
Transform Coding for Fast Approximate Nearest Neighbor Search in High
Dimensions

Jonathan Brandt
Adobe Systems, Inc.
jbrandt@adobe.com

Abstract

We examine the problem of large scale nearest neigh-
bor search in high dimensional spaces and propose a new
approach based on the close relationship between nearest
neighbor search and that of signal representation and quan-
tization. Our contribution is a very simple and efficient
quantization technique using transform coding and prod-
uct quantization. We demonstrate its effectiveness in sev-
eral settings, including large-scale retrieval, nearest neigh-
bor classification, feature matching, and similarity search
based on the bag-of-words representation. Through experi-
ments on standard data sets we show it is competitive with
state-of-the-art methods, with greater speed, simplicity, and
generality. The resulting compact representation can be the
basis for more elaborate hierarchical search structures for
sub-linear approximate search. However, we demonstrate
that optimized linear search using the quantized representa-
tion is extremely fast and trivially parallelizable on modern
computer architectures, with further acceleration possible
by way of GPU implementation.

1. Introduction

Finding nearby points among a large set in high dimen-
sions is at the heart of many important computer vision
problems. Examples include nearest neighbor classifica-
tion, image similarity search, and feature matching. The
long-standing difficulty in finding an exact nearest neigh-
bor in high dimensions has led to the use of approximate
algorithms, as well as various domain-specific approaches.

Recently, image and video retrieval has been the subject
of intense study with numerous practical applications. For
retrieval, the number of points to search is usually much
larger than can be held in system memory, which has led to
the development of compressed representations, typically
designed specifically for a given task.

In this paper, we propose a very general quantization-
based framework for high dimensional nearest neighbor

search, founded on well-established results in signal rep-
resentation and compression, and demonstrate its effective-
ness in a diverse range of computer vision tasks. The ap-
proach is inherently lossy, and is therefore an approximate
approach to nearest neighbor. However, the representation
degrades gracefully with increased compression, so it is
straightforward to select the appropriate tradeoff between
compression and accuracy for the task at hand.

2. Related Work

Despite prolonged study, the problem of efficiently find-
ing nearby points in high dimensions remains open [4]. This
difficulty has led to the development of approximate solu-
tions, such as ANN [1]. However, beyond a few dozen di-
mensions, such methods tend to break down.

In the past decade, locality-sensitive hashing (LSH) has
emerged as an alternative to ANN that has been shown to
be effective in higher dimensions. (See [13] for a survey of
LSH.) However, due to its randomized nature, LSH does not
generally produce compact codes. Code compactness is im-
portant in the context of large-scale retrieval as memory size
is often the primary determinant of system performance. To
address this problem, Torralba et al [14] proposed learn-
ing compact codes, both by boosting, and through restricted
Boltzman machines, and were able to demonstrate signifi-
cant improvement over LSH.

Spectral hashing [16] improved on [14] by posing the bi-
nary hash construction problem as one of graph labeling and
employed spectral relaxation as a tractable approximation to
an otherwise NP-hard problem. Spectral hashing achieves
code efficiency comparable to the aforementioned learning-
based approaches with much greater simplicity, and is a sig-
nificant improvement over LSH when applied to the GIST
descriptor under the Euclidean norm.

Although hashing techniques are in general useful for
near-duplicate search, they are less effective at ranged
searches, where it is necessary to explore a potentially large
neighborhood of a point, and distance estimation in the orig-
inal space is typically not possible using the hash represen-

978-1-4244-6983-3/10/$26.00 ©2010 IEEE

tation.
Following earlier work [5, 6], Jégou et al [7] approach

the Euclidean nearest neighbor problem as one of efficient
quantization. They argue that in the context of retrieval,
what is needed is to accurately estimate inter-point dis-
tances while representing the points with a limited number
of bits. That is, we not only want a compact representation,
but we additionally want to be able to estimate distances
using the compact representation.

Their approach is to partition the input vector into a pre-
scribed number of equal-sized sub-vectors that are each
quantized independently, using k-means and a constant
number of bits per sub-vector, and then form the Carte-
sian product of each of the independently quantized com-
ponents. Inter-point distances are estimated from the quan-
tized values.

