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Abstract
Optical coherence tomography (OCT) has become one of the most common tools for diagnosis of
retinal abnormalities. Both retinal morphology and layer thickness can provide important
information to aid in the differential diagnosis of these abnormalities. Automatic segmentation
methods are essential to providing these thickness measurements since the manual delineation of
each layer is cumbersome given the sheer amount of data within each OCT scan. In this work, we
propose a new method for retinal layer segmentation using a random forest classifier. A total of
seven features are extracted from the OCT data and used to simultaneously classify nine layer
boundaries. Taking advantage of the probabilistic nature of random forests, probability maps for
each boundary are extracted and used to help refine the classification. We are able to accurately
segment eight retinal layers with an average Dice coefficient of 0.79 ± 0.13 and a mean absolute
error of 1.21 ± 1.45 pixels for the layer boundaries.
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1. INTRODUCTION
Optical coherence tomography (OCT) is an emerging technology with many uses in
ophthalmology1, among other fields. One emerging application of OCT is in the evaluation
of patients with multiple sclerosis (MS). Subjects with MS have been shown to exhibit
significant thinning of various retinal layers.2 Automated segmentation methods are
becoming especially important to estimate these retinal thicknesses since manual
segmentation of each layer is a time consuming task. An assortment of automatic retinal
segmentation methods have been proposed in the literature to date. Many authors have
proposed automatic retinal layer segmentation methods, utilizing a variety of techniques
including active contours3, gradient-based information4, 5, statistical models6, graph-based
methods7–9, and pixel classification10.

There is a growing popularity with graph-based segmentation methods for OCT. The layered
structure of the retina lends itself well to such a problem formulation. These methods have
also been shown to be efficient, simple and have good optimality properties. Chiu et al.8

construct a graph from every 2D OCT image and use a shortest path algorithm to segment
multiple layers. Garvin et al.7 construct a 4D graph to model a 3D OCT volume and all of
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the layers together. A solution is found using a novel graph-cut formulation to the problem.
One of the problems with these graph-based methods is in finding appropriate cost functions
on the graph which differentiate each layer. Antony et al.9 build on prior work7 by using a k-
nearest neighbor classifier to group image features into different regions, which are then
used in the graph weights.

Another method which uses pixel classification for segmentation is from Vermeer et al.10

This work uses a set of 18 gradient and intensity features projected into a higher dimensional
space to create a support vector machine classifier for each retinal layer. The independently
classified pixels are then regularized using a level set method to create smooth surfaces.
Using a single classifier for each layer, as well as a separate regularization for each surface,
results in a particularly inefficient method. In addition, results for the segmentation of only
five layer interfaces are given.

In this work, we propose to use a random forest classifier11 to automatically learn where the
appropriate boundaries are in macular OCT images. In total, nine layer boundaries are
detected, resulting in the segmentation of eight layers. This type of classifier has been shown
to perform well in different image segmentation tasks12, 13 and is popular due to its ease of
use, the small number of parameters to tune, and the ability to simultaneously classify
multiple labels. One particularly nice feature of random forests is that it provides soft
classifications in the form of probabilities for each label. When classifying images,
probability maps can be generated and then refined into hard segmentations. In the case of
retinal segmentation, we classify on boundaries instead of layers and can then take
advantage of the ordered structure of the layers to refine the probabilities into a
segmentation by selecting only one pixel per A-scan for each boundary.

2. METHODS
The goal of the proposed work is to segment eight retinal layers in a macular OCT scan (Fig.
1). The layers to be segmented, listed from the top to the bottom of the retina, are: the retinal
nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer (GCL + IPL), inner
nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), inner segment
(IS), outer segment (OS), and retinal pigment epithelium (RPE). There are nine associated
boundaries with these eight layers, noting that the inner limiting membrane (ILM) is used to
denote the vitreous-RNFL boundary, the external limiting membrane (ELM) is used for the
ONL-IS boundary and Bruch’s membrane (BM) is used for the RPE-choroid boundary. A
single 2D OCT image is referred to as a B-scan image, with an A-scan being a single
column of pixels from the B-scan. Multiple B-scans are combined in the through-plane
direction to form a 3D volume. We also denote the x and y directions as the left-to-right and
top-to-bottom directions in a B-scan and the z direction to be the through-plane direction.

