INTERACTIVE LUNG SEGMENTATION IN CT SCANS WITH SEVERE ABNORMALITIES
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ABSTRACT

Estimation of the volume of the lungs and the viable lung tis-
sue is an important step in the management of patients with
severe pulmonary disease. The presence of gross pathology
makes it impossible to perform lung segmentation automati-
cally and reliably in CT scans of such patients. An interactive
system for lung segmentation is presented, based on precom-
puted compact regions with homogeneous texture for which
general texture feature have been computed. A statistical clas-
sifier trained on prior data has classified these regions before-
hand and the user corrects any errors until the segmentation of
an entire slice is correct. The system proceeds to subsequent
slices, which were preclassified using a combined classifica-
tion strategy that uses both the prior data and the previously
approved slices from the test scan.

The resulting lung segmentations show a large overlap
and a small average boundary distance when compared to
completely manual delineations of the lung borders. The lung
segmentations can then be used as input for a similar interac-
tive system to determine the viable lung volume.

Index Terms— computed tomography, lung segmenta-
tion, interactive segmentation

1. INTRODUCTION

For many patients, clinicians are interested in an accurate es-
timation of the lung volume and the volume of viable lung
tissue within the lungs. Computed tomography (CT) scans
are the most accurate way to obtain this information. An im-
portant class are patients with acute lung injury/acute respi-
ratory distress syndrome (ALI/ARDS), who require mechan-
ical ventilation. Knowledge about the amount of viable lung
tissue is essential to obtain appropriate ventilation settings,
balancing the recruitment of collapsed lung tissue on the one
hand and the prevention of ventilation induced lung injury on
the other [1]. Gattinoni and Pesenti [2] describe the concept of
a functional ‘baby lung’, the phenomenon that the normally
aerated tissue in ALI/ARDS patients has the dimensions of
the lungs of a 5- or 6-year-old child. They conclude that the
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smaller the baby lung, the greater the risk that mechanical
ventilation is too aggressive and causes life threatening dam-
age. However, reliable methods to estimate the baby lung
volume are still to be found. Also for patients suffering from
other pulmonary diseases, such as severe interstitial lung dis-
ease (ILD), cystic fibrosis or emphysema, and for patients that
may be eligible for lung transplantation, measuring total and
viable lung volume would be of great value in both deter-
mining the best way to treat the patient and in evaluating the
treatment.

For this purpose, an accurate segmentation of the lungs in
CT scans is a prerequisite. In the past, different segmentation
methods have been proposed, which work well in relatively
healthy lungs or even scans with pathology [3]. However,
when large amounts of pathology are present, fully automatic
lung segmentation is infeasible. In this work, an interactive
system for segmenting the lungs and the viable lung tissue is
presented. In the current study, we focus in particular on the
evaluation of the lung segmentation.

2. MATERIALS

Twelve thoracic CT scans from lung transplantation and
ILD patients were used. Scans were acquired at the Uni-
versity Medical Center Utrecht and St Antonius Ziekenhuis
Nieuwegein, both in the Netherlands, between 2003 and
2006. Scans were made on either a Philips Mx8000 IDT
scanner or a Brilliance 16P scanner (Philips Medical Sys-
tems, Best, The Netherlands) at full inspiration. No contrast
material was used. Section thickness ranged from 0.9 to 1.0
mm and in plane resolution ranged from 0.6 to 0.9 mm. For
training the interactive system, ten CT scans from a lung
cancer screening trial were used. Scans were acquired with a
similar protocol, only with a lower dose.

3. METHODS

The interactive annotation process is depicted schematically
in Figure 1. In all scans, the body was segmented and divided
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Fig. 1. Schematic overview of the interactive lung segmentation
process

into compact volumes of interest (VOIs) with homogeneous
texture. This was done by downsampling the images with
a factor 2 in each dimension and subsequent blurring with a
Gaussian kernel with o = 1 voxel. Local gray value minima
and maxima which were at least 8 voxels apart were used as
seeds for growing the VOIs. To these seeds, all voxels within
a radius of 3 voxels were added to form initial VOIs. For all
voxels neighboring these initial VOIs, a dissimilarity score
S was calculated, based on the distance from the neighboring
voxel to the seed and the difference between the voxel density
value and the average density of the initial VOI:

S=a|(H,— H)|+d* (1)

where H, is the density of the voxel in Hounsfield units,
the average density value in the initial VOI and d the distance
in voxels from the voxel to the center of the VOI. o denotes
the relative weight assigned to the absolute difference in den-
sity. The voxel with the lowest dissimilarity score was added
to its adjacent VOI and dissimilarity scores were computed
for unassigned neighbors of the selected voxel. This pro-
cess continued until all body voxels were assigned to a VOI.
One scan contained between 10,000 and 19,000 VOIs. For
each VOI in both the training and test images, texture fea-
tures were calculated. Images were filtered using Gaussian,
gradient magnitude and Laplacian filters at scales 1, 2, and 4
voxels. In these filtered images, the mean, standard deviation,
skew and kurtosis of each VOI were calculated. This resulted
in 36 texture features per VOL.

