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Abstract. An alternative method for diagnosing malignant lung nod-
ules by their shape rather than conventional growth rate is proposed.
The 3D surfaces of the detected lung nodules are delineated by spheri-
cal harmonic analysis, which represents a 3D surface of the lung nodule
supported by the unit sphere with a linear combination of special ba-
sis functions, called spherical harmonics (SHs). The proposed 3D shape
analysis is carried out in five steps: (i) 3D lung nodule segmentation
with a deformable 3D boundary controlled by two probabilistic visual
appearance models (the learned prior and the estimated current appear-
ance one); (ii) 3D Delaunay triangulation to construct a 3D mesh model
of the segmented lung nodule surface; (iii) mapping this model to the
unit sphere; (iv) computing the SHs for the surface, and (v) determining
the number of the SHs to delineate the lung nodule. We describe the
lung nodule shape complexity with a new shape index, the estimated
number of the SHs, and use it for the K-nearest classification to distin-
guish malignant and benign lung nodules. Preliminary experiments on
327 lung nodules (153 malignant and 174 benign) resulted in the 93.6%
correct classification (for the 95% confidence interval), showing that the
proposed method is a promising supplement to current technologies for
the early diagnosis of lung cancer.
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1 Introduction

Pulmonary nodules are the most common manifestation of lung cancer and are
the principal cause of cancer-related deaths [16]. Fast and accurate classification
of the nodules is of major importance for medical computer-aided diagnostic
systems (CAD). A nodule is an approximately spherical volume of higher-density
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tissue visible in an X-ray lung image. Large malignant nodules (generally defined
as greater than 1 cm in diameter) are easily detected with any traditional imaging
equipment and are then diagnosed by needle biopsy or bronchoscopy. However,
diagnostic options for small malignant nodules are limited due to difficulties in
accessing them, especially if they are located deep in the tissue or away from the
large airways. Therefore, additional imaging and CAD techniques are needed.
The popular direction of detecting small cancerous nodules is to analyze their
growth rate over time. This paper introduces a new approach to characterize
detected nodules based on their shape.

Related work: A great deal of work has been published regarding the use-
fulness of morphologic features for discriminating malignant from benign pul-
monary nodules on computed tomography (CT) and to a lesser extent, chest
radiographs. Several studies have shown a correlation between different nodule
shape characteristics and underlying pathology. For example, Furuya et al. [7] an-
alyzed the margin characteristics of 193 pulmonary nodules on high-resolution
CT and subjectively classified them as one of several types, including round,
lobulated, densely spiculated, ragged, and halo. They found a high level of ma-
lignancy among the lobulated (82%), spiculated (97%), ragged (93%), and halo
nodules (100%), while 66% of the round nodules proved to be benign.

Automatically extracted features have also been shown to correlate with un-
derlying malignancy. Kawata et al. [10] quantified the surface curvature and
degree of surrounding radiating pattern in biopsy-proven benign and malignant
nodules, and compared the resulting feature maps. Their results showed good
separation of the feature maps between the two categories. Similarly, fractal
analysis has been used to quantify the nodule margin characteristics of benign
and malignant nodules. Kido et al. [12] used 2D and 3D fractal dimensions to an-
alyze the lung-nodule interface in a series of 117 peripheral pulmonary nodules of
various underlying pathology including benign hamartomas, tuberculomas, and
pneumonias as well as malignant diagnoses including brochogenic carcinomas.
They noted statistically significant differences between the 2D fractal dimen-
sions of hamartomas and all other nodules, as well as differences between the 3D
fractal dimensions pneumonias and tuberculomas and bronchogenic carcinomas.
Although none of these studies directly assessed the accuracy of their methods
in predicting a diagnosis, they support the notion that nodule shape can po-
tentially be used by automated systems to distinguish benign from malignant
nodules.

