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ABSTRACT 

This paper presents an effective solution for content-based retrieval 
and classification of ultrasound medical images representing three 
types of ovarian cysts: Simple Cyst, Endometrioma, and Teratoma.
Our proposed solution comprises of the followings: extraction of 
low level ultrasound image features combining histogram moments 
with Gray Level Co-Occurrence Matrix (GLCM) based statistical 
texture descriptors, image retrieval using a similarity model based 
on Gower’s similarity coefficient which measures the relevance 
between the query image and the target images, and use of multi-
class Support Vector Machine (SVM) for classifying the low level 
ultrasound image features into their corresponding high level 
categories. Efficiency of the above solution for ultrasound medical 
image retrieval and classification has been evaluated using an in-
progress database, presently consisting of 478 ultrasound ovarian 
images. Performance-wise, in retrieval of ultrasound images, our 
proposed solution has demonstrated above 77% and 75% of 
average precision considering the first 20 and 40 retrieved results 
respectively, and an average classification accuracy of 86.90%. 

Index Terms— Ultrasound Medical Image Retrieval, 
Classification of Ultrasound Ovarian Images, Statistical Texture 
Descriptors, Histogram Moments

1. INTRODUCTION 

This paper addresses the issue of efficiently representing 
ultrasound images and their retrieval and classification towards 
developing a computer-aided diagnosis system for ultrasound 
ovarian abnormalities. Rapid developments in the field of imaging 
have made it relatively easy to acquire medical images during the 
diagnostic process. Since the volume of images is increasing very 
fast, retrieving and analyzing images with similar cases/situations 
from a large database is an important problem that is of current 
interest. Medical images have been frequently used in developing 
and analyzing the performance of image retrieval and classification 
systems. This has eventually lead medical domain to be explored 
and cited as one of the principal application domains of image 
retrieval and classification in terms of potential for high impact. A 
large number of approaches have already been proposed for 
content-based retrieval and classification of medical images 
including radiology images, X-ray images, CT images of lung, 
dermatology images, MRI images of heart and brain, ultrasound 
images of kidney and breast [1, 2]. However, to the best of our 
knowledge, no published research has yet reported the application 

of content-based image retrieval and image classification technique 
over ultrasound images of ovarian abnormalities.  

 Accurate profiling of ultrasound ovarian images is very 
important to arrive at a diagnosis, but their inherent heterogeneity 
makes it rather difficult. Presently, visual ultrasound examination 
is considered as the most widely accepted and practiced diagnostic 
modality for non-invasive assessment of ovarian cysts and other 
types of ovarian abnormalities [3]. A number of ultrasound-based 
algorithms have been proposed for this purpose, but recognition of 
inherent patterns through visual ultrasound observation remains the 
best way for assessing their nature and category. However, this 
method largely depends on accumulation of practical experience in 
identifying the morphology and characteristics of various types of 
ovarian abnormalities present in their corresponding ultrasound 
images. As a result, inexperienced ultrasound operators always 
encounter difficulties in differentiating among different types of 
cysts, which eventually lead to a lower rate of correct diagnosis. 
Since incorrect diagnosis can either result in unnecessary 
biopsies/surgery, or worse, missed cases, there is a need for 
inexperienced operators to be given supporting tools to help 
increase their diagnostic accuracy. A computer based system for 
retrieval and classification of ultrasound images could serve the 
purpose of such a decision support tool in the diagnosis of ovarian 
abnormalities.

The subsequent discussions of this paper have been 
organized as follows: 
 Procedures for extracting and combining histogram 
moments and GLCM based texture descriptors have been 
discussed in Section 2. Section 3 gives a brief theoretical 
formulation of the techniques used for image similarity matching 
and image classification. Section 4 discusses the experimental 
results achieved by an implementation of our proposed solution 
and lastly, Section 5 concludes the paper summarizing our main 
contributions and planned future work.   

2. LOW LEVEL ULTRASOUND IMAGE FEATURES 

Our proposed solution for ultrasound image retrieval and 
classification consists of three sequential processing stages: (i) 
feature extraction and fusion, (ii) image retrieval by similarity 
matching, and (iii) image classification using SVM. As automated 
segmentation of ultrasound ovarian images is still considered as an 
open problem, our method requires human interaction in selecting 
the Region of Interest (ROI) for feature extraction from ultrasound 
images. Once the region has been manually specified through a 
number of ROI boundary points on the image surface, the 
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remaining processes of feature extraction, feature fusion, image 
retrieval and classification is performed in an automated manner 
without requiring any further input from the user.  

