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ABSTRACT

Automated methods for image segmentation, image registration,
clustering of images and probabilistic atlas construction are of great
interest in medical image analysis. In this work, we propose a model
where these different aspects are combined in one comprehensive
probabilistic framework. The framework is formulated as an EM
optimization algorithm. Validation is performed on simulated and
real images in terms of segmentation, clustering and atlas construc-
tion. Accurate segmentations are obtained and the different modes
in a population of normal controls and Huntington disease patients
are discovered. Furthermore, our method reveals the localization
of cluster specific morphological differences for each image in the
population.

Index Terms— Segmentation, Clustering, Probabilistic Atlas
Construction, Registration

1. INTRODUCTION

Segmentation of relevant brain structures in MR images can provide
important information about neurological diseases and their pro-
gression. However, manual delineation of these structures is time
consuming and susceptible to inter- and intra-observer variability.
Therefore, there is a need for automated brain image segmentation
methods. Such methods often rely on probabilistic brain atlases,
i.e. templates representing the average brain anatomy of populations
and their variability which can be constructed in many different
ways [1, 2, 3, 4]. Their performance can be improved by using
brain atlases better adapted towards the images to be segmented.
This can be achieved for instance by creating and selecting appro-
priate population-, subgroup- or even subject-specific atlases [5, 6].
In [5], images of a population are clustered into different subgroups
which are used to create subgroup-specific atlases. In [6], atlases
are directly constructed in the space of the image to be segmented.
It must be noted that also the brain atlases and clustering methods
themselves are of great interest in medical image analysis as they
allow the investigation of structural and functional characteristics.
The atlases show a mean template and the variability in a population,
while the clustering helps us to find new subgroups, to understand
and discover structural differences and similarities between the sub-
groups and to localize these differences.
Another way to create atlases well adapted to the image to be
segmented is by using atlas-to-image registration techniques [7].
Moreover, recently, probabilistic models have been presented which

Fig. 1. Total scheme of framework: (1) Segmentation using previ-
ous estimation of atlases and Gaussian mixture model, (2) Cluster-
ing, (3) Atlas formation, (4) Atlas-to-image registration.

combine atlas-based registration with an intensity-based segmen-
tation model in one unified framework [8, 9, 10]. As such both
techniques cooperate to obtain the final segmentation result. Finally,
some techniques avoid the use of an atlas by segmenting a group of
images simultaneously and hence build models (priors) implicitly or
explicitly during the algorithm [11, 12, 13].
In this paper, we present a comprehensive probabilistic model that
captures the previously described techniques from literature in one
unified framework where they can all benefit from each other. This
framework, called SPARC, is presented in Figure 1 and iteratively
estimates the Segmentation of the images, the Probabilistic Atlases
per cluster, the atlas-to-image Registrations and the Clustering. The
model is formulated as a maximum a posteriori (MAP) problem and
optimized using an expectation maximization (EM) procedure.

2. METHOD

In this section, we describe a probabilistic model that tries to seg-
ment simultaneously a set of brain MR images and clusters them into
different subgroups. Our model is defined in such a way that also a
probabilistic brain atlas will be constructed for each cluster. Let us
denote the image intensities as Y = {Yij} with i = {1 . . . , NI}
the number of images and j = {1 . . . , NJ} the number of vox-
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els. Furthermore, let t = {1 . . . , NT } be the number of clusters
and k = {1 . . . , NK} the number of tissue classes with NT and
NK fixed by the user. We specify now our model and make some
independency assumptions. After correction of the bias field, our
model assumes that the image intensities are generated from a Gaus-
sian mixture model with parameters θ = {μ, σ2} for each tissue
class separately. The bias field is estimated as in [14] and we denote
the bias field parameters for each image i as Ci. The probability
density function on the image intensities can therefore be written as
P (yij |θik, Ci). Furthermore, priors are added to our model. The
prior probability of the tissue labeling L = {lijk} is the probabil-
ity of having tissue class k in voxel j of the atlas t deformed to
image i. The probabilistic atlas for cluster t is itself a parameter
that needs to be estimated. The prior probability on the labeling can
thus be denoted as P (lijk|Atk, Rtij) = Atk(Rti(j)) with Atk the
probability map of tissue class k in the atlas of cluster t and Rti

