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ABSTRACT

There has been significant recent interest in fast imaging with sparse

sampling. Conventional imaging methods are based on Shannon-

Nyquist sampling theory. As such, the number of required sam-

ples often increases exponentially with the dimensionality of the im-

age, which limits achievable resolution in high-dimensional scenar-

ios. The partially-separable function (PSF) model has previously

been proposed to enable sparse data sampling in this context. Exist-

ing methods to leverage PSF structure utilize tailored data sampling

strategies, which enable a specialized two-step reconstruction pro-

cedure. This work formulates the PSF reconstruction problem us-

ing the matrix-recovery framework. The explicit matrix formulation

provides new opportunities for data acquisition and image recon-

struction with rank constraints. Theoretical results from the emerg-

ing field of low-rank matrix recovery (which generalizes theory from

sparse-vector recovery) and our empirical results illustrate the poten-

tial of this new approach.

Index Terms— Magnetic Resonance Imaging, Low-Rank Ma-

trix Recovery, Partially-Separable Functions

1. INTRODUCTION

Spatiotemporal imaging encompasses a wide variety of experiments,

including dynamic contrast enhanced (DCE) imaging, spectroscopic

imaging, and fMRI. In the context of Fourier imaging, spatiotempo-

ral data acquisition is modeled as

s (k, t) =

Z
ρ (x, t) exp (−ı2πk · x) dx + η (k, t) , (1)

where the measured data corresponds to samples of s (k, t), ρ (x, t)
is the desired spatiotemporal function, and η (k, t) is a noise process.

A common objective in spatiotemporal imaging is to reconstruct

ρ (x, t) with both high spatial and high temporal resolution. How-

ever, if ρ (x, t) is modeled as a support-limited function, then the

need to sample s (k, t) at the Nyquist rate places practical limits

on the types of spatiotemporal experiments that are possible. There

are many different approaches that have been proposed to overcome

Nyquist limits, including generalized support [1] and sparsity [2]

models; in this work, we will focus on the partially-separable func-

tion (PSF) model [3], which can also be leveraged to considerably

reduce data acquisition requirements. In particular, we will consider

the case where

s (k, t) =

LX
�=1

ψ� (k) φ� (t) (2)
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for some (possibly signal-dependent) functions {ψ� (·)}L

�=1 and

{φ� (·)}L

�=1. In this context, s (k, t) is said to be Lth-order partially-

separable. In addition, due to the linearity of the Fourier transform,

the function ρ (x, t) will also be Lth-order partially-separable in the

absence of noise.

While strict partial separability (i.e., L = 1) applies only to a

“small” set of signals, higher-order partial separability (L > 1) sig-

nificantly enhances the representational power of the model. For ex-

ample, low-order partially-separable representations have been used

in the context of dynamic cardiac MRI (see [4] and references), dy-

namic MRI, PET, and SPECT imaging of contrast kinetics [3, 5],

relaxation experiments [6, 7], diffusion experiments [7], fMRI [8],

and spectroscopic imaging [9].

Earlier work leveraging the PSF model to enable sparse sam-

pling not only assumed low-rank structure for C, but also required

significant additional constraints on both the data acquisition pro-

cedure and on the solution [3, 4]. This paper removes these con-

straints by formulating the reconstruction as a low-rank matrix re-

covery problem.

2. MATRIX RECOVERY APPROACH

2.1. Matrix Formulation

A consequence of Lth-order partial separability is that for any sets of

k-space locations {kn}
N

n=1 and time points {tm}
M

m=1, the N ×M

Casorati matrix C formed as

C =

2
64

s (k1, t1) · · · s (k1, tM )
...

. . .
...

s (kN , t1) · · · s (kN , tM )

3
75 (3)

has at most rank L [3]. Reconstructing s (k, t) on {kn}
N

n=1 ×

{tm}
M

m=1 from sparse data is equivalent to reconstructing C from

sparse data. However, posing the problem in terms of recovery of

C allows us to take advantage of its low-rank structure. Note that

an N ×M complex matrix of rank L has NM entries (i.e., 2NM

real values), but only 2 (N + M − L) L degrees of freedom. As a

result, there is considerable potential to use PSF structure to reduce

data sampling requirements when L is small relative to M and N .

