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Abstract. We propose a novel framework for rapid and accurate seg-
mentation of a cohort of organs. First, it integrates local and global image
context through a product rule to simultaneously detect multiple land-
marks on the target organs. The global posterior integrates evidence over
all volume patches, while the local image context is modeled with a local
discriminative classifier. Through non-parametric modeling of the global
posterior, it exploits sparsity in the global context for efficient detection.
The complete surface of the target organs is then inferred by robust
alignment of a shape model to the resulting landmarks and finally de-
formed using discriminative boundary detectors. Using our approach, we
demonstrate efficient detection and accurate segmentation of liver, kid-
neys, heart, and lungs in challenging low-resolution MR data in less than
one second, and of prostate, bladder, rectum, and femoral heads in CT
scans, in roughly one to three seconds and in both cases with accuracy
fairly close to inter-user variability.

Keywords: Local & global context, context integration, multi-landmark
detection, discriminative learning, multi-organ segmentation.

1 Introduction

Algorithms for segmenting anatomical structures in medical imaging are often
targeted to individual structures [1–4]. Instead, when the problem is posed as the
joint segmentation of multiple organs, constraints can be formulated between the
organs, e.g., non-overlapping, and the combined formulation allows for a richer
prior model on the joint shape of the multiple structures of interest. Such multi-
organ segmentation is often posed with atlas-based or level-set based formulation
due to the ease at which geometric constraints can be modeled [5, 6].

However, level set methods are computationally demanding, and still require
a decent initialization so as to not fall into a local minimum. Discriminative
learning-based methods are often an alternative approach to initializing such
segmentations (e.g., [5]), but, again, these methods often treat the initialization
of each organ as an independent problem. While solving the single organ seg-
mentation problem with learning-based methods can be fast (e.g., [2]), in order
to achieve efficient multi-object segmentation, often a tree-like search structure
has to be imposed on the detection order of the structures [7, 8].
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The sequential ordering is used to avoid evaluating local classifiers everywhere
in the image. However, as shapes of adjacent structures are often correlated, the
appearance of neighboring image patches are often consistent, meaning image
patterns commonly associated with one organ, say the liver, are likely to appear
next to the right kidney. Instead of modeling dependency among structures at
the algorithm level, e.g., with generative models [7], the correlation between such
global image context and the shapes can be learned directly (e.g., [4, 9, 10]).

One method to utilize global contextual cues is to regress the position of the
organ bounding boxes from each voxel location in the image [4, 9, 10]. Others
suggested that this global information alone may not be accurate enough, and
further improved the accuracy using a cascade of locally trained regressors [11].

In this work, we propose a novel integration of both local and global dis-
criminative information for efficient multiple organ segmentation. Unlike other
learning-based approaches, we do not rely on a tree-like dependency structure of
organ detections to obtain an efficient detection algorithm. Instead, our global
image context is only sparsely sampled, allowing us to derive an efficient detec-
tion algorithm: global context is used to hypothesize locations that need to be
evaluated with the local discriminative classifier. Our non-parametric representa-
tion of global image context models correlations in the target shape, allowing us
to jointly localize landmarks on multiple target organs. We impose a constraint
on the distribution of allowable shapes, enabling us to initialize a likley shape
from only a few landmarks per organ. The initialized shape is then deformed
using learned discriminative boundary detector to better fit image appearance.
We demonstrate that the combination of local and global image context outper-
forms either local and global context alone, and illustrate the use of the proposed
joint landmark detection, robust shape initialization, and discriminative bound-
ary deformation to segment up to 6 organs in either CT or MR data in roughly
one to three seconds with segmentation in MR data taking less than one second.
The segmentation accuracy is fairly close to inter-user variability.

2 Method

We aim to segment C organ shapes, S = [S1, ...,SC ], given a volumetric image I.
We denote the set of all voxels in the image I by Ω and its size by |Ω|. We assume
that there exists a set of D corresponding landmarks, X = [x1, ...,xD], on the
multiple shapes S and decompose the problem into estimating (i) the landmarks
given the image using the posterior P (X|I) defined in §2.1 and (ii) the shapes
given the landmarks and the image using energy minimization in §2.2. We use
the notation [x, ...,x]D to represent repeating x in D times.