2.1. Histogram Moments for Ultrasound Images 

One of the most widely used visual features in image retrieval and 
classification is the histogram based feature. The histogram of an 
image is an -dimensional vector 

 where  is the number of gray levels and  is the number 
of pixels with gray level value . Histogram feature is relatively 
robust to background complication. Besides, it is also insensitive to 
changes such as image size, rotation and slight transition, each of 
which has little or no impact on the distribution of the gray levels 
in an image. However, the disadvantage of using histogram feature 
is that different images can have similar overall histogram in a 
large image database. Consequently, this can lead to poor 
performance in terms of retrieval and classification accuracy. 
Another drawback of using histogram features for ultrasound 
image classification is that an ultrasound image can have histogram 
with many empty bins due to the quantization process involved in 
the imaging system. As a result, slight changes in illumination may 
cause a shift in the histogram probability density function ( ),
which can introduce huge changes between the set of features 
obtained from two similar images. The moment-based approach 
can minimize these problems since it smoothes the histogram .
The histogram distribution can be interpreted as a probability 
distribution and can be characterized by its moments. Stricker and 
Orengo [4] introduced a method using the central moment 
approach. Mandal et al. [5] used orthogonal Legendre moments for 
histogram indexing, which resulted in a better performance than 
regular or central moments. Legendre moments are based on 
orthogonal Legendre polynomials. A Legendre polynomial is 
defined a f : s ollows

can be ex

(1)

The value of pressed as: 

The -th Legendr  is defin d y e moment of a function e  b

Replacing the value of f m Eq. (1), and applying the 
definition of centrals mom e pressed as: 

ro
ents,   can b ex

It can be observed that the Legendre moment of any order depends 
only on the regular moments of the same order and lower and can 
be calculated easily using the above equation. 
 Generally, the image grey levels range from  to .
Since, the Legendre polynomials are orthogonal only in the 
interval  the dynamic range of the  has to be mapped 
onto this interval. The histogram  function  can then be 
written as an infinite series ex nsion in terms of the Legendre 
polynomials as: 

pa

From this equation, the image pdf can be reconstructed using first 
 moments as follows:

The reconstructed  function  is then free from any 
quantization effect and has no empty bins. The optimum number of 
moments required for reconstructing the image accurately is 
an important concern. Usually, 10-16 moments can give a good 
representation of an image when it does not contain any sharp 
peak [5]. Ultrasound ovarian images usually contain sharp peaks 
with empty bins and therefore cannot be represented with few 
moments. To quantify the reconstruction efficiency as well as the 
no. of moments required to better represent ultrasound images, we 
have calculated the Signal to Err defined by Mandal 
et al. [5] as follows

or Ratio 
:

Where,  and  are the original histogram and the moment 
reconstructed histogram respectively. Table 1 shows the 
percentage of images having a  greater than a certain threshold 
value using 6, 32, 64, 128 moments.   8, 1

Table 1:  of the re-constructed image histogram  with 
finite number of moments. Using 128 moments, 98% of the 
econstructed histograms have .r

No. of Moments 
8 16 32 64 128 

> 8 dB 52% 79% 91% 97% 98% 
> 9 dB 41% 72% 86% 97% 97% 

> 10 dB 35% 67% 80% 93% 95% 
> 11 dB 31% 63% 77% 91% 94% 
> 12 dB 25% 57% 72% 88% 92% 

As can be observed from Table 1, use of 64 and 128 moments 
demonstrates the best re-construction capability. However, 
calculation of 128 moments is computationally at least twice as 
expensive as calculating 64 moments. In addition, use of 64 
moments instead of 128 has a significant impact on reducing the 
dimension of the extracted feature vector. Therefore, we opted for 
using the first 64 moments as image histogram based features. 

