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ABSTRACT

Medical imaging, used for both diagnosis and therapy planning, is

evolving towards multi-modality acquisition protocols. Manual seg-

mentation of 3D images is a tedious task and prone to inter- and

inter-experts variability. Moreover, the automatic segmentation ex-

ploiting the characteristics of multi-modal images is still a difficult

problem. In this paper, we propose the use of a variational segmenta-

tion method, based on the minimization of the TV norm and a convex

formulation, for segmenting thoracic pairs of PET and CT images,

in the context of radiotherapy planning. We first highlight the limita-

tions of a pure vectorial formulation of the variational segmentation

method for PET and CT images. We then propose to better exploit

the bi-modality by introducing a parameter which varies spatially

depending on the PET intensity to adjust precisely the segmentation

of CT images. Segmentation results on lung tumors and lymphatic

nodes are shown, and comparisons performed with manual segmen-

tations illustrate the quality of the results.

Index Terms— Multi-modal segmentation, variational method,

thoracic imaging, PET, CT

1. INTRODUCTION

In clinical practice, clinicians are used to work with multiple imag-

ing modalities to perform a diagnosis on a tumoral pathology. Multi-

modal imaging is also very common for MRI brain imaging com-

bining T1 and T2-weighted protocols. In this paper we focus on

PET/CT image volumes for thoracic tumor or lymph node diseases.

The underlying clinical goal is to provide an accurate and repro-

ducible segmentation tool enabling the definition of tumoral target

volumes in radiotherapy planning. The CT and PET imaging modal-

ities provide complementary anatomical (CT) and functional (PET)

information. In the past, the major shortcoming to joint quantitative

analysis of these two modalities was the need for an accurate regis-

tration. Nowadays, combined PET-CT scans provide co-registered

images. Fusing the information from the two modalities remains

difficult, due to the coarser spatial resolution of the PET data, and

breathing motion artifacts due to long PET acquisition times. There-

fore, while there is an important amount of previous work dealing

with the segmentation of either CT or PET images, very few works

have addressed the joint segmentation problem. Among the few pa-

pers dealing with this problem, we can cite [1] where multimodal im-

age segmentation was based on the active contours of Chan and Vese

[2] formulated for multi-channel images. Promising results were ob-

tained but the method was very sensitive to the initialization setup.

In [3] after detecting tumors as local maxima in the PET image, the

segmentation was performed with a joint likelihood ratio test. In [4]

a classification framework based on MAP-MRF models was applied

on PET-CT vectorial images.
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In all these previous works, perfect registration of the two modalities

was assumed, which is not always a realistic hypothesis, especially

in thoracic images where breathing movements are difficult to con-

trol. In this paper we propose to perform a CT image segmentation,

guided by the PET information using a recently proposed variational

formulation with a global minimum. The proposed segmentation

framework controls the regularity of the segmented structures while

easily incorporating PET information but remaining robust to poten-

tial mis-registration of the image data.

(a) (b)

Fig. 1. Clinical case with a lung tumor: (a) CT modality and (b) PET

modality.

2. SEGMENTATION VIA TV SEMI-NORM

MINIMIZATION AND FUZZY REGION COMPETITION

Variational image segmentation methods consist in finding contours
or regions in a given image I by minimizing an appropriate energy
functional. For example in the piecewise-constant Mumford-Shah
image segmentation model from Chan-Vese [2], the functional is ex-
pressed as:

ECV (C, c1, ..., cl) = length(C) + λ

LX

l=1

Z

Ωl

(I(x)− cl)
2

dΩ (1)

where Ωl, l = 1..L, is a partition of the image I domain Ω
(Ω ⊂ R

n, n = 2 or 3) in L regions Ωl, C being the set of curves

that delimit the regions, and cl are constant values characterizing the

average value within the regions.

The solution is a partition of the image in L phases, each phase

having a constant intensity (the optimal cl value) and the length of

the contours being constrained to avoid oscillations.