Among other things, they observe that it is possible
to learn the sub-vector quantizers using a relatively small
training set, even though there may be a large number of
bits in the complete code. This is a crucial point given that
it is often impossible to collect and analyze a sufficient num-
ber of training samples to span the quantized space, which
often comprises hundreds of bits.

Similar to the product quantization approach of [7],
Tuytelaars et al [15] proposed a lattice quantizer for SIFT
descriptors, allocating a constant number of bits per de-
scriptor component and show its effectiveness using uni-
form quantization and 2 bits per component.

Winder et al [17] explored several compression tech-
niques for feature matching as part of a systematic explo-
ration of the design space for local feature descriptors. They
found that error rates were reduced through the use of PCA,
dimensionality reduction, and uniform quantization using a
constant number of bits per dimension.

In this paper, we propose a new quantization-based
approach to nearest neighbor search inspired by well-
established results in signal representation and compres-
sion. The new contribution, distinct from previous ap-
proaches, is that it combines transform coding, data-driven
allocation of bits to components, and non-uniform mini-
mum distortion quantization, to obtain a compact represen-
tation suitable for nearest neighbor search. Our approach
is also distinct in that it is very general, making few as-
sumptions of the data, applies to a broad range of metrics,
and requires no parameters other than the number of bits.
Experiments on real-world data, using a variety of metrics,
validate the effectiveness of the approach.

3. The Retrieval Problem
Consider a finite set of points X ⊂ Rn, |X| = N ,

drawn from the probability distribution p(x) defined over
Rn. Point proximity is determined by a metric d(x,x′).
The two fundamental proximity queries are Radial, namely

to return the set of points within a given radius of the query,
and Nearest-k.

Hash-based retrieval consists of a quantization step fol-
lowed by lookup based on the quantized representation.
That is, the quantization step identifies the unique partition
containing x within a finite partitioning of Rn. The index
lookup returns all x′ ∈ X contained within the given parti-
tion.

Hash-based lookup is effective for near-duplicate search,
where we can rely on a hash collision even when the rep-
resentation consists of a large number of bits. However,
for proximity searches, such as Radial and Nearest-k, hash
lookup becomes ineffective due to the sparseness of the
code space.

What is needed for Radial and Nearest-k searches is an
efficient quantization scheme that preserves distances. In
other words, we wish to design a quantizer such that the
induced partitioning of the input space is optimal for prox-
imity search.

3.1. Minimum Distortion Quantization

Quantization in general has been the subject of pro-
longed study and has a rich and extensive literature [3]. Any
quantizer, q : Rn → Z, where Z = {0, 1, . . . ,m − 1}, is
characterized by the partition it induces on the input space,

Q(z) = {x : q(x) = z}, (1)

for z ∈ Z, and the codebook values associated with each z,
c(z) ∈ Rn.

The quality of a given quantizer is measured in terms of
its average distortion,

D = E[d(x, c(q(x)))], (2)

where the distortion function d can take on a variety of
forms. For retrieval, the appropriate distortion function to
be minimized is simply the metric d(x,x′). In fact, appli-
cation of the triangle inequality yields

E[|d(x,x′)− d(x, c(q(x′))|] ≤ D. (3)

Therefore, D is an upper bound on the expected error in
estimating inter-point distances when one of the two points
is approximated by its quantized codebook value. Conse-
quently, a quantizer that minimizes D for a fixed m is ex-
pected to be effective from the standpoint of retrieval.

A quantizer that minimizes D subject to the underlying
distribution p(x) is characterized by the following proper-
ties:

1. Q(z) = {x : d(x, c(z)) ≤ d(x, c(z′)),∀z′ ∈ Z}, and

2. c(z) = arg minx′ Ex[d(x,x′)|x ∈ Q(z)].

That is, the quantization cells consist of points no further
from the cell’s code vector than from any other code vec-
tor, and that the code vector for a given cell is its centroid.
This classic result, first developed by Lloyd [10] and inde-
pendently by Max [12] for 1D signals, and later extended to
vector quantization by Linde, et al [9], is the basis for the
k-means algorithm.

3.2. Product Quantization

In 1D, design of a quantizer to satisfy the minimum dis-
tortion criterion is well understood [3]. But in higher di-
mensions difficulties arise. For instance, it can be challeng-
ing to obtain a sufficient sampling to characterize p(x). Ad-
ditionally, vector quantization is computationally expensive
in high dimensions.