2.2. GLCM Based Texture Feature from Ultrasound Images 

The co-occurrence probabilities of GLCM provide a second-order 
method for generating texture features [6]. These probabilities 
represent the conditional joint probabilities of all pair wise 
combinations of grey levels in the spatial window of interest with 
respect to two parameters: inter-pixel distance  and orientation 

 The probability measure can be defined as: 
, where , the co-occurrence probability between 

grey level  and is defined as: . Here 

represents the number of occurrences of grey level  and 
within the given window, given a certain pair of pair; and 

is the quantized number of grey levels. The sum in the 
denominator thus represents the total number of grey level pairs 

 within the window. For extracting GLCM based texture 
features from ultrasound ovarian images, we obtained four co-
occurrence matrices from each image using 
degree and pixel. Then, 14-statistical texture descriptors 
have been calculated from each of these co-occurrence matrices as 
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proposed by Haralick et al. [6]. These descriptors are angular 
second moment, contrast, correlation, sum of squares, inverse 
difference moment, sum average, sum variance, sum entropy, 
entropy, difference variance, difference entropy, two information 
measures of correlation, and maximal correlation coefficient. 
Therefore, a total of 56 texture features were extracted from each 
image using the four co-occurrence matrices. 

2.3. Feature Fusion and Normalization 

After extracting the histogram moments and GLCM based texture 
feature from an image, they are organized into a single feature 
vector. Each feature vector , consisting of  features

, is then normalized as: ; where,  and  are the 
mean and standard deviation of feature vector .

3. RETRIEVAL AND CLASSIFICATION FORMULATION 

3.1. Similarity Model for Image Retrieval 

For retrieving ultrasound images, Gower’s similarity coefficient 
[7] based similarity model has been used. In this method, a 
combination of features to constitute a global similarity is done as 
an average of each of th ind idual similarities on each feature. 
The model is defi  a f : 

e iv
ned s ollows [8]

(2)

Here,  is the result of comparing image  and  on their 

feature , and  represents the possibility of comparing image

and  on their feature .  In Eq. (2),  if image  and  can 

be compared on feature , otherwise, . If the image and
image can be compared across all the considered 
features, , which is the dimension of the feature 
vector. So, global similarity between images   and  is 
defined as an average of the similarities on each feature between 
image and   and n be defined as follows: . The quantity  ca

(3)
Where represents a normalization factor and is calculated as: 

 where  is the set of 
values taken by each of the image  of the sample considered for 
the feature .  if image  and  are identical and 

 if they are completely different. can take a positive value 
between 0 and 1 if the two images have a certain degree of 
similarity according to feature . Using Eq. (3) and considering 
that all features can e compare l imilarity  between 
two images d a   be re-written as: 

 b d, globa s
 an , s defined in Eq. (2), can

(4)

3.2. SVM for Image Classification 

Support Vector Machine (SVM) belongs to the class of maximum 
margin classifiers. They perform pattern recognition between two 
classes by finding a decision surface that has the maximum 
distance to the closest points in the training set known as support 
vectors [9]. Unlike other classifiers, SVM controls its 

generalization ability by minimizing the error rate on the training 
set and their capacity. Let a training set of points be 

 where each point of  belongs to one of the two classes 
identified by the label . Assuming linearly separable 
data, the goal of maximum margin classification is to separate the 
two classes by a hyperplane such that the distance to the support 
vectors is maximized. This hyperplane is known as the Optimal
Separating Hyper splane and is expre sed as: 

The coefficients  and the  in Eq. (5) are the solutions of a 
quadratic programming problem. Classification of a new data point 

is performed by computing th  right side of Eq. (5). 
Each data point rplane as: 

(5)

e sign of the
 is separated from the hype

(6)

The sign of  is the classification result for , and  is the 
distance from  to the hyperplane. Intuitively, the farther away a 
point is from the decision surface, i.e. the larger  the more 
reliable the classification result. The entire construction can be 
extended to the case of nonlinear separating surfaces. Each point 

 in the input space is mapped to a point  of a higher 
dimensional space, called the feature space, where the data are 
separated by a hyperplane. The key property in this construction is 
that the mapping  is subject to the condition that the dot 
product of two points in the feature space  can be 
rewritten as a kernel function . Using the kernel function, 
the decision surf yace is defined b : 

where the coefficients  and  are the solutions of a quadratic 
programming problem and  is independent of the 
dimensionality of the feature space. Finally, multi-class 
classification was performed by arranging   

(7)

 2-class SVMs 
in “pair-wise” top down tree structured approach proposed in [10]. 
Here,  represents the number of classes in the dataset, which is 3 
for this particular problem. 