A common approach to minimize Equation (1) with two phases

(foreground and background) is detailed in [2], embedding the con-

tour formulation into a level-set framework and computing the Euler-

Lagrange equations for the optimization of the energy parameters

via gradient descent. The major drawback of this method is its sen-

sitivity to local minima, making the quality of image segmentation

sensitive to the initialization.
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2.1. Fuzzy segmentation model

In [5, 6, 7] an alternative segmentation framework is proposed, di-
rectly looking for optimal Ωi as an optimal function measuring the
membership to each region (and no longer using the characteristic
function). Let u ∈ BV[0,1](Ω) (the space of functions of bounded

variations taking their values in [0, 1]) be a fuzzy membership func-
tion suited for the segmentation problem, e.g. u ≈ 0 in the back-
ground and u ≈ 1 in the foreground. The following functional is
proposed (using similar notations as in Equation (1)) :

min
u∈BV[0,1](Ω),c1,c2

ET Vg (u, c1, c2) = min
u∈BV[0,1](Ω),c1,c2

Z

Ω

g|∇u|dΩ

+ λ

Z

Ω

u(I − c1)
2

dΩ + λ

Z

Ω

(1− u)(I − c2)
2

dΩ

(2)

The regularity of the segmented regions is controlled by con-

straining the TV semi-norm of the membership function. As in [6],

the total variation (TV) semi-norm is weighted by a contour map g

(for example g = 1
1+|∇I|

) to allow less regularization where con-

tours are clearly visible.

The parameter λ controls the trade-off between data fidelity and

regularity terms. This image segmentation formulation has two very

important properties: (i) For fixed ci, the problem (2) is convex in u,

and therefore has a global minimum. There exist very efficient algo-

rithms to minimize (2) with respect to u. (ii) The global minimizer

of u is guaranteed to be close to a characteristic function. A contour

can therefore be simply obtained by thresholding u at any level α

with 0 < α < 1. Proofs of these properties are detailed in [5, 6, 8].

These properties have guided our choice of this type of method.

2.2. Efficient minimization

To solve Equation (2), an alternate minimization is iterated, first fix-
ing u and optimizing ci and then fixing ci and optimizing u, un-
til convergence. Minimization with respect to ci is performed with
these explicit formulations:

c1 =

R
Ω

uIdΩ
R
Ω

udΩ
and c2 =

R
Ω
(1− u)IdΩ

R
Ω
(1− u)dΩ

(3)

When the ci are fixed, the minimizer u∗ of Equation (2) is the same
as the minimizer of:

min
u∈BV[0,1](Ω)

ET Vg (u) =

Z

Ω

g|∇u|dΩ + λ

Z

Ω

urdΩ (4)

with r = (I − c1)
2 − (I − c2)

2.
As in [6], other region competition functions r could be used, such
as statistical comparison of estimated region densities.
To minimize Equation (4) with respect to u under the constraint u ∈
BV[0,1](Ω), the following equivalent unconstrained problem can be
written (the proof is given in [8]):

min
u

ET Vg (u) =

Z

Ω

g|∇u|dΩ +

Z

Ω

λur + βν(u)dΩ (5)

where the penalty term ν is given by ν(t) = max(0, |2t − 1| −
1) and β > 1

2
|r|∞. The problem (5) could be solved with Euler-

Lagrange equations and gradient descent. However this method is
slow and since the terms |∇u| and ν(t) are not differentiable, they
must be regularized, which implies a slower gradient descent. To
avoid these two problems, as in [6], it is preferable to use the fast
duality projection algorithm proposed in [9]. This algorithm is based
on a weak approximation of Equation (5) by introducing an auxiliary
variable v:

min ET Vg2
(u, v) = min

Z

Ω

g(x)|∇u|dΩ +
1

2θ

Z

Ω

|u− v|
2

dΩ

+

Z

Ω

λvr + βν(v)dΩ

(6)

This approximation is suitable if the minimizers u∗ and v∗ are al-

most identical w.r.t. the L2 norm. To ensure this condition, θ must

be set to a small value. Equation (6) is minimized with an alternate

scheme described in Algorithm 1. Thanks to this formulation, since

Algorithm 1 Minimization

Require: I, u, θ, τ, g, λ

repeat

compute c1 and c2 by (3)

r := λ[(I − c1)
2 − (I − c2)

2]
v := max(min(u − θr, 1), 0)
p0 := 0
repeat

pn+1 :=
pn+ 1

8
∇(div(pn)− v

θ
)

1+
1
8
∇(div(pn)− v

θ
)|

g

until pn+1 ≈ pn

u := v − div(p)
until convergence

return u

the functional 2 is convex, we have a robust method to segment an

image in two constant piecewise phases. Moreover, thanks to the

algorithm 1 the minimization is very fast.
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Fig. 2. Left: (a) Lung CT data and (b) automated tumor segmen-

tation with prior masking of non-lung tissues. Right: (c) Thoracic

lymph node CT data and (d) comparison of manual segmentation

(green contour) and automated segmentation (binary mask).