In the rare case that p(x) is independent in its com-
ponents, and the metric is of the form d(x,x′) =∑

i di(xi, x
′
i), where xi are the components of x, we

can obtain a minimum distortion quantizer by forming the
Cartesian product of the independently quantized compo-
nents. That is, let

q(x) = (q1(x1), q2(x2), . . . , qn(xn)) = z, (4)

where z = (z1, z2, ..., zn), zi = qi(xi).
The quantizer design problem reduces to a set of n

independent readily solved 1D problems: each qi is de-
signed independently to minimize the expected distortion
Di = E[di(xi, ci(qi(xi)))]. It is straightforward to show
that D =

∑
iDi. Therefore minimizing each Di indepen-

dently minimizes D.

3.3. Bit Allocation

The minimum distortion criterion is sufficient to design
a product quantizer if the number of distinct quantization
levels per component is known. Determining the number of
levels per component is known as bit allocation [2, Ch. 8].
Optimal bit allocation amounts to minimizing

D(b) =
∑

i

Di(bi), (5)

such that
∑

i bi = log2m, and where b = (b1, b2, ...) is the
vector of per-component bit allocations.

Solution to this optimization problem for general distri-
butions and distortion functions requires computationally
prohibitive numerical search. A reasonable approximation,
which turns out to be effective in practice, is to assume that
each component is identically distributed after normalizing
the variance, and that the per-component distortion func-
tions are identical. In this case, the optimal allocation is
achieved when

bi ∼ log2 σi, (6)

where σi is the standard deviation of the i-th component [2].
Therefore, we can simply estimate σi from the training data
and allocate bits to each component proportionally.

In practice, we prefer each bi to be integer-valued so
that the components qi(xi) can be concatenated to encode
q(x) as a contiguous bit vector. We can ensure the overall
bit budget is met while proportionally allocating an integer
number of bits to each component through the sequential
distribution procedure listed in Algorithm 1.

Algorithm 1 Distribute b bits among quantizer components.
Initialize H(i)← log2 σi, B(i)← 0.
for j = 1 to b do
i← arg maxH(i).
B(i)← B(i) + 1.
H(i)← H(i)− 1.

end for

After the bit allocation procedure, it may be that some
components are allocated no bits at all. The effect is di-
mensionality reduction since such components are omitted
from z. Therefore, we have a principled method to select
a subset of dimensions, and simultaneously allocate bits to
the remaining dimensions, given a fixed overall bit budget,
while minimizing D.

Note that spectral hashing [16] arrives at a similar bit
distribution scheme through a very different approach. The
geometric intuition is that the resulting quantization cells
should be roughly isotropic with respect to the distortion
function. Therefore, components with larger standard devi-
ations require a proportionally larger number of quantiza-
tion levels.

3.4. Transform Coding

The product quantizer depends critically on the unre-
alistic assumption that the components of x are statisti-
cally independent. In vector quantization, this difficulty is
addressed through transform coding, which seeks a (typi-
cally linear) transformation to reduce statistical dependence
among the components [2].

Classically, this is done through principal component
analysis (PCA), although many other alternatives exist.
Specifically, we compute the eigenvectors and eigenvalues
of the training sample covariance. The matrix of eigenvec-
tors constitutes a unitary transformation U that is applied to
all points prior to quantization. Then, the product quantizer
is designed for points y = Ux. Bit allocation and conse-
quent dimensionality reduction, as described in the previous
section, is based on the corresponding eigenvalues.

In summary the quantizer design method is as follows:
(1) determine the PCA transformation from the training set,
including removing the mean; (2) run the bit allocation pro-
cedure based on the PCA eigenvalues, and drop any com-

q1

qn

c1

cn

U UTx

z1

zn

z

UTc(q(Ux))

encode decode

{ {
Figure 1. Encoding and decoding flow for the transform coding
system.

ponents that receive zero bits; (3) for each remaining com-
ponent, train a 1D distortion minimizing quantizer to obtain
the quantization functions qi and centroids ci. The 1D dis-
tortion function Di is the absolute difference in component
values. Encoding of a new point entails PCA projection fol-
lowed by quantization of the components. Reconstruction
of a centroid in the input space from quantized point entails
constructing the centroid c = (c1, c2, . . . , cr) in the trans-
form space, and then back projecting it with UT and adding
back the mean. The encoding and reconstruction process is
depicted graphically in Figure 1.