4. PERFORMANCE ANALYSIS

The process of creating an ultrasound image database of various 
ovarian abnormalities is in progress. At present, the database 
includes 478 ultrasound ovarian cyst images collected during 
regular clinical practice at Royal Victoria Hospital, Montreal.  We 
have used this database to measure the performance of our 
proposed solution for ultrasound ovarian image retrieval and 
classification. The images in the database were classified into three 
types of ovarian cysts: Simple Cyst (187-images), Endometrioma 
(154-images) and Teratoma (137-images). This categorization was 
performed by one or more domain experts and the categorization 
decisions were further verified by consulting the associated proven 
pathological diagnosis.

4.1. Retrieval Performance 

To evaluate the retrieval performance, we have randomly selected 
50 images of each category as the query images. We adopted the 
“Query by Example” method for submitting the query to the 
retrieval system where the query was specified by providing an 
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example image to the system. A retrieved image was considered a 
match if it belongs to the same category as that of the query image. 
For quantitative evaluation, retrieval performances of each 
category (simple cyst, endometrioma, and teratoma) were 
compared by calculating “Precis  {10, 20, 30, 
40, 50, 60 0 00, 110, 1 etrieved results as: 

ion” values for 
, 70, 80, 9 , 1 20, 130, 140} r

Figure 1 demonstrates the precision curves drawn by calculating 
the average precision values from the retrieved images of each 
category. As can be observed from this graph, the best overall 
retrieval performance has been achieved in retrieving the 
ultrasound images of simple cyst. The average precision value lies 
above 77% for the first 20 retrieved images and above 75% for the 
first 40 retrieved images, which indicates very satisfactory and 
consistent retrieval performance. 

Figure 1: Performance of the proposed method in retrieving 
ultrasound images of ovarian cysts. 

Table 2: Comparison of classification accuracy (%) achieved 
using different classifiers in classifying ultrasound ovarian images. 

Simple Cyst Endometrioma Teratoma Average 

SVM-RBF 89.84 87.66 83.21 86.90 
SVM-Polynomial 86.10 82.47 80.29 82.95 
SVM-Sigmoid 87.70 85.71 81.02 84.81 
Neural Network 82.89 79.87 75.91 79.56 
k-NN 86.63 81.17 79.56 82.45 

4.2. Classification Performance 

Due to its capability of providing high classification accuracy over 
small training sets as well as generalization performance on data 
that is highly variable and difficult to separate, SVM has been 
chosen in this work for classifying ultrasound images into 3-
categories: simple cyst, endometrioma, and teratoma. Features 
extracted from 200 images of the databases have been used to train 
the classifier applying “ -Fold Cross Validation” technique 
with . The choice of kernel function is among the most 
important customizations that can be made while adjusting an 
SVM classifier to a particular application domain. By performing 
experiments with SVM using a range of Polynomial, Gaussian 
Radial Basis Function (RBF) and Sigmoid Kernels, we have found 

that RBF kernel significantly outperforms the others, boosting the 
overall recognition accuracy. We have also compared the 
performance of the proposed ultrasound image classification 
method with two other popular classification techniques namely, -
Nearest Neighbor ( -NN) and Neural Network (NN). Results of 
these comparisons have been summarized in Table 2.  

5. CONCLUSION 

In this paper, we presented a solution for retrieving and classifying 
ultrasound images of three types of ovarian cysts. In addition, 
performance of combining two different types of image feature has 
been evaluated in content-based retrieval and classification of 
ultrasound images. As the experimental results show, the proposed 
solution demonstrates significant prospect in support of using 
histogram moments and GLCM based texture feature together for 
retrieving and classifying ultrasound images. Our future plan is to 
investigate the classification and retrieval performance of this 
system over ultrasound images of other types of ovarian cysts. The 
proposed methods can be adopted for developing a Computer-
Aided Diagnosis (CAD) system, which can serve as a tool to 
provide decision support in the diagnosis of ovarian abnormalities. 
By querying the CAD system with a new image and consulting the 
retrieved results along with their proven pathological diagnosis, the 
physician would gain more confidence in his/her decision or even 
sometimes see the scope of considering other possibilities towards 
improving the overall diagnosis accuracy. 
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