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ABSTRACT

In recent years, statistical shape models, of which Active Appear-
ance Models (AAMs) are a subset have been increasingly applied
to the automatic segmentation of medical images. AAMs are a lo-
cal search technique requiring good initialisation. In 3D automatic
initialisation can be achieved by multiple initialisations, registration,
template matching or by application dependent heuristics. The first
three can be sub-optimal in certain situations, whilst the last is not
generic.

We describe a generic, fast and automated method of initialising
3D AAMs using sparse local models of texture (the parts) together
with a graph capturing their pairwise geometric relationships. Ini-
tialisation then becomes a matter of searching for the parts using
the parts-and-geometry model, from which the necessary pose and
shape parameters are obtained.

We demonstrate the method by applying it to the segmentation
of 10 subcortical structures from 3D MRI sequences of the head.

Index Terms— Segmentation, Statistical shape models, Active
appearance models, Markov Random Fields, Graphs

1. INTRODUCTION

Segmentation is a necessary step in the analysis of medical images
for clinical and research purposes. As the use of imaging for diag-
nosis, treatment and research proliferates, the development of fully
automatic 3D segmentation methods is becoming increasingly im-
portant. Automated segmentation can help to free clinician time, im-
prove consistency in segmentations and decrease the turnaround time
required to analyse images. Active appearance models (AAMs)[1]
have found widespread use in computer vision and medical image
analysis. In 2D they are widely used for face detection, object recog-
nition and segmentation of medical images. In 3D medical image
analysis they have been used for segmentation e.g. [2],[3] and track-
ing of the heart e.g. [4].

The speed of AAMs comes from their search algorithm which
uses the precomputed relationship of model parameters to residuals
from fitting to known examples. However, AAM search is a local
optimisation and therefore needs good initialisation. Furthermore,
in some applications local AAMs of sub-regions within an image are
desirable. For example to model the region around the hippocampus
in a MR brain scan or the kidneys in an image of the torso. Auto-
mated initialisation is therefore a necessary step in the AAM search
pipeline.

In this work we propose creating sparse local models with pair-
wise geometric relationships for the initialisation task. We describe
an automated method for parts selection and demonstrate the effect
of including pairwise geometric constraints to reduce problems with
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false matches which can occur if the parts are used independently.
Furthermore, we apply the models to initialisation in segmenting
subcortical structures from MRI images of the brain.

2. BACKGROUND

A wide range of methods have been used for initialising models
in 2D, including searching for the approximate global pose with a
single detector (such as a face detector [5]), searching for a small
set of manually chosen local features using a sparse model such
as [6] or using many multiple initialisations and choosing the best
[7, 8]. Donner et al.[9] build Sparse MRF Appearance Models from
symmetry-based interest points and match these to query images us-
ing a Markov random field formulation. Mitchell et al. [10] use
AAMs to segment 2D slices of the heart and perform automated
initialisation by identifying the left ventricle midpoint using Hough
transforms. This determines the initial position of their model and
multiple instances with different orientations about this position are
generated. The instance giving the lowest residual is used.

In 3D the variety of methods used for automated initialisation
have been limited to application specific heuristics, generation of
multiple instances and registration. Kainmueller et al.[11] use a
generalised Hough transform method to search for line features in
initialising their statistical shape model based method for segment-
ing the mandible. Stegmann and Pedersen [4] generate multiple in-
stances centred at points on a regular grid within the query image.
Heimann et al. [12] sample the parameter space. They perform a
global search using an evolutionary algorithm to find the best initial-
isation parameters by optimising 1000 possible sets of model param-
eters over 40 iterations. Mitchell et al.[3] Extend their 2D method
into 3D, identifying the same structure as in the 2D case, and per-
forming multiple initialisations at different orientations. Generating
multiple instances for automated initialisation is sub-optimal and re-
quires a judicious choice of sampling rates for the parameter space,
or a choice of positions from which to initialise the model.

Patenaude [13] in segmenting subcortical brain structures use a
reference frame defined by the MNI 152 atlas. The query image
is registered into this space before the application of their Bayesian
Appearance Model.

