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ABSTRACT

Optical coherence tomography (OCT) is a noninvasive imaging modality that has begun to find widespread use
in retinal imaging for the detection of a variety of ocular diseases. In addition to structural changes in the form
of altered retinal layer thicknesses, pathological conditions may also cause the formation of edema within the
retina. In multiple sclerosis, for instance, the nerve fiber and ganglion cell layers are known to thin. Additionally,
the formation of pseudocysts called microcystic macular edema (MME) have also been observed in the eyes of
about 5% of MS patients, and its presence has been shown to be correlated with disease severity. Previously, we
proposed separate algorithms for the segmentation of retinal layers and MME, but since MME mainly occurs
within specific regions of the retina, a simultaneous approach is advantageous. In this work, we propose an
automated globally optimal graph-theoretic approach that simultaneously segments the retinal layers and the
MME in volumetric OCT scans. SD-OCT scans from one eye of 12 MS patients with known MME and 8 healthy
controls were acquired and the pseudocysts manually traced. The overall precision and recall of the pseudocyst
detection was found to be 86.0% and 79.5%, respectively.

Keywords: graph-theoretic approach, graph-cuts, retina, multiple surface segmentation, optical coherence to-
mography, microcysts

1. INTRODUCTION

Spectral-domain optical coherence tomography (SDOCT)1,2 has begun to find widespread use in the diagnosis
and management of a variety of ocular diseases. This noninvasive imaging modality uses near-infrared light
to image the retina and allows for the quantitative analysis of retinal structures. SDOCT has also begun to
find application in studying neurological disorders such as multiple sclerosis (MS), where optic neuropathy has
been observed in a significant number of patients.3 In addition to decreasing estimates of the retinal nerve fiber
layer (RNFL) and ganglion cell layer (GCL) thicknesses, pseudocysts or microcystic macular edema (MME) may
occur in the eyes of about 5% of MS patients.4 They occur most frequently in the inner nuclear (INL), outer
plexiform (OPL), and outer nuclear layers (ONL). However, these pseudocysts are not limited to MS5 and has
also been found to be associated with other causes.6,7 Figure 1 shows an example of a scan obtained from an
MS subject, with the MME overlaid on the scanning laser ophthalmoscope fundus image and a B-scan from
an SDOCT image. While the underlying cause of these cysts has not been identified, their presence has been
correlated with disease severity in MS,8 thus warranting accurate identification and tracking of these structures.

Previously, we proposed two separate approaches for the segmentation of the retinal layers and the MME,
where the surfaces were segmented using a graph-theoretic approach9 and the MME were detected using voxel
classification,10,11 respectively. A graph-based approach was previously proposed by Chen et al. for the segmen-
tation of larger fluid regions in the outer retina.12 This method however, relies on a preprocessing stage at which
the 2-D locations of the regions are detected. Moreover, this method did not perform well in the case of small
cysts, as is usually the case with MME. More recently, a combined machine-learning and graph-cut approach
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Figure 1: Visualization of the pseudocysts seen in an SDOCT volume obtained from an MS subject on (a) the
scanning laser ophthalmoscope fundus image, and (b) a B-scan from the parafoveal location indicated by the
white arrow.

was proposed for the segmentation of fluid filled regions in the retina,13 however the retinal surfaces were not
simultaneously segmented in this formulation.

Herein, we propose a graph-theoretic approach for the simultaneous segmentation of retinal surfaces and
pseudocysts. These structures are not independent and the simultaneous segmentation of the retinal surfaces
and MME could help prevent errors, such as the detection of MME in unexpected locations or errors in the
surface segmentation. This is done by combining the closed set multiple surface segmentation approach14,15 and
multi-region graph-cuts.16,17 The final graph is solved using a minimum s-t cut, thereby ensuring the global
optimality of the final solution. Previously, Chen et al.12 described a graph-based method for the detection of
large fluid filled regions in the outer retina. However, this method requires a 2-D footprint as a prior, while the
proposed method does not require an estimate of the location of the pseudocysts. Furthermore, the absence of
the cysts will not affect the retinal surface segmentation accuracy. The overall precision and recall of pseudocyst
detection was found to be 86.0% and 79.5%, respectively. The surface segmentation frequently seen errors,
specifically in the segmentation of the NFL-GCL and the GCL-INL boundaries, were also seen to improve when
using this combined graph-theoretic framework.

