative results, with comparison
to recent state-of-the-art contour based recognition methods
of Opel et al. [15] and Shotton et al. [19]. Classification and
detection results are averaged over 17 categories and shown



Table 1. Performance comparison with state-of-the-art contour based methods [15, 19] on Graz-17 dataset.
Object category Number of images Image classification results Object detection results

Training Testing ROC-AUC ROC-EER ROC-EER ROC-AUC RP-AUC RP-EER RP-EER RP-AUC
Our method Our method [15] [19] Our method Our method [15] [19]

Plane 100 400 0.9826 6.9% 2.6% 0.9953 0.9325 10.0% 7.4% 0.9310
Motorbike 100 400 0.9983 1.0% 3.2% 1.0000 0.9996 1.0% 4.4% 1.0000

Face 100 217 0.9974 2.6% 1.9% 0.9966 0.9895 2.7% 3.6% 0.9850
Car-rear 100 400 0.9883 6.9% 0.05% 0.9992 0.9797 4.0% 2.3% 0.9912

Car-2/3-rear 32 14 0.9643 14.2% - 0.9000 0.6843 35.7% 12.5% 0.6925
Car-front 34 16 0.9688 6.2% - 0.9727 0.8256 18.7% 10.0% 0.7233
Bike-rear 29 13 0.9468 7.6% - 0.9172 0.6042 40.0% 25.0% 0.6398
Bike-front 19 12 0.9584 8.3% - 0.9375 0.7421 33.3% 41.7% 0.6344
Bike-side 90 53 0.9445 9.4% - 0.9366 0.8299 18.8% 28.0% 0.6959

Bottle 54 64 0.9773 7.8% - 0.9802 0.9009 12.5% 9.0% 0.9468
Cow-front 34 16 0.9844 6.2% - 0.9727 0.8335 18.7% 18.0% 0.8575
Cow-side 45 65 0.9944 6.1% - 0.9992 0.9945 6.1% 0.0% 0.9975

Horse-front 44 22 0.9918 4.5% - 0.9566 0.7368 27.2% 13.8% 0.7852
Horse-side 55 96 0.9756 7.2% - 0.9816 0.9361 11.4% 8.2% 0.9680

Person 39 18 0.9352 16.6% - 0.9321 0.5730 47.6% 47.4% 0.4271
Mug 30 20 0.9525 5.0% - 0.9600 0.9619 5.0% 6.7% 0.9035
Cup 31 20 0.9800 10.0% - 0.9825 0.8964 15.0% 18.8% 0.9158

Averaged across categories 0.9730 7.4% 1.9%∗ 0.9659 0.8483 18.1% 15.1% 0.8291
∗Average ROC-EER for [15] is calculated from the four categories whose classification results are reported by the authors.

Table 2. Comparison of ROC-EER classification scores on first four categories of Graz-17 dataset to other published results.
Object category Our method Sivic ’05 [20] Crandall ’06 [8] Fergus ’07 [9] Bar-Hillel ’08 [2] Chen ’09 [5] Zhu ’09 [21]

Plane 6.9% 3.4% 9.3% 6.3% 6.7% 8.2% 8.2%
Motorbike 1.0% 15.4% 3.0% 3.3% 4.9% 5.4% 7.1%

Face 2.6% 5.3% 2.0% 8.3% 6.3% 2.0% 2.3%
Car-rear 6.9% 21.4% 6.5% 8.8% 0.6% - -

Averaged across categories 4.4% 11.4% 5.2% 6.7% 4.6% 5.2%∗ 5.9%∗

∗ Average ROC-EER scores for [5, 21] are calculated from the three categories whose classification results are reported by the authors.

(in bold) in the last row of the table.
Although AUC scores are more representative, we com-

pare against Opelt et al. [15] by the EER scores (since only
EER scores are provided by the authors). For classifica-
tion, we achieve an average ROC-EER (across first four cat-
egories) of 4.4% which is not as good as that of their state-
of-the-art method. Nevertheless, it is still quite competitive
and attains a better average ROC-EER score compared to
other published results as shown in Table 2. It has to be
mentioned that while we use stronger supervision than the
methods in Table 2, our results are obtained with 100 pos-
itive and 100 negative training images, which is less than
half of what was used by these methods during training.

For object detection, we perform better on some cate-
gories (e.g. motorbike and face), but considerably worse for
categories like car-2/3-rear and bike-rear which have very
few test images. The number of test images, m, can sharply
affect a RP-EER score. Specifically, RP-EER reports detec-
tor performance at a single precision value (point at which
number of false positives and false negatives are equal) and
hence even one false positive or miss detection can have a
large effect on RP-EER of up to 100

m %, as also pointed out
in [19]. Consequently, much more significant are the detec-
tion results for categories with more test images. In partic-

ular, considering categories with more than 200 test images
(i.e. first four categories), we attain an average RP-EER of
4.425%, exactly matching that obtained by [15] (Table 1).

We compare performance with Shotton et al. [19] by
the more representative AUC scores (which evaluate per-
formance across all precision values). Overall, we achieve
better classification and detection results: [19] obtained an
average ROC-AUC of 0.9659, which we improve upon with
0.9730, and an average RP-AUC of 0.8291, which is lower
than 0.8483 attained by our method. Importantly, this im-
provement is achieved with a smaller training set, compared
to [19] where hypotheses from the test data is augmented
with the original training data for retraining (as in Shotton-
II method of the previous Weizmann horse experiment).

7. Discussion

We have described a contour based approach that
exploits very simple and generic shape primitives of line
segments and ellipses for image classification and object
detection. Primitive combinations which reliably predict
the locations of object instances are learned by harnessing
discriminative appearance, geometrical and structural con-
straints of a category in a unified framework. Our method



  
          

    
      

          

          

          

      
    

      
  

  

 Figure 8. Example detections and codewords visualization for all categories of Graz-17 test set. Note accurate localization despite intra-
class variations, poses and scale changes, illumination variations, partial occlusion, and background clutter.

does not restrict combinations to have a fixed number of
primitives, but allow them to automatically adapt to an
object category. This, coupled with generic nature of the
primitives, empowers a combination with much flexibility
to represent discriminative shape structures. We have eval-
uated our approach on the challenging Weizmann horse and
Graz-17 datasets. Image classification and object detection
results on both datasets demonstrate the effectiveness of
our approach, in which for the Weizmann horse dataset, we
achieved improvement over the best contour based results
published so far for the dataset.
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