Several groups have designed CAD systems with the goal of predicting a diag-
nosis based on features extracted from CT or chest radiographs. In general, they
share common schema, first extracting features from the images, then designing
and using an automatic classifier to categorize nodules based on these features,
and lastly evaluating the performance of the system with receiver operating
characteristics (ROC) analysis. The CAD systems differ in the specific extracted
features and the type of classifier used, with linear discriminant classifiers (LDC)
and neural networks (NN) being the most common. Below, LDCs-based classifier
systems will be discussed followed by NN-based classifier systems.
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Kawata and colleagues [11] designed a CT-based CAD system that classi-
fied pulmonary nodules based on a combination of their curvature index and
the relationship of the nodules to their surrounding features. Mori et al. [13]
also designed a CAD system using a curvedness index in combination with dy-
namic contrast-enhanced CT in order to evaluate temporal change as a possible
discriminating feature of benign and malignant nodules.

One of the early neural network based CAD systems was developed by Gurney
and Swensen [8]. They compared two systems, one using a neural network based
classifier and one using a Bayesian classifier. Both systems used a combination of
subjectively evaluated clinical and radiological characteristics including border
smoothness, spiculation and lobulation.

In summary, the aforementioned existing approaches show the following
limitations:

– Most of them classify the lung nodules based on extracted 2D features (e.g.,
round, lobulated, ragged, and halo, etc.) and they did not take into account
the 3D features of lung nodules.

– Most of them did not provide a quantitative measure that has the ability to
describe the shape complexity of detected lung nodules.

– Most of the existing features (e.g., curvature, round, etc.) depend on the
accuracy of the used nodule segmentation algorithm which make them are
difficult for clinical practitioners to use.

This work aims to address these limitations in a way that will make evaluating
small lung masses more consistent.

2 Methods

In this work, we propose a novel shape-based approach for the analysis of lung
nodules variability between malignant and benign nodules (see Fig. 1). In this
paper we will focus on the steps from 2 to 5 and the first step is shown in detail
in [4].

2.1 Lung Nodules Segmentation

Accurate lung nodules segmentation from 3D LDCT images is a challenging
problem because the intensities of the lung nodules and surrounding tissues (e.g.,
blood vessels, chest, etc.) are not clearly distinguishable. To overcome this prob-
lem, we follow our approach introduced in [6], which depends on using a conven-
tional 3D parametric deformable boundary [9], but control its evolution with two
probabilistic visual appearance models, namely, a learned lung nodule appear-
ance prior and a current appearance model of the image to be segmented. The
prior is a 3D Markov-Gibbs random field (MGRF) model of the lung nodules’
intensities with translation- and rotation-invariant pairwise voxel interaction,
being learned analytically based on developing a new maximum likeli-
hood estimator from thevtraining data. The current appearance is modeled
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Fig. 1. Proposed shape-based system for early diagnosis of malignant nodules

by a mixed marginal distribution of the voxel intensities in both the lung nodule
and surrounding tissues. To extract the voxel-wise model of the current nodule
appearance, the mixture is precisely approximated with a linear combination of
discrete Gaussians (LCDG) [3] and automatically separated into the lung nodule
and background LCDG models. Let (x, y, z) be Cartesian 3D point coordinates.
A conventional parametric deformable surface, B(P1, . . . ,PK), specified by K
control vertices Pk = (xk, yk, zk), evolves in the directions that minimize its
energy, E, depending on internal, ζint (B), and external, ζext (B), forces [9]:

E = Eint + Eext ≡
∫
B

(ζint (B) + ζext (B)) dB (1)

In this paper, we introduce a new type of external energy that depends on
both the learned prior and the current (on-going) appearance model. Let Q =
{0, 1, . . . , Q−1} and L = {nl, bg} be finite sets of image intensities (gray values)
and region labels, respectively. Let a finite 3D arithmetic lattice R = [(x, y, z) :
x = 0, . . . , X − 1; y = 0, . . . , Y − 1, z = 1, . . . , Z − 1] support a 3D image g :
R → Q and its region map m : R → L. The label, mx,y,z, associates the voxel,
gx,y,z, with the lung nodule or the background. To reduce the impact of global
contrast and offset deviations of intensities due to different sensors, each input
3D image is normalized by mapping its signal range [qmin, qmax] to the maximal
range of [0, 255].

