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Abstract. The fundamental property of the analytic signal is the split
of identity, meaning the separation of quantitative and qualitative infor-
mation in form of the local phase and the local amplitude, respectively.
Especially the structural representation, independent of brightness and
contrast, of the local phase is interesting for numerous image process-
ing tasks. Recently, the extension of the analytic signal from 1D to 2D,
covering also intrinsic 2D structures, was proposed. We show the advan-
tages of this improved concept on ultrasound RF and B-mode images.
Precisely, we use the 2D analytic signal for the envelope detection of
RF data. This leads to advantages for the extraction of the information-
bearing signal from the modulated carrier wave. We illustrate this, first,
by visual assessment of the images, and second, by performing goodness-
of-fit tests to a Nakagami distribution, indicating a clear improvement of
statistical properties. Finally, we show that the 2D analytic signal allows
for an improved estimation of local features on B-mode images.

1 Introduction

The analytic signal (AS) enables to extract local, low-level features from images.
It has the fundamental property of split of identity, meaning that it separates
qualitative and quantitative information of a signal in form of the local phase
and local amplitude, respectively. These quantities further fulfill invariance and
equivariance properties [11], allowing for an extraction of structural information
that is invariant to brightness or contrast changes in the image. Exactly these
properties lead to a multitude of applications in computer vision and medical
imaging, such as registration [5,15,20,26,31,33], detection [10,21,25,29], segmen-
tation [1,16,27], and stereo [13]. Phase-based processing is particularly interest-
ing for ultrasound images because they are affected by significant brightness
variations [15,16,20,21,26].

For 1D, the local phase is calculated with the 1D analytic signal. For 2D, sev-
eral extensions of the analytic signal are proposed, with the monogenic signal [11]
presenting an isotropic extension. The description of the signal’s structural infor-
mation (phase and amplitude) is extended by a geometric component, the local
orientation. The local orientation indicates the orientation of intrinsic 1D (i1D)
structures in 2D images. This already points to the limitation of the monogenic
signal; it is restricted to the subclass of i1D signals. Recently, an extension to
the monogenic signal, referred to as 2D analytic signal [28], was proposed that
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Fig. 1. Magnitude of 2D Hilbert transforms with log-Gabor kernels in frequency do-
main. From left to right: B, B � H1

x, B � H1
y , B � H2

xx, B � H2
xy, B � H2

yy.

permits the analysis of i2D signals. Therefore, the 2D signal analysis is embed-
ded into 3D projective space, and a new geometric quantity, the apex angle, is
introduced. The 2D analytic signal also has the advantage of more accurately
estimating local features from i1D signals [28].

In this article, we show the advantages of the calculation of the 2D ana-
lytic signal for radio frequency (RF) and B-mode ultrasound images. Instead
of performing the demodulation of RF signals for each scan line separately, we
perform the demodulation in its 2D context with 2D Hilbert filters of first- and
second-order. This leads to advantages in the envelope detection. Since all further
processing steps of the creation of the B-mode image are based on the envelope,
the improvement of the 2D envelope detection propagates to the quality of the
B-mode image. Moreover, the result from the 2D envelope detection bears bet-
ter statistical properties, as we illustrate with goodness-of-fit tests towards a
Nakagami distribution, with its implications to classification and segmentation.
Finally, we show the advantages of the 2D analytic signal for estimating local
features on B-mode images. All experiments are performed on clinical ultrasound
images.

2 2D Analytic Signal

There are various concepts to analyze the phase of signals, such as Fourier phase,
instantaneous phase, and local phase [14]. We are primarily interested in the last
two. For 1D signals, g ∈ L2(R), the instantaneous phase is defined as the argu-
ment of the analytic signal, arg(g+i·H{g}), with H being the Hilbert transform.
Since real signals consist of a superposition of multiple signals of different fre-
quencies, the instantaneous phase, although local, can lead to wrong estimates.
The signal has to be split up into multiple frequency bands, by means of band-
pass filters, to achieve meaningful results, as further described in section 2.2.