Before segmentation of the retinal layers, a retinal mask is automatically generated to
coarsely define the region-of-interest where we expect to find these layers. Calculation of
the retina mask also allows us to flatten each image to the BM. To segment the retinal
layers, seven features are extracted from the OCT data and used to train a random forest
classifier to find each boundary. The classifier produces the probability of each pixel
belonging to each boundary. These probabilities are then refined to estimate the final
segmentation for each layer.

2.1 Retina detection and flattening
Before segmentation of the retinal layers, we generate a coarse retina mask, indicating which
pixels are inside and outside of the retina. Fig. 2(b) shows an example retina mask for the
OCT image in Fig. 2(a), where white and black represent areas inside and outside of the
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retina, respectively. Calculation of the retina mask requires an estimate of the ILM and BM
boundaries. As this is a pre-processing step, fast calculation is desirable. Additionally, since
these boundaries will be refined in later stages, they need only to be approximately located.

To calculate the retina mask, every B-scan image in the volume is initially smoothed with a
Gaussian filter (σx = σy = 10). Looking along each A-scan, the pixel with the largest
positive gradient value is assumed to be either the ILM or the IS-OS boundary. The pixel
with the largest positive gradient value at a minimum of 25 pixels away from the previously
found maximum is taken to be the second boundary. Given these two pixels, the one closest
to the top of the image is taken as the ILM. The BM is then taken to be the largest negative
gradient value below the IS-OS, along each A-scan. Since these estimated ILM and BM
surfaces may contain spurious jumps and discontinuities (due to blood vessel artifacts, for
example), we remove and fill in outlying boundary points with the nearest point. Outlying
points are those which are more than 15 pixels from their respective 10 × 10 median filtered
surfaces. Finally, the two surfaces are smoothed with a Gaussian kernel (σx,z = {10, 0.75}
for the ILM and σx,z = {20, 2} for the BM). The retina mask volume then contains all pixels
between the estimated ILM and BM surfaces. Figure 2(c) shows a B-scan image with the
non-retina area masked out showing that this retina mask only coarsely locates the top and
bottom boundaries.

Given the retina mask, the OCT data is then flattened to the BM by the translation of each
individual A-scan to make this boundary completely flat. Bilinear interpolation is used for
the translation. The flattening process removes much of the curvature in each image, placing
all retinal images in a common space across subjects and is a step commonly found in the
literature.5, 7 An example of an OCT image and its resulting flattened image are in Figs. 2(a)
and 2(d).

2.2 Random forest classifier
As an initial step for segmentation, a random forest classifier11 is trained to find boundary
pixels for each layer. Only one classifier is used to learn all of the boundaries, with each
pixel assigned a label of 0 to 9 depending on the pixel being on one of the nine boundaries
(labels 1–9) or not (label 0). Fifty trees are used in the forest and two features are randomly
selected at each node. To train the classifier, seven features are used (visualized in Fig. 3).
The first two features are positional features while the last five are local image features.
These features are calculated at every pixel in a flattened OCT image.

The first feature is unique to the retina, utilizing the retina mask calculated in Sec. 2.1. It is
the fractional distance of each pixel from the bottom of the retina mask to the top, taking
values between 0 and 1. Pixels above or below the retina mask are assigned a value of −1 to
help the classifier better distinguish the retina from the background completely. The next
feature used is the x-position of each pixel in the image (taking integer values of 1 to 1024
in our data). The purpose of this feature is to help learn the variation of layer thicknesses
across the image. It works complementary to the retina mask distance to differentiate the
high curvature foveal areas, which, due to the scanning protocol, appear consistently
towards the center of the image. The two positional features are shown in Figs. 3(b) and
3(c).