2.1 Joint Landmark Detection Using Context Integration

To jointly detect the landmarks, we integrate both local and global image context
using a product rule into one posterior probability P (X|I):
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P (X|I) = PL(X|I)PG(X|I), (1)

where PL(X|I) and PG(X|I) are local and global context posteriors, respectively.

Local Context Posterior. Though not necessarily true, we assume that the
landmarks are locally independent:

PL(X|I) =
D∏

i=1

PL(xi|I). (2)

For modeling PL(xi|I), we exploit the local image context to learn a discrimi-
native detector for landmark xi (using e.g. PBT [12]), that is,

PL(xi|I) = 1

Zi
ωL
i (+1|I[xi]), (3)

with I[xi] being the local image patch centered at xi, ω
L
i (+1|·) the local context

detector for landmark xi and Zi =
∑

x∈Ω ω
L
i (+1|I[xi]) is a normalizing constant.

Global Context Posterior. We integrate global evidence from all voxels in
Ω.

PG(X|I) =
∑

y∈Ω
PG(X|I,y)P (y|I) = |Ω|−1

∑
y∈Ω

PG(X|I[y]). (4)

In (4), we assume a uniform prior probability P (y|I) = |Ω|−1 and PG(X|I[y])
is the probability of the landmarks at X when observing the image patch I[y]
at a location y.

To learn PG(X|I[y]), we leverage annotated datasets and a ‘randomized’ K-
nearest neighbor (NN) approach [13]. For a complete set of training images with
annotated landmarks, we randomly form K subsets. From each subset of images
with corresponding landmarks, we construct a training database {(Jn, dXn)}Nn=1

consisting of N pairs of image patch J and relative shift dX in an iterative
fashion.

for n=1,...,N do

Randomly sample in the subset an image say J̃ with landmarks X̃;
Randomly sample a voxel location, say z, from Ω;
Set the image patch Jn = J̃[z];
Set the relative shift dXn = X̃− [z, ..., z]D.

end

For a test image patch I[y], we first find its NN Ĵk from each subset; this

way we find its K neighbors {Ĵ1, ..., ĴK} along with their corresponding shift
vectors {dX̂1[y], ..., dX̂K [y]}. How to efficiently find the NN for each subset is
elaborated later. We then simply approximate PG(X|I[y]) as

PG(X|I[y]) = K−1
∑K

k=1
δ(X− [y, ...,y]D − dX̂k[y]). (5)
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(a) (b) (c) (d)

Fig. 1. (a) An illustration of how image patches (green) predict the landmark location
using global context and Eq. (5) and then these predictions are combined with local
context at (blue) x. (b) Detection scores for a landmark on the top left of the liver in a
low resolution MR FastView 3D volume, where local context gives spurious responses.
(c) Global context gives a coarse localization. (d) The integration of local and global
detection gives a fine scale density.

Figure 1 graphically illustrates how the approach works. It also gives an example
of the local, global and joint posteriors. Even though the local detector may be
inaccurate, it is only being applied at locations predicted from the global context,
meaning it is possible to get a highly peaked posterior when integrating evidence
from local and global context.

MMSE and MAP Estimate for Landmark Location. The expected land-
mark location X̄, also the minimum mean square error (MMSE) estimate, is
computed as

X̄ =
∑

X
X P (X|I) =

∑
X
X PL(X|I)PG(X|I) (6)

=
1

K|Ω|
∑

X

∑
y∈Ω

K∑

k=1

X

D∏

i=1

1

Zi
ωL
i (+1|I[xi])δ(X − [y, ...,y]D − dX̂k[y]).

where Zi =
∑

x ω
L
i (+1|I[xi]) is a normalizing constant. Using the local indepen-

dence and vector decomposition, it can be shown that the expected location x̄i

for a single landmark is computed as

x̄i = Z−1K−1|Ω|−1
∑

y∈Ω

∑K

k=1
(y + dx̂k,i[y])ω

L
i (+1|I[y + dx̂k,i[y]]). (7)

where Z =
∑

y∈Ω

∑K
k=1 ω

L
i (+1|I[y+dx̂k,i[y]]) is a normalizing constant. Eq. (7)

implies an efficient scheme – evaluating the local detector only for the locations
predicted from the global context posterior instead of the whole image! Since
the predicted locations are highly clustered around the true location, this brings
the first significant reduction in computation.
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Fig. 2. Two BSP trees for different subsets of the training data are used to partition
the space into convex regions (e.g., the leafs), Aj , using a set of hyperplanes hi. Instead
of searching over all entries within a leaf of the tree to find an exact NN, we simply
store the average relative offset vector for the training samples that fell into the leaf.