Independently of PSF work, low-rank matrix recovery has re-

cently received significant attention, motivated by emerging theo-

retical results for the guaranteed success of different reconstruction

methods (e.g., see [10, 11, 12, 13, 14]), which are related to earlier

results from sparse-vector recovery [2]. In cases when L is known a

priori, the maximum-likelihood (under white Gaussian noise) matrix

recovery problem can be posed as

Ĉ = arg min
C∈C

N×M

rank(C)≤L

‖A (C)− b‖
�2

, (4)
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where A : C
N×M → C

P is a linear measurement operator (with

P � NM for sparse sampling), and b ∈ C
P is a data vector.

However, determination of the exact rank is not trivial in general,

particularly in the presence of noise. As a result, another approach

is to enforce the low-rank structure in a softer way. Examples of this

include the rank-minimization problem:

Ĉ = arg min
C∈C

N×M

‖A(C)−b‖
�2

≤ε

rank (C) , (5)

where ε represents a noise tolerance, or more general regularization-

based formulations:

Ĉ = arg min
C∈CN×M

‖A (C)− b‖2
�2

+ λR (C) , (6)

where R (·) is a regularization functional that favors matrices with

low rank, and λ is a regularization parameter. Choices of R (·)
that have been used previously include the nuclear norm (NN) [10]

(RNN (C) =
P

i
σi, where σi are the singular values of C) and the

log-determinant functional [15] (Rlogdet (C) =
P

i
log (σi + δ),

where δ is a small constant), though other reasonable choices could

include model-order selection criteria such as a transformation of the

Akaike Information Criterion (AIC) [16].

2.2. Sampling Considerations

While the formulations presented in the previous subsection are

interesting, an associated practical question is whether such formu-

lations can lead to significant improvements in data acquisition and

image reconstruction. A case that is easy to analyze is that of the

basic PSF procedure [3, 4]. The basic PSF procedure can be viewed

as a special case of Eq. (4), but with the additional constraint that

the L-dimensional row space of C is predetermined from train-

ing/navigator data. In previous work [3, 4], this training data has

been assembled by direct measurement of at least L full rows of

C, and forming a basis for the row space via principal component

analysis of these rows. In principle, if the true matrix were exactly

rank-L and if the L-dimensional row space could be precisely iden-

tified, then the sampling requirements for reconstructing C exactly

(in the case of noiseless data) are easy to determine: in most cases

of interest, C could be recovered using simple linear algebra if each

row is directly sampled at least L times [3].

In contrast to the basic PSF procedure [3], which only uses a

subset of the acquired data to estimate the structure of the full ma-

trix, reconstruction using any of Eqs. (4)-(6) would use all of the

measured data to estimate the matrix structure. In addition, while the

original data acquisition strategy is fully compatible with image re-

construction under the matrix recovery framework, Eqs. (4)-(6) give

the potential to use significantly more “arbitrary” sampling schemes.

The price that is paid for this increased flexibility is that the opti-

mization problem becomes significantly more complicated, and that

sampling requirements are no longer as easy to analyze. Despite this,

theoretical results have been derived [10, 11, 12, 13, 14] that provide

sufficient conditions onA and C such that the various algorithms for

solving Eqs. (4)-(6) and their variations are guaranteed to be success-

ful. These sufficient conditions often require that A obeys a rank-

restricted isometry property (RIP), i.e., that ‖A (C)‖
�2
≈ ‖C‖

F

for any sufficiently low-rank C. While computing RIPs is compu-

tationally intractable, it is known that certain classes of randomized

sampling operators have good RIP properties, as long as P is large

enough [10, 12].

For example, consider the case where we directly sample P en-

tries of C, and represent this sampling set as

Ω = {(n, m) : Cnm is sampled} . (7)

A representative theoretical result for this context is that if the sam-

pling set Ω is chosen uniformly at random and if the number of mea-

surements is O
`
L2K log K

´
with K = max (M, N), then the cor-

responding sampling operatorA has a high-probability of satisfying

an RIP for a class of suitably-regular low-rank matrices [12].1 This

result suggests that recovery of PSFs from undersampled data can

be attained without utilizing specialized sampling patterns, as long

as appropriate algorithms are used for reconstruction.

2.3. Algorithm Considerations

The problems in Eqs. (4)-(6) are often nonconvex, and the problem

in Eq. (5) can be NP-hard [10]. Despite these difficulties, many dif-

ferent methods exist to solve such problems.