2. METHOD

The simultaneous segmentation of multiple retinal surfaces and the pseudocysts is achieved by combining two
graph-based approaches – namely graph-cuts17 and the minimum cost closed set formulation.14,18 The graph-
cuts allow for the segmentation of multiple foreground structures, and while this may not be suitable for the
segmentation of layered structures, it is well suited to the segmentation of disjointed structures such as pseudo-
cysts. On the other hand, the minimum-cost closed set formulation allows for the simultaneous segmentation
of multiple surfaces, and has proven to be extremely useful in the segmentation of retinal surfaces in SDOCT
images.9,15,19–21 Both of these graph-theoretic formulations are solved using a minimum s-t cut, and thus, it is
possible to link the graphs whereby multiple surfaces and pseudocysts can be segmented simultaneously, while
ensuring a globally optimal solution. The graph structure and the cost functions used in this formulation are
described in further detail below.

2.1 Graph-theoretic Formulation

The graph for the minimum-cost closed set assumes that the surface of interest S intersects each column of the
image I(x, y, z) of size X×Y ×Z, at exactly one location, such that S(x, y) = z with (x, y, z) ∈ S. The topology
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Figure 2: Illustrations of (a) the minimum-cost closed set formulation proposed14 for the segmentation of multiple
surfaces, and (b) the graph-cut17 image segmentation, and (c) the combined graph used for the segmentation of
multiple retinal surfaces and the pseudocysts.



of the surface is constrained by an upper bound on the expected change in the surface at adjacent columns p, q
(given a predefined neighborhood N , e.g., a 4-neighbor relationship) such that

−∆u
p,q ≤ S(p)− S(q) ≤ ∆l

p,q, (1)

where ∆u
p,q and ∆l

p,q represent the upper and lower bounds on the expected change in the surface between two
adjacent columns p and q, respectively. These values can also be learned a priori from a training set and vary by
column location and surface.22 Similarly, the expected distances between surfaces i and j can also be constrained
such that

δmin
(i,j) < Sj − Si < δmax

(i,j), (2)

where, δmin
(i,j) and δmax

(i,j) represent the expected distances between surfaces i and j, respectively.

Figure 2(a) illustrates the incorporation of these surface topology and interaction constraints. The nodes are
also connected to a source and sink using directed edges.14 The minimum-cost closed set is found by finding
the minimum s-t cut on this graph, and envelope of the closed set of each subgraph gives us the final multiple
segmented surfaces. The key aspect of this graph is the closed set structure that ensures the continuity of the
segmented surfaces.

In graph-cuts,17 each image voxel is represented by a node, which is connected by weighted edges, referred
to as terminal links (t-links), to the source S and the sink T . Node v ∈ I(x, y, z), for instance, is connected
to the S by the edge E(S, v) = CS(v), where CS(v) indicates the cost associated with the pixel belonging
to the foreground (or belonging to the source node set). Similarly, the node n is also connected to T by the
edge E(v, T ) = CT (v), where CT (v) indicates the cost associated with the pixel belonging to the background
(or belonging to the sink node set). Figure 2(b) shows an example with the nodes of the image connected to
the source S and the sink T . Adjacent nodes vi and vj within a specified neighborhood N are also connected
to each other by neighborhood links (n-links), E(vi, vj) = B(vi, vj), where B(vi, vj) represents the boundary
cost associated with the edge E(vi, vj) belonging to the minimum cut. Figure 2(b) shows a simple two-column
example of such a graph, with the t-links shown in green and the n-links shown in black.