Considering 2D signals, f ∈ L2(R2), the intrinsic dimension expresses the
number of degrees of freedom to describe local structures [32]. Intrinsic zero
dimensional (i0D) signals are constant signals, i1D signals are lines and edges,
and i2D are all other patterns in 2D. The monogenic signal is restricted to i1D
signals. The monogenic signal is calculated with the two-dimensional Hilbert
transform, also referred to as the Riesz transform. In the frequency domain, the
first-order 2D Hilbert transform is obtained with the multiplication of
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H1
x(u) = i · x

||u|| , H1
y (u) = i · y

||u|| , u = (x, y) ∈ C\{(0, 0)} (1)

with i =
√−1. For the calculation of the 2D analytic signal, higher order Hilbert

transforms are used [28]. The Fourier multipliers of the second-order Hilbert
transform 1 are

H2
xx(u) = − x · x

||u||2 , H2
xy(u) = − x · y

||u||2 , H2
yy(u) = − y · y

||u||2 , (2)

again with u = (x, y) ∈ C\{(0, 0)}. In contrast to [28], we do not present the
formulas of the Hilbert transforms in spatial but in frequency domain, which is
more versatile for filtering, see section 2.2. Throughout the article we use upper
case letters for filter and signals in frequency domain, and lower case ones for
their representation in spatial domain.

2.1 Structural and Geometrical Features

The proposed extension of the 2D analytic signal is obtained by an embedding in
3D projective space. This allows for a differentiation of geometrical features (local
orientation, local apex) and structural features (local phase, local amplitude).
The filtered signal Fp, the first-order Hilbert transformed signals Fx, Fy, and the
second-order Hilbert transformed signals Fxx, Fxy, Fyy are calculated with the
bandpass filter B and the pointwise multiplication � in frequency domain as

⎡
⎣

Fp

Fx

Fy

⎤
⎦ =

⎡
⎣

B � F
H1

x � B � F
H1

y � B � F

⎤
⎦ and

⎡
⎣

Fxx

Fxy

Fyy

⎤
⎦ =

⎡
⎣

H2
xx � B � F

H2
xy � B � F

H2
yy � B � F

⎤
⎦ . (3)

We illustrate the Hilbert transforms in frequency domain multiplied with log-
Gabor bandpass filters in figure 1. In order to enable an interpretation of second-
order Hilbert transformed signals in projective space, an isomorphism between
the Hesse matrix and a vector valued representation is used [28], leading to
fs = 1

2 [fxx + fyy], f+ = fxy, and f+− = 1
2 [fxx − fyy].

Finally, the local features are calculated as follows. The apex angle α, which
differentiates between features of different intrinsic dimensionality, is

α = arccos

√
f2
+ + f2

+−
||fx|| . (4)

With the apex angle, the homogeneous signal component fh of the signal fp in
projective space is defined as

fh =

√
1 + cosα

2
. (5)

1 We thank the authors of [28] for discussions and comments on the correct formulas.
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Fig. 2. Log-Gabor filter bank consisting of 5 filters (red) and ultrasound signal spec-
trum (x-axis: frequency in MHz). Ultrasound acquisition frequency: 3.3 MHz.

The local orientation θ, local phase φ, and local amplitude a are calculated with

θ =
1
2

arctan
f+

f+−
, (6)

φ = atan2
(√

[f−1
h fx]2 + [f−1

h fy]2, fp

)
, (7)

a =
1
2

√
f2

p + [f−1
h fx]2 + [f−1

h fy]2. (8)

For i1D signals, the homogeneous component is fh = 1, and the formulas above
reduce to the ones known from the monogenic signal.

2.2 Frequency Selection

Each signal f can be described with the Fourier series, decomposing the signal
into components of different frequencies, each one having its own phase and
amplitude. The direct application of the Hilbert transform on the original signal,
which presents an accumulation of local signals from different frequencies, does
therefore not adequately extract local features. Theoretically, we would need to
calculate the analytic signal for infinitely narrow bandwidths, i.e., Dirac deltas
in the frequency domain. Following the uncertainty principle this results in filters
with global support. Bandpass filters present appropriate approximation for a
localization in spatial and frequency domain.