To consider the normalized images as samples of a prior MGRF model but ex-
clude any image alignment before the segmentation, we use a generic translation-
and rotation-invariant MGRF with only voxel-wise and central-symmetric
pairwise voxel interaction. The latter is specified by a set N of characteristic
central-symmetric voxel neighborhoods {nν : ν ∈ N} on R and a corresponding
set V of Gibbs potentials, one per neighborhood. A central-symmetric neigh-
borhood nν embraces all voxel pairs such that the (x, y, z)-coordinate offsets
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between any voxel (x, y, z) and its neighbor (x′, y′, z′) belong to an indexed
semi-open interval [dν,min, dν,max); ν ∈ N ⊂ {1, 2, 3, . . .} of the inter-voxel dis-
tances: dν,min ≤ √

(x − x′)2 + (y − y′)2 + (z − z′)2 < dν,max.

Learning the appearance prior. Let S = {(gt.mt) : t = 1, . . . , T} be a train-
ing set of 3D images with known region maps. Let Rt = {(x, y, z) : (x, y, z) ∈
R ∧ mt;x,y,z = nl} denote the part of R supporting lung nodule in the t-th
training pair (gt, mt); t = 1, . . . , T . Let Cν,t be a family of voxel pairs in R2

t with
the co-ordinate offset (ξ, η, γ) ∈ nν in a particular neighborhood. Let Fvx,t and
Fν,t be empirical marginal probability distributions of voxel intensities and of in-
tensity co-occurrences, respectively, in the training lung nodule from gt: Fvx,t =[
fvx,t(q) = |Rt,q|

|Rt| : q ∈ Q
]

and Fν,t =
[
fν,t(q, q′) = |Cν,t;q,q′ |

|Cν,t| : (q, q′) ∈ Q2
]

where Rt,q = {(x, y, z) : (x, y, z) ∈ Rt ∧ gx,y,z = q} is a subset of voxels sup-
porting the intensity q and Cν,t;q,q′ is a subset of the voxel pairs cξ,η,γ(x, y, z) =
((x, y, z), (x+ ξ, y +η, z +γ)) ∈ R2

t supporting the intensity co-occurrence (q, q′)
in the training lung nodule from gt. Let Vvx = [Vvx(q) : q ∈ Q] be a poten-
tial function of voxel intensities that describes the voxel-wise interaction. Let
Vν = [Vν(q, q′) : (q, q′) ∈ Q2] be a potential function of intensity co-occurrences
in the neighboring voxel pairs that describes the pairwise interaction in the
neighborhood nν ; ν ∈ N. The MGRF model of the t-th training pair is specified
by the joint Gibbs probability distribution on the sublattice Rt:

Pt =
1
Zt

exp
(|Rt|

(
VT

vxFvx,t +
∑

ν∈Nρν,tVT
ν,tFν,t

))
(2)

where ρν,t = |Cν,t|/|Rt| is the average cardinality of nν with respect to Rt.
To identify the MGRF model in Eq. (2), the Gibbs potentials are approxi-

mated analytically:

Vvx,nl(q) = log fvx,nl(q) − 1
Q

∑
κ∈Q

log fvx,nl(κ) for q ∈ Q; and (3)

Vν,nl(q, q′) = λρν (fν,nl(q, q′) − fvx,nl(q)fvx,nl(q′)) for (q, q′) ∈ Q2 (4)

where the common factor λ is also computed analytically.

Modeling the current appearance with LCDG. Non-linear intensity varia-
tions in a data acquisition system due to scanner type and scanning parameters
affect visual appearance of lung nodules in each data set g to be segmented.
Thus in addition to the learned appearance prior, an on-going lung nodule ap-
pearance within a current position of the evolving boundary B in g is modeled
with its marginal intensity distribution. The whole marginal distribution of the
voxel intensities within the boundary is considered as a dynamic mixture of two
probability models that characterize the lung nodule and its background, re-
spectively. The mixture is partitioned into these two LCDG models by using the
EM-based approach detailed in [3].