This formulation can also be extended to geometric configurations involving more than one foreground struc-
ture, such as when one structure is contained within another. Delong et al.16 described a multi-region framework,
where infinity-weighted arcs are introduced to enforce geometric constraints such as inclusion or exclusion criteria
among interacting foreground structures. Subgraphs are created for each foreground structure and are connected
in order to enforce the a priori constraints. For instance, consider voxels vn and vm that belong to regions n
and m, respectively. If the region n is contained with region m, then setting the weight on edge E(vn, vm) =∞
will prevent the edge E(vn, vm) from being a part of the minimum cut.

We can formulate the combined MME and layer segmentation into this geometric constraint framework by
connecting the MME and boundary sub-graphs such that the MME is constrained to lie below a particular
boundary and the ordering of consecutive boundaries is enforced. Figure 2(c) shows one column (orange) from
Surface 1 subgraph, corresponding to the surface above the pseudocysts, Surface 2 (blue) lies below Surface 1
and is connected using interaction constraints. The pseudocyst subgraph (purple) is connected to Surface 1, but
there are no interaction constraints between the pseudocysts and Surface 2. Note, the neighborhood can also be
defined to enforce a minimum distance between Surface 1 and the pseudocysts. The infinity weighted arcs (solid
black) will not be part of the cut, and thus, enforce the inclusion and boundary distance constraints.

Figure 3 shows the steps involved in creating the graph used to simultaneously segment the retinal surfaces
and the pseudocysts. In the previously described approach that segmented nine retinal surfaces, the inner retinal
surfaces,9 namely the bottom of the RNFL, GCL, INL, and OPL are segmented simultaneously, after the ILM
and the outer retinal surfaces are detected. These steps remain unchanged in the current method, and the
subgraphs for these four surfaces are created using the minimum-cost closed set framework. The pseudocyst
subgraph is constructed using the graph-cut formulation. Moreover, since the pseudocysts are known to occur in
either the INL, OPL, or ONL, this subgraph is linked to the INL such that the pseudocysts are included within
this surface closed set. This prevents any pseudocysts from being detected above this surface.
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Figure 3: Flowchart illustrating the simultaneous segmentation of 4 inner retinal surfaces and the pseudocysts
using the proposed graph-theoretic approach.

2.2 Cost Function Design

The total cost of the set of n surfaces and the pseudocysts can be represented as CT = Csurf +Ccyst, where Csurf

represents the cost of the n surfaces and Ccyst represents the cost associated with the pseudocysts. In particular,

Csurf =

n∑
i=1

∑
(x,y,z)|z=Si(x,y)

ci(x, y, z), (3)

where ci(x, y, z) is the cost associated with voxel (x, y, z) lying on surface i. This cost function was designed
using a machine-learning approach,9 where a random forest23 was trained on an independent set of manually
delineated scans, in order to create probability maps for the retinal surfaces.

The second term Ccyst was designed as follows:

Ccyst =
∑
v∈F

c(v) + α
∑

vi,vj∈N
B(vi, vj), (4)

where c(v) is the cost of voxel v belonging to the foreground F , and B(vi, vj) is the boundary cost associated
with the voxel vi lying on the boundary of the foreground object.

The pseudocyst region cost was also designed using a random forest classifier,10,11 where c(v) = ηe−p,
where p reflects the probability value obtained from the random forest. The boundary cost was computed as

B(vi, vj) = e
−(I(vi)−I(vj))

2

2σ2 , where I(v) is the intensity of voxel v. The parameters η, α, and σ were empirically
chosen and set to 180, 20, and 130, respectively.

3. EXPERIMENTAL METHODS & RESULTS

Twelve volumetric SDOCT scans were acquired from nine MS patients that presented with MME and 8 healthy
controls (HC).11 The macular raster scans were acquired on a Spectralis OCT system (Heidelberg Engineering,
Heidelberg, Germany) and imaged a region approximately 6mm×6mm×2mm. The volume consisted of 49 B-
scans, 1024 A-scans per B-scan, and 496 voxels per A-scan. A leave-one-subject-out procedure was used to
train the pseudocyst random forest and test the remaining eight subjects. The random forest for the surface
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Figure 4: A slice from an MS patient scan showing (a) the original B-scan, (b) the manual tracings and (c) the
automated result obtained using the proposed method.

segmentation was trained on a completely independent set of scans.9 The pseudocyst detection precision, recall,
and F-measure were computed as shown below.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, and F-measure =

2× Precision× Recall

Precision + Recall
, (5)

where, TP is the number of pseudocysts correctly found, FP is the number of false positives, and FN is the number
of false negatives or pseudocysts missed. (A pseudocyst is marked as a true positive if the automated method
and the manual segmentation overlap.) The pseudocysts were also segmented using the voxel classification
approach11 and the results from the two approaches were compared.