A human observer performed the interactive segmentation
on each test scan. She was presented with one slice of the
scan at a time, in which all VOIs intersecting with this slice
had been labeled by the system as either lung tissue or non-
lung tissue and she only had to correct wrongly labeled VOIs
by mouse clicks. In this process, she could scroll through the
scan to view the VOIs and their environment in all orthogonal
directions. She was free at any time to label VOIs in other
slices as well. The overlay with the labels of the VOIs could

565

be switched on and off. The order in which the slices were
presented was chosen in such a way to maximize the distance
between already labeled slices.

To start the annotation process, all VOIs in the first slice
were classified using the 160,000 training samples as input
for a k-nearest neighbor (kKNN) classifier (Cy, K = 7). The
observer corrected the errors in this slice. By clicking a VOI
with the left or right mouse button, the label of the VOI was
set to respectively lung tissue or non-lung tissue. When done,
the labels of all VOIs in this slice, both corrected and not
corrected, were used to train a second kNN classifier (Cs,
k = 7). When classifying the next slice, the algorithm com-
pared the output of C'y and C for each VOI intersecting with
the slice and, in case of disagreement, used the classifier that
produced the highest posterior probability for lung or back-
ground. This combined classification strategy was used for all
subsequent slices. The process continued until the observer
decided that all VOIs had been labeled correctly.

All scans were also segmented using a region growing
method described in [3]. To evaluate both segmentation meth-
ods, outlines of the lungs in several axial, coronal and sagittal
slices in the test scans were drawn manually by a medical
student. In each scan, in total 12-21 contours were drawn.
These contours were compared to the results of both segmen-
tation methods by calculating their overlap and their mean
distance. The overlap O was defined as the number of voxels
in the intersection of segmentation and reference divided by
the number of voxels in their union. The mean distance M D
was defined as the average of the distance for each contour
pixel in one segmentation to the nearest contour pixel in the
reference contour. Results were calculated per slice and per
scan.

4. RESULTS

In Table 1, the results of the interactive segmentation method
are shown. In six cases, shown in the first six rows of the
table, the conventional segmentation method yielded unsatis-
factory results, showing overlap values ranging from 0.57 to
0.89. In these cases, the interactive method performed better,
yielding overlap values of 0.94-0.97 for all slices. The mean
distance over all slices showed a similar pattern: 2.7-17mm
for the conventional method versus 1.3-2.2 for the interactive
segmentation.

In the middle and right part of Table 1, results are given
per slice. The middle part shows the results for the slice that
showed the lowest overlap between the manual delineation
and the conventional lung segmentation. In these slices, the
overlap for the conventional method ranges from 0.0 to 0.71
for scans in which the segmentation failed. The interactive
method shows an overlap between 0.91 and 0.99 for the same
slices. The mean distance values show the same trend: for the
interactive method, they range between 0.7 and 3.0mm, for
the conventional method between 5.0 and 33mm. In the right



Table 1. Results of interactive lung segmentation and lung segmentation by region growing compared to manual lung border delineation.
The upper rows (Improvement) list the results for scans where the conventional lung segmentation did not produce satisfactory results. The
lower rows (No improvement) list results for scans for where both methods yielded good results. In the first four columns, results are given
for the entire scan. The middle four columns give the results for the slice that performed worst in the conventional segmentation and the last
four columns give the results for the slice that performed worst in the interactive segmentation. For all these three blocks, results are given
for the interactive segmentation method (interactive) and the region growing method (conventional). Outcome measures are the overlap (O)

and the mean distance M D, in mm. N/A indicates the mean distance could not be calculated.