Boundary evolution under the appearance models. Let pvx,nl(q) be the
marginal probability of the intensity q in the estimated current LCDG model
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for the lung nodule. To guide the boundary evolution, we combine in the ex-
ternal energy term of Eq. (1), both the learned prior and the on-going nodule
appearance model as follows:

ζext (P = (x, y, z)) = −pvx,nl(gx,y,z)πp(gx,y,z|S) (5)

Here, πp(q|S) is the prior conditional probability of q, given the fixed current
intensities in the characteristic central-symmetric neighborhood of P for the
MGRF prior model of Eq. (2):

πP(gx,y,z|S) = exp(EP(gx,y,z|S))/
∑

q∈Q exp(EP(q|S))

where EP(q|S) is the conditional Gibbs energy of pairwise interaction for the
voxel P provided that an intensity q is assigned to the lung nodule while the
other current intensities in all its neighboring voxels over the characteristic neigh-
borhoods nν ; ν ∈ N, remains fixed:

EP(q|S) = Vvx,nl(q) +
∑

ν∈N

∑
(ξ,η,γ)∈nν

(Vν,nl(gx−ξ,y−η,z−γ , q) + Vν,nl(q, gx+ξ,y+η,z+γ))

After the changes in the total energy, EB, of the 3D region RB ⊂ R inside
the evolving boundary B:

EB =
∑

∀P=(x,y,z)∈RB

EP(gx,y,z|S) (6)

stop, the evolution terminates.

2.2 Spherical Harmonics (SHs) Shape Analysis

Spectral SH analysis [1] considers 3D surface data as a linear combination of
specific basis functions. In our case, the surface of the segmented lung nodule is
approximated first by a triangulated 3D mesh (see Fig. 2) built with an algo-
rithm by Fang and Boas [5]. Secondly, the lung nodule surface for each subject
is mapped for the SH decomposition to the unit sphere. We propose a novel
mapping approach, called “Attraction-Repulsion” that calls for all mesh nodes
to meet two conditions: (i) the unit distance of each node from the lung nodule
center as shown in Fig. 3, and (ii) an equal distance of each node from all of its
nearest neighbors as shown in Fig. 4.

To detail our Attraction-Repulsion Algorithm (see its summary in Algorithm 1),
let τ denote the iteration index, I be the total number of the mesh nodes (in all the
experiments below I = 4896 nodes), and Pτ,i be the Cartesian coordinates of the
surface node i at iteration τ ; i = 1, . . . , I. Let J be the number of the neighbors
for a mesh node (see e.g. Fig. 4) and dτ,ij denote the Euclidean distance between
the surface nodes i and j at iteration τ (as shown in Fig. 4(b)), where i = 1, . . . , I
and j = 1, . . . , J . Let Δτ,ji = Pτ,j − Pτ,i denote the displacement between the
nodes j and i at iteration τ . Let CA,1, CA,2, CR be the attraction and repulsion
constants, respectively, that control the displacement of each surface node.
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Fig. 2. Generating a 3D mesh for the
lung nodule surface from a stack of suc-
cessive segmented 2D LDCT slices

Fig. 3. 3D illustration of the unit
distance from all surface nodes to
the center of the lung nodule

(a) (b)

Fig. 4. 2D illustration of the neigh-
bors rearrangement: initial (a) vs.
final equidistant locations (b) in all
the directions.

(a) (b) (c)

Fig. 5. Lung nodule mesh (a),
its smoothed version (b), and the
Attraction-Repulsion mapping to the
unit sphere (c)

Algorithm 1: Attraction-Repulsion Algorithm

Initialization
– Construct the 3D lung nodule mesh (Fig. 5,a).
– Smooth it by the Laplacian filtering (Fig. 5,b).
– Initialize the mapping of the smoothed mesh to

the unit sphere.
Repeat

– For i = 1 −→ I
• Attraction:

∗ Select a node to process.
∗ Update the node using Eq. (7).

• Repulsion:
∗ Update the node using Eq. (8).

– End (all nodes in the mesh are shifted and back-
projected onto the unit sphere).

While changes in the node positions occur (Fig. 5,c).

The starting attraction step of the proposed mapping tends to center each
node Pi; i = 1, . . . , I, with respect to its neighbors by iteratively adjusting its
location:

P′
τ,i = Pτ,i + CA,1

J∑
j=1;j �=i

Δτ,jid
2
τ,ji + CA,2

Δτ,ji

dτ,ji
(7)



3D Shape Analysis for Early Diagnosis of Malignant Lung Nodules 779

where the factor CA,2 keeps the tightly packed nodes from collision and also
pushes the adjusted nodes away from their neighbors if a certain neighbor is
much closer than the others.