Our approach bears similarities with [9] and [3]. However,
unlike [3], rather than selecting a specific anatomical structure to
use during initialisation, our algorithm automatically selects points
which can be reliably located. Furthermore, we use more than one
point, therefore do not need to determine pose separately, and our
method does not involve multiple initialisations. A sparse local
model framework capturing geometric relationships is used to lo-
cate the feature points in a query image similar to [9], however our
implementation is in 3D.
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3. METHODOLOGY

Our task is to obtain pose and shape parameters required to initialise
a model in a query image. The basic idea of our approach is to au-
tomatically identify a sparse set of feature points in the query image
and deduce the parameters using these. Local models are used in
feature detection. Each of these propose multiple locations for their
feature and the optimal set of candidates is selected using the parts-
and-geometry framework described in section 3.3.

3.1. Evaluating local models

Firstly, we establish correspondence across the training set to give
a set of deformation fields for each training image - for example by
registering the training images. This allows us to obtain an “aver-
age” reference image, together with dense deformation fields which
define the mapping from the reference to each training image. There-
fore, we can compute the point in each training image corresponding
to a given point in the reference image.

For a particular location or node in the reference image, we can
construct a feature detector based on a region of size (2Lx + 1) x
(2Ly + 1) x (2Lz + 1) centred on the node. In the following we
use normalised correlation, with a mask based on the region in the
reference image. Applying the feature detector to a query image
gives a response image, the local peaks of which are the candidates
for this particular detector.

For each training image Ii, there exists a deformation field Θi

allowing a mapping of space between it and the reference. Apply-
ing the feature detector to Ii gives Ri, the response image. Let pk

specify the position of a node in the reference. Its position in Ii and
Ri is Θi(pk). We can then define a function D that computes the
distance between a local peak located at pl in the space of Ri and
the expected position of a node in this image:

Di(pk,pl) = ||Θi(pk)− pl|| (1)

For a good detector the best response will be close to the true
position Θi(pk) in every image in the training set. However, a de-
tector may still be useful if one of the best peaks is close to the true
position.

3.2. Feature point selection

Local feature detectors are built centred on a large number of nodes
(typically over 1,000) at a range of sizes and at different resolutions
of the reference image (for the purposes of this paper control points
of a shape model were used - see section 3.5). Each is then evaluated
on a set of images. The success rate in locating the nodes and the
average value of Di over the set are computed and used to evaluate
the reliability of each node. The N most reliably located nodes can
be selected to be used in building the parts-and-geometry model. An
algorithmic description of the selection process is given below:

For each node, at each region size and image resolution:

1. Build a feature detector for the given node

2. For each image:

(a) Build a pyramid and select appropriate level

(b) Run the feature detector to give a response image

(c) Locate local peaks and rank by them by the magnitude
of their responses

(d) For each peak compute Di using equation 1

(e) Record the rank, ri, of the peak with smallest Di.

The feature detectors are then ordered. Firstly by the average
rank (average of ri), then secondly by the average value of the small-
est Di. In the experiments below a number of detectors were found
to always have their best response being the closest to the true po-
sition (average value of ri across the training set ≈ 1). These were
then ranked by the average positional error when selecting a sub-
set of good detectors. We also desire that the detectors are spread
around and not clustered in one region. We address this in a greedy
manner by selecting the best detector, then iteratively selecting the
next best detector not within a specified radius of the current set of
chosen detectors.

3.3. Parts and geometry models

Our approach is based on a parts-and-geometry framework which is
widely used in computer vision e.g. [6]. The parts are the nodes and
the geometry is defined by the pairwise relationships between them
(see Figure 2). Let p = (x, y, z) be the proposed position of a patch
and pi(I|p) the probability that patch i matches to image I at the
given location. Let pij(pi,pj) be the probability that two patches
i and j have the given positions. Assume that we have modelled
this pairwise relationship for each pair (i, j) ∈ A, where A is a set
defining the arcs in a graph representing the model.

To match such a model to an image, we search the image for
candidate positions for each patch. For each patch we select the
candidate that maximises

C =

kX

i=1

log pi(I,pi) +
X

(i,j)∈A

log pij(pi,pj) (2)

A range of discrete graph based solvers are available to find the
global optimum for such a cost function. We use a variant of that
used by [14], in which a network is created where each node can
be thought of as having at most two parents. The optimal solution
for this can be obtained with a variant of dynamic programming, in
O(NM3) time.