Felsberg et al . [11] apply the difference of Poisson kernels for frequency se-
lection. An interesting property of the Poisson filter is that it creates a linear
scale-space [12]. Another filter that is commonly applied, especially in ultra-
sound, is the log-Gabor filter [4,15,16,21,26]. Also in our analysis on ultrasound
images, we achieved better results with the log-Gabor filter so that we concen-
trate on it in the following. A drawback of the log-Gabor filter is, however, that
it has no analytic expression in the spatial domain. This is also the reason why
we presented the Hilbert transforms in equations (1) and (2) in frequency and
not in spatial domain, as it is done in [28].
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Fig. 3. Exemplar ultrasound processing pipeline for RF to B-mode conversion

Important for the design of the filter bank is to create filters, so that the
transfer function of each filter overlaps sufficiently with its neighbors, in order
to have a uniform coverage of the spectrum. A filter bank with five log-Gabor
filters is illustrated in figure 2. A study of alternative bandpass filters is presented
in [4]. For the further analysis, it is either possible to focus on the signal at one
specific scale, or accumulate all responses from various scales, as it is e.g. done
for the phase congruency [19].

3 2D Analytic Signal on RF Ultrasound

The pipeline of the RF to B-mode conversion consists of multiple steps, in-
cluding amongst others demodulation, non-linear intensity mapping, and fil-
tering [17,30], see figure 3. The demodulation is one of the central parts and
extracts the information-bearing signal from a modulated carrier wave. In ul-
trasound processing, the demodulation is commonly performed by an envelope
detection. Hereby, the amplitude of the analytic signal is calculated for each of
the 1D scan lines separately. Interestingly, calculating the amplitude of the 1D
analytic signal is equivalent to the instantaneous amplitude. In the literature of
ultrasound imaging, it is noted that the quality of ultrasound images can be
increased by multi-frequency decomposition and compounding of the received
signal, simply referred to as frequency compounding [6]. This is equivalent to the
local amplitude estimation. This constitutes an interesting analogy, between the
advantages of the frequency compounded signal to the normal one, on the one
hand, and the advantage of the local amplitude in comparison to the instanta-
neous amplitude, on the other hand. We have neither seen this analogy noted
in the literature before, nor the application of local amplitude and local phase
techniques to RF data.

In contrast to the usually separate processing of each scan line, we consider
all scan lines at once and construct the 2D analytic signal to estimate the local
amplitude. This enables an improved envelope detection because the signal is
analyzed in its 2D context by also considering information in lateral direction.
The balance between influence from lateral and axial direction can be adjusted
by the bandwidth in each direction of the bandpass filter, where the smaller
spacing in axial direction should be considered accordingly.

3.1 Envelope and B-Mode Results

We perform experiments on multiple RF images acquired from the neck with a
linear transducer at 3.3 MHz. The sampling frequency of the RF data is 40 MHz.
We compare the envelope detection for: i) 1D analytic signal (AS), ii) 1D analytic
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(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Fig. 4. Magnified region of envelope detected 2D image for various envelopes

(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Fig. 5. Magnified regions of images after log-compression

signal with filter bank (ASF), iii) monogenic signal (MS), and iv) monogenic
signal with filter bank (MSF), v) 2D AS, and vi) 2D ASF. Exemplarily, we
show the frequency spectrum of one scan line together with the log-Gabor filter
bank in figure 2. We present magnified regions of the various envelope images
in figure 4. Note that we do not show the results of the MS due to limitation of
space and better results for 2D AS. However, we include them into the analysis of
noise statistics in section 3.2. We can clearly observe that the 2D analytic signal
leads to a more accurate and consistent extraction of structures. This becomes
particularly clear on the circular structure on the top left, which appears rather
ellipsoidal on the estimates from the 1D analytic signal. We also note the positive
influence of the filter bank for the estimation of the 2D analytic signal.

We perform an RF to B-mode conversion of local amplitude images a with
a log-compression including a translation of 25, log(a + 25). The results for
the various envelopes are presented in figure 5. The B-mode image resulting
from the 2D analytic signal clearly shows more consistent structures and less
noise. Typically, further filtering steps are applied to the log-compressed im-
age to improve its visual appearance. These processing steps are proprietary to
the manufacturer and generally not publicly accessible. Ultrasonix (Redmond,
Canada), however, distributes a particular research system with a specific SDK
including their post-processing filter, called MUCRO. We apply MUCRO to the
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(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Fig. 6. Magnified regions of images after log-compression and MUCRO

log-compressed images, with the results shown in figure 6. Even after the ap-
plication of MUCRO, the advantages of the images from the 2D analytic signal
are clearly visible. This is not self-evident because the post-processing methods
are designed to be applied to 1D envelope detected images, still leaving room
for improvement by adapting the post-processing to 2D envelope estimation. Fi-
nally, one of the reasons for applying the post-processing filtering is to establish
consistency between scan lines, which we already achieve by the 2D envelope
detection.