As illustrated in Figure 2, this segmentation framework provides

very accurate delineation of highly-contrasted stuctures on CT im-

ages but is not able to extract low-contrast structures such as lymph

nodes or to well differentiate the tumor from adjacent blood ves-

sels. PET information mainly consists of increased intensity values

in active parts of tumors or pathological lymph nodes. However,

due to breathing movements and acquisition artifacts, these intense

areas are often larger than the corresponding anatomical structures.

For this reason, we would like to incorporate PET information in

our segmentation process, while remaining robust to uncertainty and

mis-registration of the PET image data content.
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3. PET-BASED LOCAL CONSTRAINTS ON THE FUZZY

REGION COMPETITION

3.1. Direct vectorial approach

For lung tumors it is often difficult to visually separate the tumor

from the surrounding vessels or mediastinal tissues in CT image

data. In this case, PET images can provide useful information to

guide the segmentation on the CT images, highlighting only tumoral

tissues.

Since the CT spatial resolution is much higher than the PET resolu-

tion, and in order to better preserve the 3D continuity of anatomical

structures, we resampled the PET images via bilinear interpolation

to match the CT spatial resolution in terms of voxel sizes.

After resampling, a straightforward extension of the proposed seg-

mentation framework can be tested, reformulating the energy func-

tional to handle vectorial images, and leading to the following energy

minimization problem:

min
u∈BV[0,1](Ω)

ET Vg (u, c1, c2) =

min
u∈BV[0,1](Ω)

Z

Ω

g|∇u|dΩ

+

Z

Ω

u||Λ(I− c1)||
2

dΩ +

Z

Ω

(1− u)||Λ(I− c2)||
2

dΩ

(7)

where c1 = (c11 , c12)
T , c2 = (c21 , c22)

T , I = (ICT , IPET )T are

vectors in R
2 and Λ =

„
λ1 0
0 λ2

«
. While this method is faster

than [1], it suffers from the same sensitivity to the intrinsic mis-

registration between the CT and the PET data. This is illustrated in

Figure 3 (b) where the vectorial segmentation result for a lung tumor

corresponds to the mean shape between the PET and the CT image

information.

(a) (b) (c)

Fig. 3. Averaging effect: (a) superimposed PET and CT images, (b)

vectorial segmentation with fixed parameters, (c) segmentation with

a spatially varying λ(x).

3.2. Locally adaptative use of PET information

The PET information can be introduced in the segmentation method
by favoring the CT-based segmentation of tumors or lymph nodes
in bright PET areas. We propose to implement this idea by using a
spatially varying parameter λ.
We therefore reformulate the energy functional in Equation 2 as :

min
u∈BV[0,1](Ω)

ET Vg (u, c1, c2) =

Z

Ω

g|∇u|dΩ

+

Z

Ω

λ(x)u(I − c1)
2

dΩ +

Z

Ω

λ(x)(1− u)(I − c2)
2

dΩ

(8)

The function λ(x) must be designed so that it takes high values

where we want the data fidelity term to be more important than the

regularization term and the segmentation result to closely follow the

CT information. Conversely when λ(x) takes low values, the data

fidelity term is less important than the regularization term and the

oscillations of the object (e.g. tumor) contours are minimized. The

minimization process remains the same as the one described in Sec-

tion 2.2 since λ(x) is not optimized but pre-defined.

For radiotherapy planning, clinicians use the PET data to segment

the tumors or the lymph nodes. In [10] several lung tumors segmen-

tation methods for PET images were discussed and evaluated. Most

of the methods are based on simple image intensity thresholding.