The subsequent repulsion step inflates the whole mesh by pushing all the
nodes outward to become evenly spaced after their final back-projection onto
the unit sphere along the rays from the center of the sphere. To ensure that
the nodes that have not been shifted will not collide with the altered node, the
location of each node Pi; i = 1, . . . , I, is updated before the back-projection as
follows:

P◦
τ+1,i = P′

τ,i +
CR

2I

I∑
j=1;j �=i

(
Δτ,ji

|Δτ,ji|2
)

(8)

where a repulsion constant CR controls the displacement of each surface node and
establishes a balance between the processing time and accuracy (e.g. a smaller
CR values guarantees that the node faces will not become crossed during the
iterations at the expense of the increased processing time). All the experiments
below were obtained with 0.3 ≤ CR ≤ 0.7.

The original lung nodule mapped to the unit sphere with the proposed
Attraction-Repulsion algorithm is approximated by a linear combination of SHs,
the lower-order harmonics being sufficient to represent more generic information,
while the finer details requiring the higher - order ones. The SHs are generated by
the solving an isotropic heat equation for the nodule surface on the unit sphere.
Let S : M → U denote the mapping of a nodule mesh M to the unit sphere
U. Each node P = (x, y, z) ∈ M mapped to the spherical position u = S(P) is
represented by the spherical coordinate u = (sin θ cosϕ, sin θ sinϕ, cos θ); where
θ ∈ [0, π] and ϕ ∈ [0, 2π) are the polar and azimuth angles, respectively. The SH
Yαβ of degree α and order β is defined as [2]:

Yαβ =

⎧⎪⎨
⎪⎩

cαβG
|β|
α cos θ sin(|β|ϕ) −α ≤ β ≤ −1

cαβ√
2
G

|β|
α cos θ β = 0

cαβG
|β|
α cos θ cos(|β|ϕ) 1 ≤ β ≤ α

(9)

where cαβ =
(

2α+1
2π

(α−|β|)!
(α+|β|)!

) 1
2

and G
|β|
α is the associated Legendre polynomial

of degree α and order β. For the fixed α, the polynomials Gβ
α are orthogonal

over the range [−1, 1]. As shown in [2], the Legendre polynomials are effective in
calculating SHs, and this is the main motivation behind their use in this work.

Finally, the lung nodule is reconstructed from the SHs of Eq. (9). In the case of
the SHs expansion, the standard least-square fitting does not accurately model
the 3D shape of the lung nodule and can miss some of the shape details that
discriminate between the malignant and benign lung nodules. To circumvent
this problem, we used the iterative residual fitting by Shen and Chung [15] that
accurately approximates the 3D shape of malignant and benign lung nodules.
As demonstrated in Fig. 6, the model accuracy does not significantly change for
the benign nodule from the 15 to 60 SHs, while it continues to increase for the
malignant nodule.
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Original mesh 1 SH 3 SHs 5 SHs 15 SHs 60 SHs

B

M

Fig. 6. 3D shape approximation for malignant (M) and benign (B) lung nodules

2.3 Quantitative Lung Nodule Shape Analysis

Our main hypothesis is that the shape of malignant nodules is more compli-
cated (e.g., with spiculation) if it is compared with the shape of benign nodules
which is simpler (smoothed shape) as shown in Fig. 6, so that more SHs have to
be used for accurate approximation of the shape of the malignant lung nodule.
Therefore, the number of the SHs after which there are no significant changes
in the approximations can be used as a new shape index quantifying the shape
complexity of the detected lung nodules. Due to the unit sphere mapping, the
original mesh for each nodule is inherently aligned with the mesh for the approx-
imate shape, and the sum of the Euclidean distances between the corresponding
nodes gives the total error between both the mesh models. As shown in Fig. 7,
the total error curves for the increasing number K of the SHs can be statistically
analyzed to differentiate between the subjects.