Since PCA does not guarantee statistical independence
of the transformed components, the product quantizer is not
in general optimal with respect to distance distortion. Addi-
tionally, with the exception of the squared Euclidean metric,
quantizer distortion may not be expressible as the sum of the
per-component distortion functions Di. However, the sub-
optimality of the quantizer is offset by its simplicity in train-
ing and low computational cost. Additionally, experiments
using real world data indicate that the transform coder out-
performs competing methods in a broad set of situations,
including those with non-Euclidean metrics (see Section 4).

To examine the information efficiency of the transform
coding system by way of example, we consider the 128D
SIFT descriptor compressed to 64 bits. The upper portion
of Figure 2 depicts the bit allocation to each of the 45 high-
est energy principal components. The remaining compo-
nents receive zero bits and are consequently dropped from
the code. The lower portion of Figure 2 depicts the mutual
information between each pair of components after quanti-
zation. This is an indication of second-order statistical de-
pendencies that remain after the PCA projection. All of the
off-diagonal terms are small; the largest off-diagonal term
is 0.55 bits in this case. Additionally, the sum of the diago-
nal terms is 62.2 bits, indicating that little is to be gained by
further compression, such as through entropy coding.

3.5. Distance Estimation

Returning to the retrieval problem, both Radial and
Nearest-k queries require estimation of d(x,x′) for each re-
trieved point x′ ∈ X . In practice, it is typically too expen-
sive to physically retrieve the points or to evaluate the exact
distances, which is the reason we seek compact codes in the

5 10 15 20 25 30 35 40 45
0

1

2

3

4

component

bi
ts

Bit assignment for 64 bit encoding of 128D SIFT

5 10 15 20 25 30 35 40 4510203040
0

2

4

component

Mutual information matrix for 64 bit encoding

component

bi
ts

Figure 2. Bit assignment for 64 bit encoding of 128D SIFT de-
scriptor. The upper plot depicts the number of bits assigned to
each of the top 45 principal components. The lower plot depicts
the mutual information between components of the resulting quan-
tized descriptors.

first place. In these cases, the retrieved points can be ranked
based on the distances from the query point to the centroids
for each retrieved point.

The centroid for a particular quantization cell can be con-
structed by inverting the projection as depicted in Figure 1.
We denote the resulting estimated distance as dIA, referring
to the fact that it is evaluated in the input space:

dIA(x,x′) = d(x, UT c(q(Ux′))) (7)

The function dIA corresponds to the “asymmetric distance
computation” formulated in [7].

Distance between centroids, measured in the input space,
is

dIS(x,x′) = d(UT c(q(Ux)), UT c(q(Ux′))) (8)

corresponds to the “symmetric distance computation” for-
mulated in [7].

Since dIS includes quantization noise for both points,
rather than just one, it is a poorer estimate of d than dIA,
but has the advantage of being static for a given quantizer,
independent of the query, and consequently can be precom-
puted. Unfortunately, for a large number of bits, it is im-
practical to enumerate and store pairwise distances between
all centroids. However, we escape this problem by comput-
ing distances in the transform domain instead of the input
domain. Specifically, let

dTA(x,x′) = d(Ux, c(q(Ux′))), (9)

and
dTS(x,x′) = d(c(q(Ux)), c(q(Ux′))), (10)

Computing the distances in the transform domain intro-
duces additional error related to the amount of signal en-
ergy discarded in the PCA projection. Also, evaluating dis-
tance in the transform domain only makes sense for metrics

1 2 3 4 5 6 7 8

100

101

threads

ns
/te

st

Search time to evaluate dTA vs. #threads

32 bits
64 bits
128 bits

Figure 3. Exhaustive search time (in nanoseconds per tested point)
to evaluate dTA on quantized SIFT descriptors vs. number of
threads at varying bit rates. Search times are the average of 10
passes over a 100 MB dataset.

that naturally extend to smaller dimensions, such as the Eu-
clidean metric.