average over all slices worst slice conventional worst slice interactive
interactive ~ conventional | interactive  conventional | interactive  conventional
O MD O MD O MD O MD O MD O MD
_ 1094 13 08 29 |09 08 072 53 |087 34 073 56
51095 19 072 7.1 092 22 0.1 32 090 43 082 53
g 096 1.7 0.62 12 091 3.0 000 N/A |091 3.0 0.00 NA
% 097 1.8 0.57 17 099 0.7 0.12 31 092 31 060 99
E |09 22 076 68 |098 1.0 040 33 0.87 53 089 42
09 1.5 089 27 |091 25 069 50 [091 25 069 50
= 09 1.7 097 1.6 1092 29 094 22 (092 1.8 095 1.2
% 096 14 097 1.0 | 091 25 093 1.8 | 091 25 093 1.8
z 11097 14 098 1.0 | 095 67 09 48 | 095 6.7 096 48
§ 096 1.8 097 1.2 1091 54 094 42 [091 54 094 42
S 1109 1.8 097 1.2 1092 24 092 2.1 092 24 092 21
109 17 097 1.3 1094 77 094 66 |[094 77 094 6.6

part of table 1, results are shown for the slices that showed
the lowest overlap in the interactive method. In one of these
cases, the conventional method outperformed the interactive
method in segmenting this slice, with overlap values of 0.89
versus 0.87 and mean distances of 4.2 and 5.3 mm respec-
tively. In all the other cases, the interactive method outper-
formed the conventional method.

Figure 2 shows the different segmentations for an axial
slice in which the conventional method did not perform well.
This slice shows dense areas in the dorsal part of both lungs
(a). The manual segmentation is shown in panel (b). The con-
ventional lung segmentation was not able to deal with these
abnormalities and left them out of the segmentation. The in-
teractive method captured the entire lung field in this slice and
showed a high correspondence to the manual delineation.

In the cases where the conventional segmentation was al-
ready good, as shown in the lower part of table 1, the inter-
active method also yielded good results, but the performance
of the conventional method is consistently better. This dif-
ference might be due to the fact that the interactive method
uses predefined VOIs. If a VOI contains both lung tissue and
non-lung tissue, part of its voxels are misclassified. This may
cause a less accurate segmentation. The use of smaller VOIs
may increase the accuracy of the interactive method, but this
would probably increase the user interaction effort.

Results for the segmentation time and number of correc-
tions needed to yield a complete segmentation are given as av-
erage (standard deviation) over all scans. The time needed for
a complete segmentation was 10 (3.3) minutes. As a compar-
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ison, a manual delineation of one lung in one slice takes 1.2
minutes [3]. The human observer needed to adjust the label of
168 (71) VOISs per scan. This corresponds to 1% of all VOIs in
a scan. The number of adjustments needed to segment a scan
in which the automatic segmentation failed was higher than
the number of corrections needed in a scan in which conven-
tional segmentation was successful; 175 (87) versus 160 (58).
This can be explained by the amount of dense abnormalities
in the scans: if a larger area of the lungs contains dense tex-
tures, the conventional lung segmentation is more likely to
fail there. Since the interactive segmentation method is ini-
tially trained with data from different subjects, it is less likely
to recognize areas with gross pathology as lung tissue, and the
user needs to make more corrections. These numbers indicate
that the interactive annotation process is a user-friendly way
to yield a reliable lung segmentation.

Figure 3 shows a screenshot of the application that uses
the output of the lung segmentation to estimate the viable lung
tissue volume. The system for interactively annotating differ-
ent textures in thoracic CT scans has been described in [4]. It
uses all VOISs that have been labeled as lung tissue. The user
starts with annotating several VOISs of each texture present, in
this case viable and non-viable lung tissue. Based on these
labels and the texture features described before, a kNN clas-
sifier classifies all VOIs in the next slice. The user corrects
the mistakes and the system uses the new information to clas-
sify the next slice. This process continues until all VOIs have
been classified. The volume of lung tissue of each class, in
this case viable and non-viable lung tissue, is then calculated.



(c) Conventional segmentation

(d) Interactive segmentation

Fig. 2. Example of the results for a coronal slice (a) in which the
conventional lung segmentation algorithm failed (c). Parts of the
lung were missed or misclassified as airways. The manual delin-
eation was converted to an overlay and shown in (b). Results of the
interactive segmentation method are shown in (d). They show a good
correspondence to the manual segmentation.

5. CONCLUSION AND DISCUSSION

The proposed method can be used to segment lungs in scans
in which automatic segmentation methods fail. Future work
includes the optimization of the system so that classification
of VOIs using (' is performed in separate processing threads
and is instantaneous. Also other classifier combination strate-
gies will be investigated. It may be beneficial to extend the
feature set with spatial features and shape features. It could
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also be advantageous to include the results of conventional
lung segmentation in the initial classification from C;. Fi-
nally, we intend to use a similar strategy with two classifiers
C1 and C for the second step of determining the viable lung
tissue among the segmented lung VOIs.

We expect that these improvements will bring down the
required interaction time to no more than a few minutes, al-
lowing application of the system in clinical routine. And al-
though we do not expect that for the accurate estimation of
lung volume it is necessary, it might be useful to allow the
user to split any VOIs that do not follow the lung borders ex-
actly.
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