Similarly, the maximum a posterior (MAP) estimate x̂i can be derived as

x̂i = argmax
x

ωL
i (+1|I[x])

∑

y∈Ω

K∑

k=1

δ(x− y − dx̂k,i[y]). (8)

Sparsity in Global Context. The global context from all voxels is highly
redundant as neighboring patches tend to predict nearby landmark locations.
Therefore, we can ‘sparsify’ the global context by constructing the subset Ω�

from the full voxel set Ω; for example, we can skip every other l voxels. This
brings the second significant reduction in computation complexity by O(l3)!

Efficient Approximate NN Search. Computing the expected landmark lo-
cation in (7) relies on the ability to compute the NN from the training database
of {Jn, dXn}Nn=1 for one subset of training images. The time and space effi-
ciency of this operation is influenced by two factors: the size of the database,
N , and the dimension of the points, D, in the database. With, for example
100 training volumes of dimension 1283, we have a potential database size of
N = 1283× 100 > 209 million. Furthermore, in order to have enough contextual
information, an image patch Jn, with size up to 323 voxels, is used, meaning
that the NN query must be performed in a high dimensional space of up to
D = 32768.

For efficiency, we relax the requirement of finding the exact nearest Euclidean
neighbor to that of finding an approximate NN. We then take a similar ap-
proach as local sensitive hashing [14] and build multiple hash indexes on the
data (Fig. 2). However, instead of using a hash function, we construct a ran-
dom Binary Space Partition (BSP) tree that is similar to a random projection
tree [15]. At each node of our BSP tree, we choose a random hyperplane to split
the data. Unlike random projection trees, which choose the split hyperplane uni-
formly random on a D-dimensional hypersphere, we restrict the hyperplanes to
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be Haar wavelets. We have two reasons for doing this: 1) Haar wavelets pro-
vide a class of features often used to discriminate appearance in classification
problems, and 2) any Haar feature can be instantaneously evaluated using an
integral image. Further, instead of storing all training sample patches in their
respective leaf nodes within the tree, we choose a single representative relative
shift vector–this way the space requirements are dependent on the size of the
tree instead of O(ND).

In our experiments, we typically formK = 10 subsets and hence train 10 BSP-
trees with each tree built up to depth 10. This means that an approximate NN
match for a single tree is computed using at most 10 Haar wavelet evaluations,
and all K = 10 approximate neighbors can be found in as little as 100 Haar
wavelet evaluations.

2.2 Shape Initialization Using Robust Model Alignment

An initial segmentation for each organ is then aligned to the sparse detected
landmarks through the use of a statistical model of shape variation. Here we use a
point distribution model, where each organ shape is represented as a mean shape
or mesh with M mesh nodes, V̄ = [v̄1, v̄2, . . . , v̄M ], plus a linear combination of
a set of N eigenmodes, Un = [u1,n,u2,n, · · ·uM,n], with 1 ≤ n ≤ N .

As a complete organ shape is characterized by only a few coefficients that
modulate the eigenmodes, the point distribution model can be used to infer a
shape from a sparse set of landmark points. Given a set of detected landmarks,
{xi}, the best fitting instance of the complete shape is found by minimizing the
following robust energy function:

(β, {an}) = argminβ,{an}
∑

i

ψ

(
‖xi − Tβ{v̄π(i) +

N∑

n=1

anuπ(i),n}‖2
)
+

N∑

n=1

a2n/λn

(9)
where the function π(i) maps the landmark xi to the corresponding mesh index in
V̄, the function Tβ{·} is a 9D similarity transform parameterized by the vector
β = [tx, ty, tz, θx, θy, θz, sx, sy, sz], and λn are the corresponding eigenvalues.
The first term measures the difference between a predicted shape point under a
hypothesis transformation from the detected landmark, and the second term is
a prior keeping the eigenmodes responsible for smaller variation closer to zero.
As we typically only have a few landmarks, and have a PCA model for a larger
number of vertices, using no prior term gives rise to an ill-posed problem. Finally,
ψ is a robust norm, reducing the effect of outliers. We use ψ(s2) = s.