3.6. Optimized Linear Search

Evaluation of dTA can be very fast using 1D lookup ta-
bles constructed at query time, which is appropriate in the
large-scale retrieval setting where the cost of lookup table
construction is small compared to the cost of search. Eval-
uation of dTS can be implemented using static (query inde-
pendent) 2D lookup tables, and therefore can be practical in
an image matching setting.

Figure 3 plots the search times obtained by exhaustively
evaluating dTA on a large set of quantized SIFT descrip-
tors at several bit rates using the squared Euclidean met-
ric. In each case, the code is decomposed into a tuple of
8 bit words. Components of the quantized descriptor are
permuted as needed to ensure that no component straddles
a word boundary. Lookup tables are constructed for each
word to store the partial distance determined by the com-
ponents belonging to that word. For a code consisting of b
total bits, we require db/8e 256-entry lookup tables.

Distance evaluation for a single point consists of sum-
ming the lookup table values for the given quantized point,
and appending the point index to a row in a preallocated 2D
output buffer indexed by the quantized distance value. The
number of rows in the output buffer determines the maxi-
mum search radius, and the number of columns limits the
total number of points that are kept for a given quantized
distance. After passing over the entire data set, the output
buffer is scanned to extract the closest k indices.

The execution times in Figure 3 were obtained using a
dual quad-core Intel Xeon X5550 CPU running at 2.67GHz.
The linear scan is easily parallelizable; hence we see near-
linear speed-up as the number of threads is increased. At 64
bits, we are able to average one point per nanosecond using
8 threads, enabling exhaustive search of one billion points
in a second.

100 101 102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

rank

re
ca

ll

Recall of true nearest neighbor vs. rank

dIA (32)
dIA (64)
dIA (128)
dIA (256)
Inria ADC (64)
Spectral Hash (64)

Figure 4. Retrieval results on INRIA Holidays 1 million SIFT de-
scriptor dataset using several different encoding schemes. “dIA

(n)” denotes the transform code described here using n bits and
the distance estimator dIA. “Inria ADC (64)” is the 64 bit vector
quantization scheme proposed in [7]. “Spectral Hash (64)” is the
64 bit spectral hash.

A variety of techniques exist for asymptotically sub-
linear search using hierarchical structures of one sort or an-
other. The advantage of linear search is that it is ideally
suited to modern system architectures optimized for high
memory locality and streaming data.

4. Results

Development of the transform coder depends on two im-
portant assumptions that may not be valid in practice. One
is that PCA is effective at reducing dependencies among the
components, and the second is that the 1D minimum distor-
tion quantizers are effective at limiting distance estimation
error. The former assumption depends on the distribution
p(x), while the latter assumption depends primarily on the
form of the metric.

In this section, we test the performance of the proposed
method on a diverse range of tasks to validate if it is in fact
effective in practice. In each experiment, the training and
encoding algorithms are identical, parameterized only by
the desired number of bits, and the applicable metric. The
method of search varies, depending on the task.

4.1. Large-scale Retrieval

To test the effectiveness of our proposed method for
large-scale retrieval, we employ the INRIA Holidays
dataset,1 consisting of 128D SIFT descriptors divided
among a training set, search set, and query set. The train-
ing set was separately collected from a random sampling of
Flickr images. The search set contains 1 million points and
the query set contains 10 thousand. Descriptor similarity is
the Euclidean metric.

Figure 4 depicts “Recall @ R” (the probability that the
nearest point to a query is among the most relevantR points

1Available at http://lear.inrialpes.fr/˜jegou/data.php.

Figure 5. Covariance matrix of 128D SIFT training sample before
(left) and after (right) PCA transformation. The yellow squares
highlight the covariances of the vector quantized sub-vectors of
[7].

returned by a given encoding scheme) for a range of val-
ues of R, averaged over a large number of queries. These
results are directly comparable to those published in [7],
which have been transferred to this plot for comparison pur-
poses.

At 64 bits, the transform code performs significantly bet-
ter than spectral hashing [16], achieving equal retrieval rates
at roughly an order of magnitude smaller R. The accuracy
of the 64 bit transform code is slightly lower than that of
[7]. In their case, the structure of the SIFT descriptor is
exploited to attain good vector quantization efficiency. The
transform code makes no assumptions about the structure of
the data, and instead learns it through PCA.