The most simple threshold values are set between 60% and 50% of

the maximal uptake PET intensity. In [11] a threshold was computed

from the mean PET intensity inside the whole body, based on a spe-

cific regression formula. In [12] a threshold at 60% of the maximal

uptake intensity was criticized and a thresholding taking into account

background PET intensity was proposed. The study in [10] revealed

that thresholding at 60% leads to too small delineations of the tu-

mors. We therefore considered that all voxels with intensity larger

than 60% were inside the pathological structure (tumor or lymph

node) to design our function λ(x). Moreover, the PET intensity sig-

nal is intense inside the pathological structure and decreases around

it, as illustrated in Figure 4 on intensity profiles accross a tumor and a

lymph node. From these observations, we assessed that λ(x) should

be an increasing function of the PET intensity with the following

properties:

− λ(x) should take a constant high value M for x greater than 60%

of the PET maximum intensity value;

− λ(x) should take a low value m close to 0 for low PET values;

− λ(x) should be an increasing function between m and M . The

growth rate we propose depends on the confidence we have in the

intermediate PET values.

A sigmoid function is proposed to define λ(x) = M 1

1+ae−bI(x) +m

(where I(x) represents the PET intensity centered in 0). The param-

eter a is set to 1, M which is the upper bound of the sigmoid is

chosen such that the data fidelity term and the regularization term

are comparable, m is the lower bound of the sigmoid and is set

to 10−6 to have a vanishing data fidelity term when the PET sig-

nal is not intense, and b which controls the slope of the sigmoid

transition is chosen in the empirical interval [0.0055, 0.012] (with

b ∈ [0.0055, 0.012] the similarity index between a manual segmen-

tation and an automated segmentation was always superior to 0.5).
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Fig. 4. PET intensity profiles overlaid on CT data for: (a) a lung tu-

mor and (b) a lymph node. Level lines of PET intensity are superim-

posed for values between 0.6×max(PET) in red and 0.3×max(PET)

in blue.

4. CLINICAL EXPERIMENTS & RESULTS

We evaluated the proposed segmentation framework on one case

with lymphoma (presenting infected enlarged lymph nodes) and five

cases with lung cancer (presenting tumors). Some visual results are
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illustrated in Figures 3(c) and 6. To quantify the quality of the seg-

mentation results, we computed the similarity, the sensitivity and the

specificity indices comparing to manual segmentation from a clini-

cal expert. They are reported in Table 1. All results were satisfactory

for all cases, with higher accuracy on lung tumors.
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Fig. 5. Segmentation results showing the manual segmentation

(green) and the automatic segmentation (red) on three pathological

cases: (left) thoracic lymph node, (middle-right) two large lung tu-

mors in contact with the lung parenchyma.

(a) (b) (c) (d)

Fig. 6. 3D views of segmentation results. (a-b) A tumor superim-

posed on orthogonal slices of a CT scan, (c) the tumor superimposed

on the fused PET-CT scan images, (d) 3D view of the tumor along

with the lungs masks.

Similarity index Sensitivity Specificity

tumor 1 0.85 0.76 0.96

tumor 2 0.79 0.68 0.96

tumor 3 0.81 0.78 0.89

tumor 4 0.90 0.86 0.95

tumor 5 0.82 0.79 0.84

lymph node 0.72 0.60 0.92

Table 1. Quantitative results: comparaison of manual and automatic

segmentations.

We also performed tests on images for which manual segmen-

tations were not available. Overall qualitative results were very sat-

isfactory in terms of robustness of the segmentation framework to

low-contrast contours and mis-registration between the two imaging

modalities. However in difficult cases where the tumor is at the bot-

tom of the lungs, close to the liver, some difficulties remain. Indeed

PET intensity is also very high in the liver and does no allow us to

discriminate the tumor in the lung. This case could be solved by

pre-segmenting the liver using for example the method described in

[13].

5. CONCLUSION

We have proposed in this work an original extension of a two-phase

fuzzy variational segmentation framework to handle multi-modal 3D

medical images. Our method takes into account the specificity of the

imaging modalities as it allows to manage uncertainties on PET im-

age information to guide a precise segmentation of a co-registered

CT data set, via the manipulation of spatially variable parameters in

the energy functional being minimized. Preliminary clinical results

have shown the robust behavior of the proposed formulation to chal-

lenging pathological cases with low-contrast CT image information.
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