2.3 Discriminative Boundary Refinement

Using the initialization from §2.2, a fine refinement of the points on the surface
mesh is obtained by iteratively displacing each vertex along its surface normal,
vi ← vi +niτ̂i. The best displacement for each point is obtained by maximizing
the output of a discriminative classifier [3]:
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Table 1. Accuracy (measured in mm) and timing results for the landmark detection
using local, global, and local + global context posterior

Global Local Local + Global

Spacing Time Median Time Median Time Median
Spacing Time Median Time Median Time Median

1 (5mm) 2.76s 25.0 ± 17.4 1.91s 16.4 ± 10.6 - -
5 (25mm) 0.92s 39.9 ± 33.4 - - 2.11s 12.9 ± 7.52
7 (35mm) 0.91s 54.1 ± 54.1 - - 0.91s 13.0 ± 7.56
15 (75mm) 0.89s 79.0 ± 85.6 - - 0.23s 14.1 ± 8.25

τ̂i = argmaxτiω
B(+1|vi + niτi). (10)

Here, ωB(+1|·) is the boundary detector that scores whether the point, vi+niτi,
is on the boundary of the organ being segmented. Regularity is incorporated in
the previously independent estimated displacements by projecting the resulting
mesh onto the linear subspace spanned by the linear shape model, as in the
active shape model [16].

3 Results

Our system was implemented in C++ using OpenMP and compiled using Visual
Studio 2008. In the experiments below, timing results are reported for an Intel
Xeon 64-bit machine running Windows Server 2008 and using 16 threads. We
illustrate the results on segmenting 6 organs in MR scans (§3.1) and 5 organs in
CT (§3.2).

3.1 Lungs, Heart, Liver, and Kidneys in MR Localizer Scans

We tested our approach on a challenging set of MR localizer scans acquired using
a fast continuously moving table technique (syngo TimCT FastView, Siemens).
Such scans are often used for MR examination planning to increase scan repro-
ducibility and operator efficiency. A total of 185 volumes having 5mm isotropic
spacing were split into a training set of 135 and test set of 50. This data is
challenging due to the low resolution, weak boundaries, inhomogeneous inten-
sity within scan, and varying image contrast across scans. For this example, we
used K = 10 NN. The local detectors were also trained on 5mm resolution using
a PBT [12] and a combination of Haar and image gradient features. A total of
33 landmarks were selected on the 6 organs, with 6 landmarks each on the liver
and the lungs, and 5 landmarks each on the kidneys and heart.

First, we demonstrate the effectiveness of integrating local and global context
with respect to accuracy and evaluation time. Table 1 illustrates median errors
for all landmark positions averaged over the testing set. For the local context
detector and local+global posterior, we used the MMSE estimate. While it is
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Fig. 3. An illustration of the landmarks in 3D and automatic segmentation results.
Our method is robust to a few failed landmarks.

possible to get better speed-up with a sparse sampling of the global context
when computing the expected value, we noticed that the MAP estimate gave
better results as we reported in the table. Obtaining the MAP estimate requires
populating a probability image and scanning through the image to get the MAP
estimate (this is proportional to the number of landmarks, which is why no
speedup is reported in the table). Besides, the accuracy of the global context
posterior suffers from sparse sampling, and even with dense sampling it still
performs worse than the local + global method. On the other hand, it is evident
that a sparser sampling of the volume has little impact on the accuracy of the
local+global method. The local classifier is computed using a constrained search
over the volume (e.g., using bounds for the landmark positions relative to the
image [2]), but achieves worse accuracy and is still slower than our combined
local+global posterior modeling.