Figure 5 depicts the training sample covariance before
and after PCA. The method of [7] vector quantizes each of
the 8 16D sub-vectors, thus representing the 8 16x16 blocks
(depicted as yellow squares in the figure) along the main di-
agonal using a constant number of bits per sub-vector using
vector quantization. In contrast, the transform coder en-
codes each of the components independently after most of
the statistical dependencies between components have been
eliminated through PCA. It also allocates bits to the compo-
nents proportional to the component energies.

In comparison to [7], the transform code is more simple
and efficient to train and to encode descriptors. Addition-
ally, linear search is faster than that reported in [7], although
these numbers are difficult to compare. The computational
complexity of transform code training and encoding grows
slowly as the number of bits is increased, while with the
product of vector quantizers complexity growth is exponen-
tial in the number of bits, unless the descriptor is further
decomposed into smaller units which may be less advanta-
geous with respect to the structure of the data. Figure 4 con-
firms that the performance of the transform coding method
improves continuously with the number of bits.

In summary, the two methods are similar, with the
method of [7] having a slight edge in accuracy on SIFT data,
while the method proposed here is simpler, faster, and ar-
guably more general because it adapts to the data as part of
the training process, and applies to non-Euclidean metrics.

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

k

P[
co

rre
ct

]

MIT 8 Scene Categories k−NN Classification

k−NN Exact
k−NN Quant (16)
k−NN Quant (32)
k−NN Spectral Hash (64)
k−NN Quant (64)

Figure 6. k-Nearest neighbor classification on MIT scene cate-
gories data set using the 960D GIST descriptor. “k-NN Exact”
uses the exact Euclidean distance on the uncompressed descrip-
tors. “k-NN Quant (n)” denotes the classifier based on the n bit
transform code. “k-NN Spectral Hash (64)” denotes the classifier
based on the 64 bit spectral hash with Hamming metric.

4.2. k-Nearest Neighbor Classification

A major challenge for scene category and object cat-
egory classification is to develop techniques that remain
practical as the scale increases to thousands or tens of thou-
sands of categories. If we are able to do fast nearest neigh-
bor search, then the k-nearest neighbor (k-NN) classifier is
one technique that has the potential to do so.

The idea of using compact codes for recognition was
explored in Torralba et al [14], where they applied their
learned compact codes and Hamming-space search. Since
the transform coder limits distance estimation error, we ex-
pect the transform coder to perform better at equal bit rates.

To test the effectiveness of transform coding and quan-
tization in the context of k-NN, the MIT scene category
dataset2 was evaluated. The dataset consists of 2,688 im-
ages distributed among 8 scene categories. The training
data consist of 100 randomly selected images from each cat-
egory. The remaining images constitute the test set. Nearest
neighbor search is based on the Euclidean metric applied to
the 960D GIST descriptor computed for each image.

In Figure 6, the probability of correct classification using
the k-NN criterion (namely, vote among the labels of the k
nearest neighbors) is plotted as a function of k, at varying
levels of quantization. The reported values are the average
over 10 trials, with each trial having a different randomly
selected training set. In comparison, classification rates us-
ing spectral hash [16] are significantly lower at equal bit
rates.

The results indicate that a 32 bit representation of the
GIST descriptor is sufficient to exceed the performance of
the exact k-nearest neighbor on this data set. The increase in
performance is somewhat surprising, but is likely due to the
dimensionality reduction intrinsic to the quantization pro-
cess which serves to combat over-fitting. Even at 16 bits,

2Available at http://people.csail.mit.edu/torralba/code/spatialenvelope.

32 48 64 80 96 112 128 144 160 176 192
0

0.5

1

bits

in
lie

r r
at

io
Ratio of inlier matches to total matches

Quantized
Exact

32 48 64 80 96 112 128 144 160 176 192
0

5

10

15
x 105

bits

po
in

ts

Total feature matches

Quantized
Exact
Total Inliers

Figure 7. Effectiveness of quantized SIFT descriptor for image
matching. The top plot shows the fraction of matched inliers us-
ing the quantized representation at varying bit rates. The bottom
plot shows the total number of matched points using the quantized
representation. “Exact” refers to the inlier ratio and number of
matches obtained using the uncompressed descriptor.

the performance is close to that of the exact method, and
significantly better than the 64 bit spectral hash.