Next, four multi-scale, gradient-like features are calculated by taking the difference of the
averages of 3 × 3 neighborhoods above and below each pixel. The neighborhoods are
located at 2, 4, 8, and 16 pixels above and below, which helps explain the intensity
difference of surrounding layers. Examples of these features are shown in Fig. 3(d–g). This
feature was designed to learn which layers are nearby (i.e. a dark layer above and a light
layer below). The final feature is the magnitude of the largest eigenvalue of the structure
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tensor at each pixel.14 The tensor product was smoothed with a sigma value of 0.5. The first
eigenvalue at each pixel is larger in anisotropic areas and is therefore particularly good at
finding the thinner layers at the bottom of the retina (Fig. 3(h)).

2.3 Final segmentation
The random forest classifier outputs a probability for each label at each pixel, calculated
based on the number of decision trees in the random forest which voted for that label (see
Fig. 4). Since we would like each boundary label to be assigned only once per A-scan,
taking the label with the largest probability at each pixel does not work well. Instead, for
each class’s probability image, we carefully choose only one pixel per A-scan to be on its
associated boundary.

To extract a single boundary from a layer’s probability image, Gaussian smoothing (σ = 15)
is first applied to the image. The pixel with the maximum probability along each A-scan is
chosen as the initial boundary pixel for that class. Since these boundaries are often noisy, as
can be seen in Fig. 4, pixels with a probability below a threshold of 0.05 are removed and
the remaining points are then smoothed using a cubic smoothing spline with a large
smoothing parameter. This procedure can be repeated for each layer to estimate all
boundaries. Layer labels are finally filled in between the appropriate boundaries. To ensure
that the ordering of the layers is correct, each layer is filled in one at a time, starting with the
top and the bottom layers. As each layer is added, a hard constraint is imposed so that the
new layer cannot intersect and cross previously fitted layers. If the surface lies outside of the
previously fit surfaces, we adjust those points to lay one pixel above or below the adjacent
boundary. A careful selection of how layers are added is important, so layers with higher
confidence are added first.

3. RESULTS
Ten manually delineated OCT volumes were used in this study. All manual delineations
were done by a single rater using an internally developed software. After providing
informed consent, the patients underwent spectral-domain retinal imaging on a Spectralis
OCT scanner (Heidelberg Engineering, Heidelberg, Germany). Macular raster scans (20° ×
20°) consisting of 49 B-scans were acquired. The scanner utilized automatic real-time
(ART) to increase image quality by acquiring and averaging multiple images of the same
location for noise reduction. Scans with ART ≥ 12 (number of scans averaged) and with
signal quality of at least 20 dB were used in this study. The image volumes had 496 pixels
per A-scan, and 1024 A-scans in each B-scan. Also note that the fourth root of the raw
Spectralis intensity data was applied before all processing.

A small portion of the data in five OCT volumes were used for training the random forest
classifier. Within each training volume, three B-scans were selected as representative scans.
One of the three scans included the central fovea area while the other two scans were taken
from each side of the fovea. Finally, all points on each boundary (1024 points per layer per
B-scan) were used for the training, in addition to an equal number of random background
points found between each boundary. The remaining five OCT volumes were used to
explore how well the algorithm performed. Two measures were used to analyze the
performance of the algorithm. First, we look at the mean absolute error (MAE) between
each estimated layer boundary and the ground truth manual segmentation. The second
measure used is the Dice coefficient, which is a measure of the overlap between the
estimated and true layer segmentation. It is calculated for each layer as,
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(1)

where Xk and Yk are the set of points labeled as layer k in the ground truth and estimated
layers, respectively.