The shape landmarks are used to infer the shape of all the organs (see Fig. 3).
We compare the resulting segmentation results at several phases to a state-of-the-
art hierarchical detection using marginal space learning (MSL) [2] that is known
as both fast and accurate. For the MSL setup, the kidneys were predicted from the
liver bounding box, meaning the kidney search range was more localized allowing
the detection to be faster (the lungs were predicted relative to the heart in a similar
manner). Table 2 illustrates the timing and accuracy results for the 50 unseen
test cases using both MSL and our method. The accuracy is gauged by symmetric
surface-to-surface distance. Figure 4 illustrates two qualitative results.

The fast landmark detection and robust shape initialization can provide an
approximate shape in as little as 0.33s (for spacing of 75mm, e.g., 15 voxels). The
improvement of our initialization on the liver and lungs over the MSL approach
is likely due to our use of more landmarks to capture more variations associated
with complex anatomies than MSL that fits shapes of varying complexities into
a rigid bounding box. On the other hand, for both kidneys with less variations
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Table 2. Accuracy (measured in mm) and timing for segmentation results using our
approach compared to the state-of-the-art MSL model on the MR FastView data

Detection & Shape initialization

Skip (mm) Time Liver R. Kidney L. Kidney R.Lung Heart L. Lung

MSL - 5.50s 9.21 ± 1.82 3.44 ± 1.16 3.08 ± 1.21 7.29 ± 1.64 5.98 ± 1.59 7.42 ± 1.71

L
o
ca
l+

G
lo
b
a
l

25mm 2.21 7.41±1.91 4.10±1.34 4.31±1.81 6.60±1.74 5.64±1.41 6.72±1.55
35mm 1.01 7.43±1.95 4.18±1.39 4.39±1.89 6.67±1.79 5.69±1.40 6.78±1.53
50mm 0.55 7.55±2.03 4.36±1.43 4.57±1.93 6.77±1.86 5.78±1.48 6.83±1.64
60mm 0.39 7.63±1.95 4.59±1.52 4.70±1.98 6.86±1.91 5.92±1.53 6.91±1.68
75mm 0.33 7.94±2.21 5.13±1.77 5.38±2.90 6.97±1.95 5.98±1.57 6.88±1.75

With boundary refinement

MSL - 6.36s 4.87 ± 1.46 2.26 ± 0.61 2.12 ± 0.68 3.67 ± 0.95 3.99 ± 1.36 3.55 ± 0.97

(B
S
P
)

25mm 2.89 4.07±0.99 2.33±0.68 2.41±1.61 3.56±0.96 4.02±1.50 3.35±0.83
35mm 1.60 4.08±0.99 2.37±0.69 2.47±1.72 3.57±0.98 4.02±1.52 3.35±0.83
50mm 1.13 4.09±1.01 2.37±0.73 2.48±1.66 3.57±0.95 4.06±1.62 3.36±0.83
60mm 0.97 4.08±1.00 2.42±0.79 2.42±1.57 3.57±0.97 4.07±1.63 3.35±0.84
75mm 0.89 4.17±1.14 2.51±1.00 2.84±2.51 3.57±0.95 4.11±1.64 3.37±0.83

Inter-user variability 4.07±0.93 1.96±0.43 2.10±0.51 3.79±0.36 4.54±0.88 3.52±0.63

in the shape but more in the appearance, MSL performs better as it considers
kidney as a whole. The discriminative boundary deformation significantly im-
proves the segmentation accuracy for both approaches, which yield comparable
overall accuracy for all organs. Our approach is more efficient, e.g., over 5 times
faster if we skip every 12th voxel (65mm) in the global context. With a skipping
factor of 75mm, we achieved segmentation of 6 organs within one second and
with accuracy almost as good as the best quality! Both methods perform fairly
close to inter-user variability1.

One potential concern with relying on far away global context information is
that the reliability of the detection and segmentation may degrade or vary when
given a subvolume. To investigate this, we evaluated the lung, liver, and heart
segmentation accuracy on the same subset of unseen volumes, but this time we
cropped the volumes 10cm below the lung and heart, meaning that the kidneys
and liver are not present. In these cropped volumes, using a spacing factor of
50mm, we find the accuracy of our local+global method to be consistent with
that in Table 2, where right lung accuracy was 3.57± 1.32, heart accuracy was
slightly worse at 4.53 ± 2.39, and the left lung was 3.22 ± 1.02. Although the
global model may predict instances of missing organs (e.g., the kidney and liver),
these detections can be pruned by thresholding the local classifier scores or by
identifying missing organs as those with a low average boundary detector score.