the atlas-to-image deformation field. Furthermore, a uniform prior
is put on the clustering, i.e. parameter π. Lastly, for the prior on the
atlas-to-image registration R, we assume that the registration can
be modeled as the realization of a random process with a Gaussian
probability density function with mean G and variance ε2. Remark
that parameter G can be interpreted as a groupwise registration for
each cluster between the atlas and the set of images belonging to
that cluster. In other words, applying this registration on the esti-
mated atlas, brings the atlas to the space where the least deformation
is necessary. The parameter ε2 represents then the variability be-
tween the atlas-to-image registration and the groupwise registration.
The prior is denoted as P (Rtij |Gtj , εt).
Our model with parameters Υ = {θ, C, A, π, R, G, ε2}, needs to be
optimized by the following MAP problem:

Υ̂ = arg max
Υ

log P (Υ|Y ) ∝ arg max
Υ

log P (Y, Υ).

An estimation of the segmentation and clustering is straightforward
once the model parameters Υ are known. Estimation of the model
parameters, in turn, is helped by knowledge of the segmentation and
clustering. Therefore, the MAP problem can be rewritten as

Υ̂ = arg max
Υ

log

[∑
L,Z

P (Y, L, Z, Υ)

]
(1)

with L = {lijk} the tissue labelmaps and Z = {zit} the clustering
parameters. To solve this problem with hidden variables, we derive a
lower bound using Jensen’s inequality which we can optimize using
the EM algorithm. The Q-function (E-step) can now be written as
follows:

Q(Υ|Υη) = EL,Z|Y,Υη [log P (Y, L, Z, Υ)]

∝

NI∑
i=1

NJ∑
j=1

NK∑
k=1

NT∑
t=1

P (lijk, zit|yij , Υ
η

ijkt) · [log P (yij |θik, Ci)

+ log P (lijk|Atk, Rtij) + log P (zit|πit)

+ log P (Rtij |Gtj , εt)] (2)

where η denotes the previous iteration step and where an expression
for the posterior can be found using Bayes’rule:

bitjk = P (lijk, zit|yij , Υijkt)

=
P (yij |θik, Ci)Atk(Rti(j))πitP (Rtij |Gtj , εt)∑

t

∑
k P (yij |θik, Ci)Atk(Rti(j))πitP (Rtij |Gtj , εt)

The sum over all clusters t of the posterior gives us the soft segmen-
tations, denoted as pijk. They can be interpreted as the weighted
sum of the ‘sub’-classifications pijkt, obtained using the Gaussian
intensity model and the deformed atlas of cluster t. The sum over all
tissue classes k of the posterior gives us the probability that a certain
voxel j of a certain image i belongs to a certain cluster t (clustering
per voxel, denoted as ρitj). We could average this term over all
voxels j to obtain a global clustering parameter. The computation
of the clustering itself is interesting as it is a natural mixture of
different aspects: the prior on the clustering, the distance between
the atlas-to-image registration and the groupwise registration, and
the sum over all tissue classes of the subsegmentation pijkt. This
last aspect can be interpreted as looking for an atlas that agrees with
the intensity model and is as sharp as possible. For interpretation
purposes later on, we remark that bitjk = ρitj · pijkt.

In the M-step, the parameters are updated by maximization of Q. As
the probability density function on the intensities is independent of
the number of clusters t and

∑
t
bitjk = pijk, the Gaussian mixture

parameters and the bias field parameters are completely similar as
in [14].
The atlases, the atlas-to-image registrations and the groupwise reg-
istrations have to be updated simultaneously because they depend
on each other. Instead, we start with updating the groupwise regis-
tration and the atlases making use of the atlas-to-image registration
of previous iteration. For the groupwise registration G we find:

∂Q

∂Gtj

= 0 ⇒ Gtj =

∑
i
ρitjRtij∑
i
ρitj

. (3)