3.4. Building a parts-and-geometry model

We construct the parts-and-geometry model using the selected fea-
ture points (see section 3.2) as nodes. A set of connecting arcs be-
tween the nodes is automatically defined based on the distances be-
tween pairs of nodes. We use a variant of Prim’s algorithm, where
each node has two parent nodes, rather than one. This involves cre-
ating the first arc from the two nodes which are closest together. We
then repeat the following steps until all nodes are linked:

• compute the sum of the distances of each unlinked node to
the closest two nodes in the current linked set

• select the node which has the minimum such distance, and
link it to the two closest nodes in the linked set

This leads to a topology which allows a variant of the dynamic
programming algorithm to efficiently find the global maxima of the
cost function (Equation 2).

3.5. Initialising an AAM

An Active Appearance Model is a statistical model of both the shape
of a structure and its appearance, together with an algorithm for
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matching it to an image. The model is capable of synthesising an im-
age of the object of interest, and the residual differences between the
synthesised image and the target image are used to drive the search.

Shape is typically defined by points in corresponding locations
on each training image. In our implementation this is given by the
positions of control points at corresponding locations within the vol-
ume of each image in the training set. We construct the shape model
by aligning the sets of control points on each image and applying
Principal Component Analysis (PCA). A statistical model of texture
is constructed by warping each grey-level image into the reference
space and applying PCA to the resulting textures. An appearance
model is a combination of the shape and texture models.

For the purposes of initialisation we are interested in the shape
part of the appearance model. If we can locate a sufficiently large
number of the control point nodes in a query image, we can de-
duce the pose and shape parameters needed to initialise an AAM
close to the structure(s) of interest in the query image. The parts-
and-geometry model allows us to do exactly this. We thus use the
control points of our shape model as the potential feature detectors,
and select a reliable subset of these to form the nodes of the parts-
and-geometry model as described in the above subsections.

4. EVALUATION

We demonstrate our method by applying it to the segmentation of
the subcortical structures in the brain. AAMs are well suited to
this task because they incorporate information about both shape and
texture. Some subcortical structures have overlapping gray level
intensities and borders that do not have strong edges. Segmentation
of subcortical structures is important in the investigation of a variety
of neuropathological conditions.

Datasets
We had access to 275 T1-weighted MR brain images and manual
labels of 10 subcortical structures (see Table 1). The MR images
were provided by the Centre for Morphometric Analysis in Boston
USA (see [15] for more details). The data was randomly split into a
training set of 138 images and a test set of 137 images. The training
set was used to build the parts-and-geometry model and the AAMs,
and the test set was used for evaluation.

Processing pipeline
Figure 1 shows the segmentation pipeline used here. We have de-
scribed steps 1 and 2 in detail above – AAM search is well known
(see for example [1]), and an application to segmentatation of sub-
cortical structures was described by Babalola et al. [2].

Fig. 1. The AAM pipeline for complete segmentation of an image.
Our contribution is shown in the shaded region

Fig. 2. Schematic illustration of the parts-and-geometry model
showing pairwise connections of the parts, and axial, coronal and
sagittal views of the regions used the local models in the reference
image

Evaluating selected features
We established correspondence over the training set using the group-
wise method of Cootes et al. [16] to perform non-rigid registration.
The correspondences obtained here were used to construct the refer-
ence by warping each training image into the same space and taking
the mean. The image pyramid of the reference was constructed from
level 0, the original resolution, to level 5, 1

16
th original resolution.

From the 1,063 nodes of the control points we obtained 12 consis-
tently detected nodes of size 9x9x9 at level 2 of the image pyramid.
These were used in the initialisation of the AAM. Although these
nodes were consistently detected over the training set, taking the po-
sition that gave the highest NCC value did not always give the best
candidate over the test set.