3.2 Prostate, Bladder, Rectum, Femoral Heads in CT Scans

In this second data set, we detect the prostate, bladder, rectum, and femoral
heads in CT scans. The detection and segmentation of these structures is useful

1 The inter-user variability was measured over 10 randomly selected unseen test cases.
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Table 3. Accuracy and timing for segmentation results using our model compared to
the state of the art MSL model on CT prostate, bladder, rectum and femoral heads

Detection, shape initialization, & boundary refinement

Skip(mm) Time Prostate Bladder Rectum R.Fem L.Fem

MSL - 9.67s 3.57±2.01 2.59±1.70 4.36±1.70 1.89±0.99 2.05±1.27

B
S
P

10 (30mm) 1.76s 3.35±1.40 3.08±2.25 3.97±1.43 1.88±0.78 1.90±1.18
12 (36mm) 1.36s 3.48±1.53 3.17±2.28 3.98±1.49 1.93±1.00 2.23±1.76
15 (45mm) 1.09s 3.70±1.64 3.28±2.42 4.03±1.48 2.04±1.18 2.25±2.04

Inter-user variability 3.03±1.15 2.03±0.11 2.93±1.10 1.29 ± 0.12 1.16±0.21

Front Side 3D Shapes

Fig. 4. Qualitative results of the MR FastView segmentation (solid) on unseen cases
with ground truth (dotted)
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for radiation therapy planning. This data exhibits challenges in weak boundaries
between soft tissues, complex shapes in rectum and femoral head, large scale vari-
ation in bladder, etc. A total of 145 cases were used, with 100 randomly selected
for training and the remaining 45 used in testing. The volumes were isotropi-
cally resampled to have a resolution of 3mm. Six manually selected landmarks
were identified on each of the objects, with the exception of the bladder which
used 7 as it had large variability. And a similar configuration as described in the
previous section was used to train the local and global context models.

Table 3 shows the timing and accuracy results for the final segmentation com-
pared to an MSL pipeline. Even with a spacing factor of 36mm, our local+global
model behaves similarly to or better than MSL on all organs except for the blad-
der while giving an overall speedup of 6 times over MSL. MSL seems to better
handle the large scale variability observed in the bladder. Our approach signif-
icantly outperforms MSL for rectum, possibly because of the aforementioned
reason – the rectum shape varies a lot and landmark-based shape initializa-
tion is better. Both approaches achieved accuracy fairly close to the inter-user

Fig. 5. An illustration of the segmentation results on two of the CT prostate data
sets. The data has wildy varying dimensions, some being full body scans, and others
localized near the prostate. Our method works well across this variation and handles
large variability in shape and appearance of the organs, such as drastic changes in
appearance in the rectum.
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variability except the rectum2. We achieved a speed of just over one second
by skipping every 16th voxel with decent accuracy. Figure 5 illustrates two of
the automatic CT segmentations on unseen images. The femoral accuracy of the
femoral head is limited by the low resolution of our mesh and due to using a 3mm
isotropic resolution. However, this serves as a good initialization for voxel-based
refinement using graph cut or random walker.

4 Conclusion

In this work we proposed a fusion of local and global context, coupled with
discriminative models, for rapid multi-organ segmentation. Exploiting sparsity
of the non-parametric global context led to a fast algorithm: the global context
is only evaluated at sparse regions and is used to predict hypotheses for all
landmarks simultaneously. By robustly fitting statistical shape model to these
landmarks and deforming the fitted shape using learned boundary detector, we
achieved segmentation accuracy comparable to inter-user variability.

Although our approach is already efficient, we feel that there is still room
for improvement. Specifically, the local detectors often get evaluated on the
same voxel multiple times; a simple caching of classifier results could be used
to improve efficiency. Along a similar line, if results are cached, there may also
be benefit in having a multi-class classifier be used to model the local posterior.
We will also investigate how to further improve the segmentation accuracy for
organs with simple shape but large variability in appearance like kidney or in
scale like bladder.
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