The atlases, given the atlas-to-image registrations, can be determined
as follows:

∂Q

∂Akt

=
∑

i

ρit(R
−1
it (u))pikt(R

−1
it (u))

Akt(u)
|Jac(R−1

it (u))| = 0

where we interpret our discrete lattice temporarily as continuum. In
other words, the equation is obtained by rewriting the sum over the
voxels j as an integral and using the substitution u = Rit(j). This
equation together with the constraint that

∑
k

Akt(u) = 1 for all t
and all u, gives us the following solution for the atlas:

Anew
kt (u) =

∑
i
ρit(R

−1
it (u))pikt(R

−1
it (u))|Jac(R−1

it (u))|∑
i
ρit(R

−1
it (u))|Jac(R−1

it (u))|
(4)

However, we are looking for voxel j = R−1
it (u) in the space of im-

age i. Therefore, the atlas needs to be registered towards the image
space using previous atlas-to-image registration Rit: Anew

kt (u) =
Anew

kt (Rti(j)). Remark that the atlas construction is largely similar
to [2, 3].
Also, the atlas-to-image registration can be updated and we find fol-
lowing derivative:

∂Q

∂Rtij

= 0 ⇒

⎡
⎣∑

k

ρitj
pitjk∑8

b(j)=1 wib(j)tAb(j)kt

8∑
b(j)=1

∂wib(j)t

∂Rtij

Ab(j)kt

]
− ρitj

(Rtij − Gtj)

ε2tj
= 0 (5)

with wib(j)t trilinear interpolation weights and b(j) the neighbors
of voxel j in the deformed atlas. It is clear that there is no closed
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form solution, but the derivative gives direction to maximize the Q-
function and hence to find an optimal deformation field. To obtain
a physically acceptable deformation field, some form of regulariza-
tion is required to impose local smoothness. This is performed by
using the free-form registration approach of [7] where the derivative
is interpreted as a force field to drive the viscous fluid regularizer by
iteratively solving a simplified Navier-Stokes equation. Remark that
the term ρitj can be seen as a weighting term to penalize the force
field in voxels with a lower probability to belong to cluster t during
the smoothing.
Finally, the prior on the clustering parameter can be updated:

∂Q

∂πit

= 0 s.t.
∑

t

πit = 1 ⇒ πit =
1

NJ

∑
j

ρitj . (6)

3. EXPERIMENTS AND RESULTS

Three different aspects of the algorithm can be validated: the cluster-
ing, the segmentation performance and the constructed probabilistic
atlases. SPARC was implemented for the segmentation of the ma-
jor brain tissue classes, i.e. white matter (WM), gray matter (GM)
and cerebrospinal fluid (CSF), so validation will rely on these. Fur-
thermore, in the algorithm, registrations are performed nonrigidly.
Therefore, prior to performing SPARC, the images used in the ex-
periments were affinely aligned with the MNI space using mutual
information [15]. Our validation is based on two experiments.

3.1. Experiment 1

The first experiment makes use of twenty simulated MR images [16]
and aims to validate the segmentation performance as a ground truth
for white matter, gray matter and CSF is available. As all images
are simulated from normal brain MR data, the number of clusters
in the algorithm is fixed to one. The segmentation performance
is measured in terms of the Dice overlap measure, i.e. Dice =
(2 · |Lc

⋂
Lg |)/(|Lc| + |Lg |) with Lc the computed labels and Lg

the ground truth.
The overlap measures and their standard deviation (std) are pre-
sented in Table 1. For comparison, also the Dice values of meth-
ods [9] and [14], called EEM and EMS, applied to the same data
set, are presented. An example of a segmented image is also shown
in Figure 2. It becomes clear that an accurate segmentation perfor-
mance is obtained using our algorithm.