Tables 1 and 2 show the MAE and Dice coefficient results of our algorithm averaged across
all subjects and B-scans. From Table 1, the ILM has the lowest boundary error. This result is
expected as this boundary is where the background intersects the retina and has a large
gradient. Also, looking at Fig. 2(c), the retina mask localizes the ILM quite closely, making
the retina mask feature quite good for this boundary. The ELM, IS-OS, and BM boundaries
also show low errors, again due to large, identifiable gradients. The OS-RPE boundary
proved to be the most difficult to estimate since this boundary has a tendency to disappear
and reappear in some images. Looking at the Dice coefficients, all of the layers show quite
good results, with more difficulties in the IS, OS and RPE layers. The layers with the largest
Dice coefficients, the RNFL, GCL+IPL, and ONL, are wider than many of the other layers
and are also have larger gradients at their boundaries. The IS, OS, and RPE showed the
worst performance since these are thinner layers. A one pixel boundary error in these layers
translates into a much lower dice coefficient then a similar boundary error would have in
larger layers.

Fig. 5 shows the results of our segmentation method on three B-scans. The top row shows
the input B-scans, the second row shows the manual segmentations and the last row shows
the results of our automatic segmentation. One apparent area of difficulty is in regions
containing blood vessel artifacts. As Fig. 4 shows, in the probability images, areas with
blood vessels either appear as false positives or receive low probability values. False
positives result in incorrect boundaries, which are subsequently smoothed in the final
segmentation step. This smoothing is not strong enough, however, to eliminate the errors.
When the boundary has a low probability, there is usually enough of a response to give a
reasonable fit to the boundary. If the response is too small (below the 0.05 threshold), the
smoothing is able to interpolate the missing area quite accurately since the surfaces are
smoothly varying.

Finally, we quickly look at the performance of the algorithm. All experiments were run on a
computer running Windows 7 with a quad-core processor running at 1.73 GHz using
MATLAB R2011b. The random forest implementation is openly available online.15 This
implementation utilizes pre-compiled mex files for efficiency. All other processing uses
native MATLAB functions. The performance of different aspects of the algorithm is in
Table 3. Training the classifier took about 90 seconds. As shown, the total time to segment a
volume is approximately 117 seconds including all steps. This time corresponds to 2.4
seconds per B-scan. Performance could likely be further improved using optimized code.
For example, efficient implementations of random forest have been implemented on GPU.16

4. CONCLUSIONS
We have shown the ability to use random forests to classify retinal layers using only seven
features. To generate a final segmentation for each layer, post-processing of the boundary
probability images output by the random forest classifier was required. The algorithm
proved to be fast and accurate, leading to the successful segmentation of multiple OCT
volumes after training on only a small subset of five volumes. There are many aspects of this
work which can be improved. The algorithm is inherently 2D, running on individual B-scans
instead of using information from the complete 3D volume. Using the full volume may aid
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in fixing problems with blood vessel artifacts. Further validation must also be performed,
comparing inter- and intra-rater variability on the segmentation.
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Figure 1.
A cropped, manually delineated OCT image. The nine segmented boundaries are, from top
to bottom: ILM, RNFL-GCL, IPL-INL, INL-OPL, OPL-ONL, ELM, IS-OS, OS-RPE, and
BM.
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Figure 2.
(a,b) An OCT image and the calculated retina mask. (c) The OCT image with the non-retina
pixels masked out, showing the coarse accuracy. (d) The OCT image flattened to the bottom
boundary.
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Figure 3.
An OCT image (a) and its associated features: (b) retina mask distance, (c) x-position, (d–g)
gradient features at 4 increasing scales, and (h) largest eigenvalue of structure tensor.
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Figure 4.
An OCT image (a) and the probability maps (b–j) for all nine layers generated from the
random forest classifier on the image in (a). Probabilities range between 0 (black) and 1
(white).

Lang et al. Page 10

Proc SPIE. Author manuscript; available in PMC 2013 May 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Segmentation results from three B-scans with each column indicating a different B-scan.
The top, middle, and bottom rows are the input OCT image, manual segmentation, and
automatic segmentation, respectively.
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Table 2

Values of the Dice coefficient between the estimated layer segmentations and the true layer segmentations.

RNFL GCL+IPL INL OPL ONL

Mean 0.88 (0.05) 0.92 (0.03) 0.83(0.06) 0.81 (0.05) 0.90 (0.03)

IS OS RPE Overall

Mean 0.66 (0.09) 0.62 (0.10) 0.70 (0.09) 0.79 (0.13)
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