3.2 Analysis of Envelope Statistics

Next to the visual assessment of the 2D envelope detection, we also analyze the
statistical properties of the data. Different statistical models have been proposed
to model ultrasound data. Among them there is Rician [23], pre-Rician K [18],
Generalized K-distribution, homodyned K-distribution as well as Rician Inverse
of the Gaussian [9]. Common to all these distributions is the inherent complexity,
limiting its practical applicability. In order to address this issue, the Nakagami
distribution [22] was proposed, because it admits an explicit analytical expres-
sion. It is used in various applications to model backscatter characteristics of
US envelope data for segmentation and classification, see [8,24] and references
therein. In the following, we analyze the effects of the 2D envelope detection on
the speckle statistics choosing the Nakagami model. In particular, we quantify
the impact of the 2D analytic signal with goodness-of-fit (GOF) tests, and show
the potential for the aforementioned applications based on example images.

The Nakagami distribution N (x | μ, ω) belongs to the exponential family and
is controlled by two parameters, μ and ω, specifying shape and scale respectively

N (x | μ, ω) =
2μμx2μ−1

Γ (μ)ωμ
exp

(
−μ

ω
x2

)
, ∀x ∈ R+. (9)

A goodness-of-fit test evaluates if the data d1, . . . , dn, under the assumption of
i.i.d. samples, comes from the given theoretical probability distribution p [7].
Note that conventional GOF tests are restricted to the case of single distribu-
tions. For inhomogeneous regions in the image, however, a mixture of Nakagami
is more appropriate, see figure 8 for an illustration of a misfit of a single Nak-
agami to mixture Nakagami data as well as a perfect mixture fit. Consequently,
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(a) Neck Image with Sample Distributions
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(b) Boxplot of P-Values

Fig. 7. Left: RF image and distribution estimation of two areas. Region 1 contains
a mixture of Nakagami, region 2 a single Nakagami. Whereas MLE can fit nicely in
region 2 (d) it expectedly performs poorly in region 1 (c), that can only be represented
properly by mixture (b). Right: Box plot of P-values for different envelope detections.

we can only achieve good results with the GOF test on homogeneous image re-
gions. The mixture case has to be further evaluated, with similar results to be
expected.

For the GOF test, the range of the data is partitioned into M bins βi, i =
1, . . . , M , with Ni and the number of samples per bin. Moore [7] suggests to
divide the data into M = 2n

2
5 bins. Furthermore, we assume the bins to be

equiprobable as suggested in [3]. In this regard, we let pi be the integral of the
distribution in the range βi given the parameters of the distribution θ = {μ, ω}

pi =
∫

βi

p(x | θ)dx. (10)

Hence, pi expresses the likelihood of a sample to be in the bin βi (identical for
all bins). The test statistics underlying the GOF test is the sum of differences
between observed and expected outcome frequencies

X2 =
M∑
i=1

Ni − npi

npi
. (11)

This yields a quadratic form in Ni that has approximately a χ distribution
with M − N − 1 degrees of freedom and N = 2 the number parameters of the
distribution. In order to assess the GOF quantitatively, we employ the P-value
bases hypothesis test. The P-value serves as an indicator of how likely the null
hypothesis H0 is true. In our case, H0 is the hypothesis that the observations
are Nakagami distributed, leading to the following calculation of the P-value

P =
∫ ∞

X2
χ2(M − N − 1)dx, (12)

employing equation (11) as the lower bound of integration.
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(a) 1D AS (b) 1D ASF (c) MS (d) MSF (e) 2D AS (f) 2D ASF

Fig. 8. The P-values are calculated for all patches of an envelope image. Pixel bright-
ness indicates P-value. We perform the calculation for various envelope detection tech-
niques. Comparing the P-value images to the B-mode image in figure 7(a), we see that
the bright regions correspond to homogeneous regions in the US image.