4.3. Local Feature Matching

Local feature matching refers to the process of forming
the correspondence between two images using local feature
descriptors, for instance using Lowe’s SIFT algorithm [11]
to identify candidate corresponding feature point pairs, fol-
lowed by RANSAC to determine a geometrically consistent
subset of the candidate pairs, identified as inliers. It is nat-
ural to ask whether the proposed quantized representation
of the local feature descriptor is adequate to this task. If
so, then we have the opportunity to compress the descrip-
tor, without loss of expressiveness, for bandwidth-limited
applications, and to accelerate the matching process.

To test the idea, we collected panorama image sets and
registered them to obtain a ground truth homography be-
tween each overlapping image pair. The images are of
varying resolution and subject matter, including natural and
man-made settings. In total, the test set comprises 891 reg-
istered image pairs. Feature points were obtained from the
images using Lowe’s DOG detector. Each feature point is
represented using the standard 128D SIFT descriptor.3

The experiment is to encode the SIFT descriptors at vary-
ing bit rates and measure the effectiveness of the matching
process using the compressed representation in comparison
to using the uncompressed representation. The methodol-
ogy is to consider each pair of images as in the role of
“source” and “target” for matching. For each source/target
image pair, define the “true inliers” as the set of feature pairs
(fs, ft) such that fs is the closest source feature point to the
target feature point ft after it is mapped to the source image

3The dataset is available at http://www.adobe.com/go/datasets.

under the known homography, and such that the distance
between the two feature points in the source image is less
than a fixed radius (5 pixels). We then use Lowe’s distance
ratio criterion to identify candidate matches based on the
exact descriptor values and the Euclidean metric. (Lowe’s
criterion is that the ratio of the distance in descriptor space
of the closest descriptor to the second closest be less than
a given fixed threshold — 0.8 for these experiments). The
fraction of true inlier pairs that are in the matched set is
the “inlier ratio” and is related to the likelihood that the im-
ages can be registered using RANSAC. We then compress
the descriptors using a transform coder that was trained on
a disjoint set of images and apply the same distance ratio
criterion based on the dTS distance defined in (10).

The foregoing procedure was done for each pair of im-
ages and the aggregate results appear in Figure 7. The upper
plot is of the mean inlier ratio over a range of bit rates, while
the lower plot is of the total number of matches over the
same range of bit rates. At 80 bits, or 12.8 : 1 compression,
the quantized descriptor is equally effective at identifying
inlier matches as the uncompressed descriptor. The total
number of matches using the quantized descriptor is less
than that using the exact descriptor due to systematic bias
in the quantized distance estimate. (Quantized distances un-
derestimate the exact distance.) Nevertheless, we can con-
clude that the quantized descriptor of 80 bits is sufficient for
local feature matching in panoramas.

As mentioned above, evaluation of dTS can be extremely
fast using static 2D lookup tables. Also, the compression
obtained by use of the quantized descriptor can significantly
improve performance in circumstances where the descrip-
tors must be transmitted over a network.

4.4. Spatial Pyramid Bag-of-Words Retrieval

The spatial pyramid bag-of-words scene representation
proposed by Lazebnik et al [8] has been shown to be ef-
fective for scene category classification, and scene similar-
ity retrieval. However, it is problematic to use in a large
scale because the descriptors have high dimension (typ-
ically thousands of components), but are not sufficiently
sparse for sparse methods, such as min-hash or inverted
files, to be effective.

To test whether the transform code is effective in this
setting, we computed spatial pyramid bag of words descrip-
tors for each of the images in the MIT Indoor Scene Cat-
egory dataset.4 Specifically, for each image, we collected
dense SIFT features in a grid pattern, quantized the feature
descriptors into a vocabulary of 200 visual words, and then
formed a three level spatial pyramid of histograms, result-
ing in a descriptor of 4,200 dimensions. (The vocabulary
was learnt on a disjoint image set.) On average, 25% of the

4Available at http://web.mit.edu/torralba/www/indoor.html.

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

rank

re
ca

ll

Recall of true nearest neighbor vs. rank

dIA 64 bits

dIA 128 bits

dIA 256 bits

dIS 64 bits

dIS 128 bits

dIS 256 bits

SH (256 bits)

Figure 8. Effectiveness of quantized descriptor at several bit rates
for image similarity search on spatial pyramid bag of words repre-
sentation using weighted histogram intersection metric. For com-
parison, results based on spectral hashing (“SH”) are also shown.

descriptor components was non-zero. The similarity metric
was the TFIDF-weighted histogram intersection metric.