Solving Eq. (4) has been performed using alternating least-

squares algorithms [17, 18], gradient descent and expectation-

maximization algorithms [19], optimization over Grassmann mani-

folds [13, 20], and projected gradient algorithms [12]. While many

of these algorithms are heuristic and might not achieve global opti-

mization for generalA , some choices ofA can guarantee the global

optimality of certain algorithms [12, 13, 14, 18].

Due to the complexity of addressing Eq. (5) directly, common

approaches to this problem involve the use of surrogate optimization

problems. For example, Eq. (5) can be approached using the regu-

larization framework of Eq. (6). One convenient choice of R (·) for

this case is the NN [10], since the NN is the tightest convex relax-

ation of matrix rank, in just the same way that the �1-norm is the

tightest convex relaxation of the �0-norm in the context of sparse-

vector recovery [2]. Due to convexity, problems involving the NN

can be solved globally [10, 21, 22]. And, under appropriate RIP

constraints, the solution using NN minimization can be proven to

be equivalent to the original problem. However, when RIPs are not

satisfied, the resulting solutions can have higher rank than those that

would have been obtained when solving Eq. (5) directly. Algorithms

for solving Eq. (4) can also be used to solve Eq. (5), by noting that

‖A(Ĉ) − b‖�2
is monotonically decreasing in L. As a result, the

solution to Eq. (5) can be achieved by solving Eq. (4) for increasing

values of L until the data-consistency constraints are satisfied.

In the example shown later in this work, we use the incremented-

rank PowerFactorization (IRPF) algorithm in the context of Eq. (4).

While guarantees for global optimality with this algorithm have only

been established for the fully-sampled data scenario [18], it has been

observed empirically that IRPF is both fast and can give better so-

lutions than alternatives like NN minimization [17] for solving both

Eqs. (4) and (5). PowerFactorization is an alternating least-squares

approach that makes use of the factorization C = UV, with U ∈
C

N×L and V ∈ C
L×M , to enforce rank-L structure implicitly. Sub-

sequently, we seek a local minimum of

n
Û, V̂

o
= arg min

U∈C
N×L

V∈C
L×M

‖A (UV)− b‖
�2

. (8)

Minimization is performed by optimizing over U and V in alter-

nation. The optimizations involved can be represented as standard

1Regularity in this context means that the magnitude of the largest el-
ement of the matrix is not significantly larger than the root-mean-squared
magnitude of all the elements; see [12] for a more formal description.
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linear-least squares problems, and can be solved using standard

solvers. In the case where A directly subsamples C on the set Ω,

it can be shown that the corresponding normal equations are block

diagonal, with L × L blocks. This leads to efficient computation,

either by direct inversion of each L×L block separately, or by using

the iterative conjugate gradient algorithm, which would find optimal

solutions (assuming infinite precision) after L iterations.

As described in [17], we have observed that using an incre-

mented rank strategy improves the performance of PowerFactoriza-

tion and helps to avoid many of the local minimizers of Eq. (8). IRPF

uses a continuation scheme, and starts by solving Eq. (8) with L = 1.

Subsequently, L is incremented, with the results of rank-L optimiza-

tion used to initialize the rank-(L + 1) problem. In this fashion, the

procedure is iterated until the final desired L is achieved [17].

3. APPLICATION EXAMPLE

In this section, we present a practical example of the PSF model and

the IRPF algorithm applied to DCE breast imaging. In this context,

an exogenous contrast agent is injected into the bloodstream, and the

contrast kinetics help to localize a tumor and provide information

regarding its physiological and morphological properties. Fourier

data was simulated from a series of magnitude images correspond-

ing to 18 different time-points from a real DCE experiment. These

18 frames were subsequently interpolated onto a set of M = 52
equally-spaced time points. The simulated data acquisition assumed

a 256× 256 Cartesian k-space sampling grid (i.e., N = 2562).

Elements of C were sampled directly, with the sampling set Ω
constructed by selecting 25% of the entries in C uniformly at ran-

dom. This was augmented by an additional set of samples chosen to

ensure that each row and each column of C was sampled at least 10

times,2 resulting in a total of ∼ 27% of the entries being sampled.