3.3 Rao-Robson Statistic

Given the data, we first have to estimate the parameters μ, ω of the Nakagami
distribution before the GOF test is performed. This is, however, opposing the
general assumption that the parameters of the distribution are a-priori given
before the test is performed. Therefore, another quadratic form in Ni has to be
used, with the Rao-Robson statistic being one possibility [7]. Considering the
parametric form of the distribution p(x|θ) and the maximum likelihood estimate
θ̂, the Rao-Robson statistic is

RR = V �(θ̂)Q(θ̂)V (θ̂) (13)

with

V (θ) =
Ni − npi

(npi)1/2
(14)

Q(θ) = I + D(θ)[J(θ) − D�(θ)D(θ)]−1D�(θ) (15)

Dij(θ) = pi(θ)
1
2
∂pi(θ)
∂θj

(16)

J(θ) is the N ×N Fisher information matrix and I is an M ×M identity matrix.
The Rao-Robson statistic is χ2 distributed with M −N − 1 degrees of freedom,
leading to P-values computed using

P =
∫ ∞

RR

χ2(M − N − 1)dx (17)

with the Rao-Robson statistic RR as lower bound of integration.

3.4 Statistical Results

We perform the Rao-Robson GOF test on local patches of size 180× 20, densely
throughout the image. Plotting the results for all patches, creates therefore a
new image with the intensity values being the P-values. We show these images
in figure 8 for the various envelope detections. The brighter the images, the
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higher the P-values, and consequently the better for statistical applications be-
cause we achieve better fits. We note that the bright regions are corresponding
to the homogeneous areas in the ultrasound image because only these areas are
appropriately modeled with a single distribution, as discussed previously. Addi-
tionally, we calculate the statistics of the P-values, visualized in the box plot of
figure 7(b). The red line indicates the median and the box is constructed from
the interquartile range. Our results therefore show that the envelope detection
without the filter bank produces better fits, which makes sense, because log-
Gabor filters influence the distribution. More importantly, however, we note the
improvement from 1D AS to MS, and further from MS to 2D AS. This shows on
the the one hand, the advantage of applying 2D Hilbert transforms in contrast
to 1D ones, and on the other hand, the advantage of the 2D analytic signal in
contrast to the monogenic signal. This confirms the visually improved results for
2D envelope detection from the previous section.

4 2D Analytic Signal on B-Mode Images

Next to the benefits of the 2D analytic signal for the demodulation of RF data,
it also allows for a more accurate estimation of local features on B-mode im-
ages [28]. This has the potential to increase the quality of follow-up applications
such as registration [15,20,26,33], segmentation[16], and detection [21], that use
the local features as input. To demonstrate this, we calculate the local orienta-
tion on B-mode images showing a biopsy needle. In figure 9, we illustrate the
local orientation that is estimated from the monogenic signal and the 2D ana-
lytic signal, both with filtering. The estimation from the monogenic signal shows
no consistent orientation information in the region of the needle. In contrast, the
improved concept of the 2D analytic signal indicates a consistent result.

Fig. 9. Ultrasound image with biopsy needle (left). Calculated local orientation for
monogenic signal (middle) and 2D analytic signal (right).

5 Conclusion

We demonstrated that the application of the 2D analytic signal has multiple
advantageous for RF and B-mode data. The demodulation of RF signals with
the 2D analytic signal enables a more consistent extraction of structures, because
the signal is analyzed in its natural 2D context. We further showed that the
improved envelope detection enables the creation of B-mode images of enhanced
quality. To validate this, we applied a proprietary post-processing filtering for
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ultrasound on the log-compressed images and compared the result of 1D and
2D analytic signal. Moreover, we validated the improved statistical properties of
envelope data resulting from the 2D analytic signal by performing goodness-of-
fit tests to a Nakagami distribution. Finally, the advanced signal model of the
2D analytic signal leads to benefits in the estimation of local features in B-mode
images, as we have illustrated for the case of needle detection.

For the demodulation, we focused on scans from a linear transducer. For
curved linear transducers, the application of 2D Hilbert transforms without a
previous scan conversion can be achieved with the polar Fourier transform [2].
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