We quantify the accuracy of detection of feature points by rank-
ing distances using D (Equation 1) and by the mean value of D. To
quantify the performance of the detectors over the test set we reg-
istered the test set with the reference image. The correspondences
obtained were used solely to calculate D. Using the geometric
relationships from the model improved the mean ranking by D

of the selected response from 1.07 ± 0.41 to 1.01 ± 0.10 (n=137)
and the corresponding mean error between the expected position and
the located position was reduced from 5.9±7.3mm to 5.6±4.8mm.

Evaluating performance during segmentations
We run three segmentation experiments in which the global AAM
(see Figure 1) is as follows.

• The global AAM is built from whole brain images, and ini-
tialisation is from the model mean

• The global AAM is built from the subregion containing the
subcortical structures and initialisation is by using the best
response (highest normalised correlation - NCC) of the local
detectors

• The global AAM is as above, but initialisation is by using the
candidates selected by the parts-and-geometry model

We quantitatively measure the performance of the segmentation us-
ing the Dice similarity metric [17] to compare the overlap of the
AAM search result with that of the manually labelled version for
each structure. Table 1 shows the Dice overlap values per structure
for AAM search initiated in the three different ways, and Table 2
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Structure Whole Subcortical Subcortical
brain AAM AAM
AAM best NCC parts-geometry

Accumbens 70.1 (15.1) 41.1 (36.2) 72.5 (6.6)
Amygdala 71.1 (13.3) 43.7 (36.3) 74.3 (6.6)
Brain stem 89.2 (15.4) 64.8 (37.5) 91.8 (1.7)

Fourth ventricle 71.8 (16.23) 49.2 (34.7) 74.1 (10.5)
Caudate 86.4 (12.0) 52.3 (42.5) 88.1 (2.8)

Hippocampus 80.3 (13.5) 52.1 (38.7) 82.6 (3.2)
Ventricle 88.6 (11.4) 57.1 (41.5) 90.0 (3.4)
Pallidum 81.0 (12.7) 48.9 (40.2) 83.1 (3.1)
Putamen 88.7 (11.5) 54.2 (43.5) 90.3 (1.8)
Thalamus 89.1 (11.2) 58.0 (41.7) 90.6 (1.7)

All structures 81.8 (14.9) 51.6 (39.6) 83.8 (3.9)
Table 1. Mean (and sd) Dice values over structures for 137 images
after AAM search using the following initialisation and global model
combinations 1) AAM of the whole brain initialised from the mean,
2) subcortical AAM and feature points based on best NCC, 3) sub-
cortical AAM and a parts-and-geometry model. Note the large stan-
dard deviations of the first two methods due to segmentation failures
because of poor initialisation.

Method < 50% < 60% < 70%
Whole brain AAM 2.8% 4.5% 10.0%

Subcortical AAM & NCC 40.8% 42.1% 45.7%
Subcortical & parts geom 0.2% 1.8% 7.4%

Table 2. Percentage of results with Dice values under 50%, 60%
and 70% for initialisation of AAM search by the different methods
stated in column 1. The figures are percentages from all structures
over the 137 test images

shows the percentage number of segmentation results that had Dice
overlap values below 50%, 60%, and 70%.

5. DISCUSSION AND CONCLUSIONS

We have described a completely automatic method for selecting a set
of feature detectors which can be used to initialise a 3D deformable
model. This involves testing a large number of candidate detectors
and selecting those which are most reliable. Our method is generic
and avoids the need to manually select points in an arbitrary or oth-
erwise fashion. We have demonstrated its use by applying it to the
segmentation of the subcortical structures in brain images. It gives
results on par with those of other leading methods (see e.g. [15],[2]).

Tables 1 and 2 shows that including the geometrical constraints
improves the performance of the initialisation of the models in the
subcortical region (without any noticable effect on speed). We be-
lieve the value of this work lies more in applications which require
the location of subregions within a larger volume – such as the seg-
mentation of the kidney in MR images of the torso. Although we
focussed on the application to segmentation, the parts-and-geometry
models described here can also be used to initialise registration.

In future work we will explore other methods of using combina-
toric algorithms to include multiple candidates. We intend to explore
the use of more sophisticated features such as 3D SIFT or those re-
turned by 3D corner detectors. We also intend to investigate other
methods of matching the local models other than normalised corre-
lation.
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