3.2. Experiment 2

The second experiment relies on two data sets. The first one contains
eight MR images of healthy persons and the second one contains
eight MR images of Huntington disease patients (HD). All images
have image dimensions of 256 × 256 × 182 and voxel sizes around
1mm3. In this experiment, we validate the clustering, we take a look
at the obtained probabilistic atlases and we compare the segmenta-
tion with the one obtained by using the EEM algorithm of [9]. Again,
we use the Dice overlap measure and consider the segmentations ob-
tained from EMS [14] as ground truth. The algorithm is initialized
by setting the probabilities of all cluster parameters equal to a half.
The initial estimations for the atlases equal the average over all im-
ages, giving one image that has a large probability to belong to that
cluster a larger weight.

WM GM CSF
SPARC 92.41 ± 0.85 90.47± 0.89 82.17± 2.90

EEM 89.67 ± 1.36 86.68± 1.84 70.76± 3.40

EMS 92.60 ± 0.74 90.63± 0.92 82.29± 3.00

Table 1. Dice coefficients and std ×100 for Brainweb data.

WM GM CSF
SPARC1 97.45± 0.39 93.24 ± 0.97 73.34 ± 6.12

EEM1 94.74± 0.90 88.66 ± 0.71 67.40 ± 5.51

SPARC2 97.36± 0.22 93.94 ± 0.46 82.76 ± 1.77

EEM2 93.38± 1.42 87.50 ± 1.27 76.45 ± 2.87

Table 2. Dice coefficients and std ×100 for experiment 2 where
the first two lines represent the results for the normal data (1) and
the last two for the HD data (2).

We observe that 12 of the 16 images are classified in the correct
cluster. For the four misclassified data, we remark that the cluster
probabilities are much closer to a half. Furthermore, the wrong clas-
sified images are all HD images and less brain atrophy is present in
these images than in the other HD images. Therefore, less deforma-
tion is necessary for registering those images to a normal image than
to a HD with large brain atrophy. One can conclude that it would be
more appropriate to include an extra cluster.
Morphological differences between both groups are made apparent
in the constructed atlases and the clustering maps (Figure 3). For in-
stance, a reduction in putamen and nucleus caudatus and an enlarge-
ment of the ventricles is clearly visible when comparing the atlas of
the normal group against the atlas of the HD group. The clustering
map represents the probability that a certain voxel belongs to a cer-
tain cluster. In Figure 3, we show the clustering map of a normal
image to belong to the HD group. The blacker the voxel, the lower
the probability to belong to that cluster. Remark, that the image in-
tensities of this Figure are rescaled for visibility purposes, so white
does not correspond with a probability of one to belong to that clus-
ter. The morphological differences are again clearly visible.
The atlases are a good representation of the images belonging to the
same cluster. Remark that the ventricles in the atlas of the cluster
containing ‘normal’ data are slightly larger than those of an atlas
constructed completely from brains of healthy persons, as the clus-
ter also contains brain images of HD patients with small brain atro-
phy. The atlases are already quite sharp, but could have been sharper
when allowing more deformation, in other words for a larger choice
of the variance parameter ε2.
Lastly, the segmentation performances of our algorithm for both the
normal data (1) and the Huntington disease patients (2) are presented
in Table 2 and two images are shown in Figure 2.

4. DISCUSSION AND CONCLUSION

In this paper we have presented a method for automatic segmen-
tation and clustering of a set of brain MR images, which are both
important aspects in the study of many neurological diseases for
characterizing structural and functional differences and similarities
between different (sub-)populations and for the localization of these
differences. Also, our framework delivers completely automati-
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Fig. 2. Ground truth (blue) and segmentations obtained using
SPARC (green) and EEM (red) of Brainweb data, normal data and
HD data.

Fig. 3. From left to right: atlas for normal data, atlas for HD and
clustering map for a normal image to belong to the HD cluster. Mor-
phological differences are clearly visible, e.g. brain atrophy in puta-
men and nucleus caudatus and enlarged ventricles.

cally population-specific atlases which can later on serve as more
appropriate prior information for more low-level segmentation ap-
proaches. Furthermore, the presented method is a mathematically
comprehensive framework for a large part of recently published
methods and where the different methods benefit from each other.
Validation studies using restricted data sets show us promising
results. Accurate segmentation results are obtained and different
modes in a population can be traced. However, different parts of the
algorithm can still be improved. The choice of the variance on the
deformation field, determining the flexibility of the deformations,
for instance is here chosen to be equal in each voxel and each di-
rection. Instead, this parameter could be learned from a training
data set and vary along different tissue classes, directions and for
different diseases. Also, the prior on the clustering can be refined,
for instance by giving a larger weight to regions where we expect to
see differences. Therefore, future work will focus on improving the
priors and on application driven studies.