Fig. 7. Estimation of the shape index
from the total nodule approximation
error for malignant and benign
nodules

Fig. 8. The ROC curves for the proposed ap-
proach and the growth rate based diagnos-
tic approach. Note that ’GR’ stands for the
growth rate.
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3 Experimental Results and Conclusions

To justify the proposed methodology of analyzing the 3D shape of both ma-
lignant and benign nodules, the above proposed shape analysis framework was
pilot-tested on a database of clinical multislice chest LDCT scans of 327 lung
nodules (153 malignant and 174 benign). The CT data sets each have 0.7×0.7×
2.0 mm3 voxels, with nodule diameters ranging from 3 mm to 30 mm. Note that
these 327 nodules were diagnosed using a biopsy (our ground truth).

Segmentation results: Figure 9 illustrates results of segmenting pleural at-
tached nodules shown by axial, sagittal, and coronal cross sections. The pixel-
wise Gibbs energies in each cross section are higher for the nodules than for any
other lung voxels including the attached artery. Therefore, our approach sepa-
rates accurately the pulmonary nodules from any part of the attached artery.
The evolution terminates after 50 iterations because the changes in the total
energy become close to zero. The error of our segmentation with respect to the
radiologist “ground truth” is 1.86%. In total, our segmentation of the 327 nod-
ules has an error range of 0.29% – 2.17% with a mean error of 0.71%, and a
standard error deviation of 1.21%.

A

C

S
(a) (b) (c) (d)

Fig. 9. 3D segmentation of pleural attached nodules; results are projected onto 2D axial
(A), coronal (C), and saggital (S) planes for visualization: 2D profile of the original
nodule (a), pixel-wise Gibbs energies (b) for ν ≤ 11, our segmentation (c), and (d) the
radiologist’s segmentation.

Diagnostic results: The training subset for classification (15 malignant lung
nodules and 15 benign lung nodules) was arbitrarily selected among all of the 327
lung nodules. The accuracy of classification based on using K-nearest classifier
of both the training and test subjects was evaluated using the χ2-test at 95%
confidence level. At the 95% confidence level, the correctly classified 143 out of
153 malignant nodules (a 93.5% accuracy), and 163 out of 174 control subjects
(a 93.7% accuracy). The overall accuracy using the proposed 3D shape-based
CAD system for 95% confidence level is 93.6% in the first detection of lung
nodules. The classification based on traditional growth rate approach [14] over
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one year is 87 out of 153 malignant nodules (a 56.9% accuracy), and 114 out of
174 benign nodules (a 65.7% accuracy) at a 95% confidence level, these results
highlight the advantage of the proposed shape-based diagnostic approach.

Another way to measure and test the performance of the proposed diagnostic
system is to compute the receiver operating characteristic (ROC). Each point on
the graph is generated by using a different cut point (classification threshold).
Figure 8 shows the ROC of the two approaches; our proposed shape index based
diagnostic approach and the growth rate based diagnostic approach [14]. It is
clear from Fig 8 that the area under ROC curve of our present approach is
larger (Az = 0.9782) than the area under the ROC curve of the growth rate-
based diagnostic approach [14] (Az is 0.6757 for one year estimated growth rate).
The high sensitivity and specificity of the proposed approach is due to using the
estimated number of spherical harmonic to approximate the 3D shape of the
detected lung nodule as a new discriminatory feature which is more separable
than using the estimated growth rate.

As demonstrated in this paper, the preliminary results justify further elabora-
tion of the proposed alternative method for diagnosing malignant lung nodules.
Its novelty lies in using the shape of a segmented 3D nodule instead of the more
conventional growth rate as a reliable diagnostic feature. The shape is described
in terms of a linear combination of spherical harmonics (SHs).

The proposed nodule shape analysis could lead to more accurate, faster, and
more clinically useful diagnostics of detected pulmonary nodules without the
need for investigating their temporal development on the successive LDCT im-
ages of the same subject collected for a relatively long time. The present C++
implementation on the Intel quad processor (3.2GHz each) with 16 GB memory
and 1.5 TB hard drive with the RAID technology takes approximately 7 sec for
processing 30 mm lung nodules and less than 3 sec for processing 5 mm lung
nodules.
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