Two temporal-frames from an IRPF reconstruction with L = 5
are shown in Fig. 1. These results illustrate that high-quality PSF

reconstruction is possible from highly-undersampled data without

the use of specialized sampling.

4. DISCUSSION

The preceding example illustrated the potential of using IRPF for

“arbitrarily”-sampled PSF spatiotemporal images. While purely ran-

dom sampling was used in this example, this type of scheme is

not necessarily well-suited to real experiments. First, purely ran-

dom Fourier sampling is generally not practical for traditional MRI

readouts, which typically sample along a set of smooth curves in k-

space. Second, it is well-known that k-space energy is often highly-

concentrated at low spatial frequencies. As a result, purely random

sampling can incur an SNR penalty relative to sampling schemes

that acquire more low-frequency data. In addition, the concentra-

tion of energy on certain rows of C could indicate that C might not

be regular enough for a completely random sampling set Ω to work

well with high probability. Thus, optimized sampling for different

spatiotemporal MRI applications is an interesting open problem.

One important consideration for image reconstruction using the

PSF model is that the true rank L needs to be small enough relative

to both M and N that a constraint on rank (C) significantly reduces

the degrees of freedom. In practice, this can mean that more signif-

icant accelerations are possible for large-scale reconstruction prob-

2A necessary condition for PSF reconstruction with Eq. (4) to be well-
posed in this context is that each row and each column is sampled at least L

times. Sampling more than this will improve the conditioning of the problem.

Fig. 1. Simulated PSF spatiotemporal reconstruction (L=5) using

IRPF with ∼ 27% of the full data. The left and right sides of the

figure show different temporal frames.

lems where the number of reconstructed time points M is large. For

example, a complex rank-5 matrix of size 2562 × 18 has 6.6× 105

real degrees of freedom and 1.2×106 complex entries, meaning that

it would be necessary to sample at least 25% of the matrix to have

any hope of successful reconstruction. In contrast, a complex rank-

5 matrix of size 2562 × 52 still has roughly 6.6 × 105 degrees of

freedom, but has significantly more (i.e., 3.4 × 106) entries, so that

accurate reconstruction is conceivable with only 10% of the data.

Another practical issue for Eq. (4) is the choice of L, which

can represent a trade-off between the expressive power of the signal

model and the conditioning of the inverse problem, as illustrated in

Fig. 2. While the total error is low for L = 3,3 this choice fails to

capture all of the signal dynamics. We prefer to use L = 5, since

this choice reconstructs local contrast kinetics more faithfully, de-

spite higher total error. In this light, choice of an appropriate L is

nontrivial, and should be made based on the imaging context. Simi-

lar comments can be made with regard to the choice of ε in Eq. (5).

Finally, a number of extensions to the proposed PSF reconstruc-

tion scheme are possible. For example, by invoking general linear

sampling operators A, it becomes possible to incorporate any prior

information that might be available regarding the known spatial-

spectral support of the spatiotemporal image [1, 4, 5]. A preliminary

investigation of this is presented in [23], in the context of cardiac

MRI. In addition, a more general choice of A makes it possible to

model non-Fourier acquisition physics, which could be useful for a

variety of imaging contexts. It is also relatively straightforward to in-

clude additional regularization in the formulation of the problem, if

3This is the rank selected by the small-sample corrected AIC [16].
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Fig. 2. Mean-squared reconstruction error for different model or-

ders. As L increases, the signal model has better capability to repre-

sent the true signal, leading to fewer signal features being apparent

in the error map. However, this additional flexibility comes at the ex-

pense of conditioning, which is reflected by the increasing “noise”

component of the error maps with increasing L.

additional prior information is available. Another interesting exten-

sion is the generalization to low-rank tensor recovery [24], as this can

enable accelerated reconstruction of PSFs with higher-dimensional

structure (e.g., see Eq. (4) of [3]).

5. CONCLUSIONS

This paper has presented a matrix recovery approach to estimating

spatiotemporal images from sparsely sampled data, based on the as-

sumption that the underlying function is partially separable. Partial

separability leads to the formulation of a low-rank matrix recovery

problem, which can be solved to yield high-quality reconstructions

from “arbitrarily”-sampled data. Thus, the combined PSF/matrix-

recovery approach provides a flexible way to reconstruct partially-

separable spatiotemporal images from limited data.
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