The twelve MS scans were divided into two groups—low density and high density scans—based on the number
of cysts present. On average, the low density set contained approximately 16 cysts per scan, while the high density



Table 1: Summary of pseudocysts detection accuracy statistics in the MS patients and the HC scans.

Method Metric Low Density High Density Healthy Controls

# Cysts 98 2076 0

Voxel Classification11,24

# Cysts detected 43 1641 2
Precision 0.896 0.861 –

Recall 0.439 0.790 –
F - measure 0.589 0.824 –

Proposed Method
# Cysts detected 43 1685 1

Precision 0.935 0.849 –
Recall 0.439 0.812 –

F - measure 0.597 0.830 –

(a) (b) (c)

Figure 5: A slice from an MS patient scan showing (a) the original B-scan, (b) the segmentation result of the
inner surfaces obtained using the previously described graph method9 and (c) the segmentation result obtained
by the proposed method that simultaneously segments the surfaces and the pseudocysts. The red arrows indicate
areas where the segmentation of the RNFL-GCIP and the GCIP-INL boundaries failed, even cutting through
MMEs at certain locations. However, the use of the proposed method where the MMEs and the surfaces are
simultaneous segmented prevents such errors.

set contained 346 per scan. The results of the MME detection are shown in Table 1. The previously proposed
voxel classification method11,24 showed an overall precision, recall and, F-measure of 86.2%, 77.5%, and 81.6%
respectively. The proposed graph-theoretic method, on the other hand, showed an overall precision, recall and,
F-measure of 86.0%, 79.5%, and 82.6% respectively. Figure 4 shows an example of a B-scan with the detected
pseudocysts. Whereas for the healthy control cohort of eight scans, the voxel classification approach erroneously
detected two pseudocysts while the proposed method only detected one.

The surfaces using the proposed method and the alternative automated method were qualitatively examined.
No differences were noted in regions free of pseudocysts; however, in certain locations, the thin nerve fiber layer
combined with the presence of the disruptive pseudocysts caused the surface segmentation algorithm9 to fail,
while the proposed method was able to correct the surface segmentation in these location. Figure 5 shows an
example of one of these problem areas.

4. CONCLUSION

Microcystic macular edema are an elusive and ill-understood phenomenon, occurring within a small percentage
of the MS population. While these cysts are known to occur within specific retinal layers, their presence is
hard to estimate. The proposed method incorporates this crucial information and simultaneously segments the
retinal layers and any cysts that may be present in the images. The biggest advantage of using the simultaneous
formulation is the ability to prevent surface segmentation errors that may occur in the presence of a large number
of cysts as shown in Fig. 5. Moreover, the absence of cysts will also not affect the surface segmentation accuracy.



The proposed method’s graph structure utilizes an additional subgraph for the pseudocysts which does
increase the memory requirements and runtime of the method as compared to the graph-based retinal layer
segmentation approach.9,15 Furthermore, graph-cuts requires that the data cost be submodular, and thus certain
geometric configurations cannot be optimized using the multi-region framework. For instance, if a foreground
structure is included within another while also being excluded from a third, only one of these constraints,
either the inclusion or the exclusion, can be enforced. Thus, in the method described here, the pseudocysts
can be explicitly defined as structures that exist below the IPL-INL boundary, but a lower bound cannot be
simultaneously set.

In our future work, we intend to explore the possibility of enforcing both, the upper and lower boundary
constraints, perhaps using α-expansion.25 Additionally, we expect that the ability to accurately monitor and
track pseudocysts in MS patients will provide insight into the cause and ultimate impact of these cysts on visual
function.
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