The experiment was to test the effectiveness of the trans-
form coder on this very high-dimensional descriptor and
non-Euclidean metric in a retrieval setting. Specifically, no
attempt was made to classify the images. The entire dataset
consists of 15, 620 images. In each trial, 5, 000 were ran-
domly selected for training, 10, 000 for the search set, and
the remainder formed the query set.

Figure 8 depicts “Recall @ R” as defined in Section 4.1
at a range of bit rates, and using both the dIA and dIS met-
rics. (For comparison purposes, spectral hashing [16] was
similarly evaluated, although we do not expect good perfor-
mance because it is ill-suited to the histogram intersection
metric.)

The results indicate that with a 256 bit code, or roughly
100 : 1 compression, we can exceed 90% recall while re-
trieving only 1% of the data. Because of the non-Euclidean
metric, it is necessary to evaluate distances in the input
space which is more expensive than operating in the trans-
form space. However, the most expensive part, reconstruc-
tion of the quantized points (evaluation of UT c(q(Ux))),
can be accelerated through the use of lookup tables, not un-
like the procedure described in Section 3.6. As expected,
dIA produces more accurate results than dIS due to dIA

having less quantization noise.

5. Conclusions
We have presented a transform coding and quantization

approach to high-dimensional approximate nearest neigh-
bor search. The approach consists of PCA, followed
by non-uniform data-driven bit allocation, followed by
distortion-minimizing non-uniform product quantization.
Training is extremely simple and fast, dominated by the
eigenvector analysis. Encoding is even faster, consisting of
a linear projection followed by a set of 1D quantizers.

Despite the simplicity of the approach, we have demon-
strated its effectiveness in a range of settings, including
large scale retrieval, scene classification, feature matching,
and image similarity using a non-Euclidean metric. The
resulting compressed code enables extremely fast, trivially
parallelizable, large-scale search. The algorithm is parame-
terized only by the number of bits and the applicable metric.

Future work includes investigating alternatives to PCA,
extending the range of applicable metrics, including kernel-
based representations, exploring further applications, and
accelerating search using the GPU.

References
[1] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Y.

Wu. An optimal algorithm for approximate nearest neighbor
searching. J. of the ACM, 45:891–923, 1998.

[2] A. Gersho and R. Gray. Vector quantization and signal com-
pression. Kluwer, 1991.

[3] R. Gray and D. Neuhoff. Quantization. IEEE Trans. on Inf.
Th., 44(6):2325–2383, 1998.

[4] P. Indyk. Nearest neighbors in high-dimensional spaces. In
Handbook of Discrete and Computational Geometry. CRC
Press, 2004.

[5] H. Jégou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
In ECCV, pages 304–317, 2008.

[6] H. Jégou, M. Douze, and C. Schmid. Packing bag-of-
features. In ICCV, 2009.

[7] H. Jégou, M. Douze, and C. Schmid. Searching with quan-
tization: approximate nearest neighbor search using short
codes and distance estimators. Technical Report RR-7020,
INRIA, August 2009.

[8] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, pages 2169–2178, 2006.

[9] Y. Linde, A. Buzo, and R. Gray. An algorithm for vec-
tor quantizer design. IEEE Trans. on Comm., 28(1):84–95,
1980.

[10] S. Lloyd. Least squares quantization in PCM. IEEE Trans.
on Inf. Th., 28(2):129–137, 1982 (Reprint of 1957 Bell Labs
Technical Report).

[11] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[12] J. Max. Quantizing for minimum distortion. IRE Trans. on
Inf. Th., 6(1):7–12, 1960.

[13] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest neighbor
methods in learning and vision: theory and practice. MIT
Press, 2006.

[14] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large
image databases for recognition. In CVPR, 2008.

[15] T. Tuytelaars and C. Schmid. Vector quantizing feature space
with a regular lattice. In ICCV, 2009.

[16] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, 2008.

[17] S. Winder, G. Hua, and M. Brown. Picking the best DAISY.
In CVPR, 2009.