5. REFERENCES

[1] B. Avants and J.C. Gee, “Geodesic estimation for large defor-
mation anatomical shape averaging and interpolation,” Neu-
roImage, vol. 23, pp. 139–150, 2004.

[2] S. Joshi, B. Davis, M. Jomier, and G. Gerig, “Unbiased diffeo-
morphic atlas construction for computational anatomy,” Neu-
roImage, vol. 23(1), pp. 151–160, 2004.

[3] P. Lorenzen, M. Prastawa, B. Davis, G. Gerig, E. Bullitt, and
S. Joshi, “Multi-modal image set registration and atlas forma-
tion,” MedIA, vol. 10(3), pp. 440–451, 2006.

[4] K. Van Leemput, “Encoding probabilistic brain atlases using
bayesian inference,” IEEE, Trans. Med. Img., vol. 28(6), pp.
822–837, 2009.

[5] M.R. Sabuncu, S.K. Balci, M.E. Shenton, and P. Golland,
“Image-driven population analysis through mixture modeling,”
IEEE Trans. Med. Img., vol. 28, pp. 1473–1487, 2009.

[6] M. Murgasova, D. Rueckert, D. Edwards, and J. Hajnal, “Ro-
bust segmentation of brain structures in MRI,” ISBI, pp. 17–20,
2009.

[7] E. D’Agostino, F. Maes, D. Vandermeulen, and P. Suetens, “A
viscous fluid model for multimodal non-rigid image registra-
tion using mutual information,” MedIA, vol. 7(4), pp. 565–575,
2003.

[8] J. Ashburner and K.J. Friston, “Unified segmentation,” Neu-
roImage, vol. 26, pp. 839–851, 2005.

[9] E. D’Agostino, F. Maes, D. Vandermeulen, and P. Suetens, “A
unified framework for atlas based brain image segmentation
and registration,” WBIR, LNCS, vol. 4057, pp. 136–143, 2006.

[10] K.M. Pohl, J. Fisher, W.E.L. Grimson, R. Kikinis, and W.M.
Wells, “A Bayesian model for joint segmentation and registra-
tion,” NeuroImage, vol. 31, pp. 228–239, 2006.

[11] V. S. Petrovic, T. F. Cootes, C. J. Twining, and C. Taylor, “Au-
tomatic framework for medical image registration, segmenta-
tion and modeling,” MIUA, vol. 2, pp. 141–145, 2006.

[12] K. K. Bhatia, P. Aljabar, J.P. Boardman, L. Srinivasan, M. Mur-
gasova, S.J. Counsell, M.A. Rutherford, J. Hajnal, A.D. Ed-
wards, and D. Rueckert, “Groupwise combined segmentation
and registration for atlas construction,” MICCAI, LNCS, vol.
4791, pp. 532–540, 2007.

[13] J. Xu, F. Liang, and L. Gu, “Bayesian co-segmentation of mul-
tiple MR images,” in ISBI, 2009.

[14] K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens,
“Automated model-based bias field correction of MR images
of the brain,” IEEE Trans. Med. Img., vol. 18(10), pp. 885–
896, 1999.

[15] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and
P. Suetens, “Multimodality image registration by maximization
of mutual information,” IEEE Trans. Med. Img., vol. 16(2), pp.
187–198, 1997.

[16] B. Aubert-Broche, M. Griffin, G.B. Pike, A.C. Evans,
and D.L. Collins, “Twenty new digital brain phan-
toms for creation of validation image data bases,” IEEE
Trans. Med. Img., vol. 25(11), pp. 1410–1416, 2006.
http://www.bic.mni.mcgill.ca/brainweb/.

859


