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ABSTRACT
We propose a method of correction for distance-dependent

blurring, which is one of the limiting factors to achieving

higher resolution in 3D reconstructions of biological spec-

imens from 2D projections obtained by an electron micro-

scope. Our proposed correction is based on the frequency-

distance relation that has been used successfully in correction

of a similar problem in single photon emission tomography

and has been suggested for electron microscopy data obtained

by rotating a sample around a single axis. We extend these ap-

proaches to electron microscopy data that are obtained from

arbitrary directions. We develop the theoretical background

for a correction method that results in an estimate of a true

projection data set, which then can be used to obtain a 3D

reconstruction by any currently existing algorithm.

Index Terms— distance-dependent blurring, contrast

transfer function, electron microscopy, stationary phase

1. INTRODUCTION

Three-dimensional cryoelectron microscopy is a powerful

tool for solving the structure of macromolecular complexes,

providing resolution of order of a nanometer. The reconstruc-

tion techniques available these days turn the images obtained

by an electron microscope (called micrographs) into three-

dimensional models of biological structures as they exist in

their native environment [1]. The models of the blurring

that occurs in electron microscopes that are used by these

reconstruction techniques are not completely accurate. Most

models ignore the dependence of the blurring function on the

distance from the electron source. This dependence is not

important when the desired resolution is not great or when

the specimen is small. As both the desired resolution of the

final reconstructions and the size of the imaged specimens

increase, the distance dependence can no longer be ignored.

The point spread function (PSF) is the response of an

imaging system to an isolated point. In electron microscopy

it is usually specified by its Fourier transform, which is re-

ferred to as the contrast transfer function (CTF). The CTF af-

fects various frequencies by modulating the magnitude and by

changing the sign of their amplitudes. In electron microscopy,

the PSF is translation invariant within any plane perpendicular

to the direction of electron beam, but changes from one such

plane to the next. This is due to the dependence of defocus

(one of the properties of an electron microscope encapsulated

in the CTF) on the distance from the electron source. In mi-

crographs the blurring caused by CTF has features both of

smearing and size distortion ("zooming", deformation, etc.)

that are dependent on the distance from the electron source.

The size distortions are clearly visible in projection data in

Fig. 1.

Several authors have approached this problem so far

[2, 3, 4, 5, 6]. In the present work, we provide a fully three-

dimensional generalization of the approach presented by

Dubowy and Herman [5]. Our work is a generalization to 3D

of the frequency-distance relation that was proposed for re-

construction of 2D activity distribution from 1D projections

in SPECT [7]. Dubowy and Herman [5] developed an ap-

proach based on the principle of stationary phase that solves

the problem of distance-dependent correction in the case of

2D projections obtained around a single axis of rotation. In

this paper we propose generalization of this approach to 2D

projections obtained from arbitrary directions.

2. MATHEMATICAL BACKGROUND AND
NOTATION

Let X1, X2, and X3 be coordinate axes of a Cartesian coor-

dinate system attached to a microscope, with the X3-axis par-

allel to an electron beam. Thus, projections are always taken

parallel to the X3-axis and it is the molecule that is rotated to

obtain various projections.

Let S = [0, 2π)× [0, π) be the set of directions in R
3. For

any (θ, φ) ∈ S, we define the rotation matrices

Dθ =

0
@

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1
A , Dφ =

0
@

cos φ 0 sin φ
0 1 0

− sin φ 0 cos φ

1
A .

(1)

Dθ is a right-hand rotation by θ in the X1X2-plane and Dφ

is a right-hand rotation by φ in the X1X3-plane. For shorter
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and clearer notation we define

(
xF

1 (θ, φ) , xF
2 (θ, φ) , xF

3 (φ)
)T = D−1

θ D−1
φ (x1, x2, x3)

T

(2)

and

(
xB

1 (θ, φ) , xB
2 (θ) , xB

3 (θ, φ)
)T

= DφDθ (x1, x2, x3)
T

.
(3)

The method of stationary phase [8, Chapter 1] is used for

the evaluation of highly oscillatory integrals of the form

I (ξ) =

c2∫
c1

G (σ) eiξF (σ)dσ. (4)

If G is a smooth function, F is twice differentiable, and all

stationary points (points at which the second derivative of F
is zero) of F are non-degenerate, then, as ξ → ∞, the integral

in (4) can be well approximated by a sum over the stationary

points of F . It has been shown in many practical applications

[5, 7, 9] that the sum approximates the original integral very

well even for small values of ξ. In our work, the actual sum-

mation formula is not relevant. We simply make use of the

fact that such an approximation is possible.

3. PROJECTION DATA

3.1. Blur-free projection data

Mathematically ideal projection data (data available from all

directions and no noise) that would be generated by a blur-

free electron microscope are modeled by

[Pv] (θ, φ, x1, x2) = [CRv] (θ, φ, x1, x2) (5)

where C is an operator that integrates along the electron beam

direction (X3-axis) and R is an operator that, given a 3D

function v and two angles, θ and φ, rotates v around the X3-

axis by θ and around the X2-axis by φ. C and R are defined

by

[Cw] (θ, φ, x1, x2) =
∫
R

w (θ, φ, x1, x2, x3) dx3, (6)

[Rv] (θ, φ, x1, x2, x3) = v
(
xF

1 (θ, φ) , xF
2 (θ, φ) , xF

3 (φ)
)
.

(7)

3.2. Distance-dependently blurred projection data

3.2.1. Distance-dependent PSF

We denote by h (x1, x2, x3) the point spread function (PSF)

of an electron microscope, and by H (ξ1, ξ2, x3) its Fourier

transform in the first two variables, referred to as the contrast

transfer function (CTF). The 2-dimensional Fourier trans-

form of the PSF shifted perpendicularly to the X3-axis to the

point (x′1, x
′
2, x3) can be computed using the shift theorem

for Fourier transforms∫
R2

h (x1 − x′1, x2 − x′2, x3) e−i(x1ξ1+x2ξ2)dx1dx2

= H (ξ1, ξ2, x3) e−i(x′
1ξ1+x′

2ξ2).

(8)

3.2.2. Blurred projection data

The distance-dependently blurred projection data of v (still

assuming data available from all directions and no noise) col-

lected by an electron microscope can be modeled by

Phv = ChRv, (9)

where Ch, defined by

Ch = C [w ∗ h] , (10)

is an operator that integrates along the X3-axis the function

that is the result of a convolution in x1 and x2 of w and h.

The convolution step is a mathematical model of blurring that

occurs during an imaging process.

3.3. Point object

Consider a case of imaging a “molecule” that is an impulse

located at (x̂1, x̂2, x̂3)
T

. Let κ (x1, x2, x3) = δ (x̂1 − x1)
δ (x̂2 − x2) δ (x̂3 − x3). By (7) the rotated version of κ is

[Rκ] (x1, x2, x3)

= δ
(
x̂1 − xF

1 (θ, φ)
)
δ
(
x̂2 − xF

2 (θ, φ)
)
δ
(
x̂3 − xF

3 (φ)
)
.

(11)

For this particular function though, it is equivalent to

δ
(
x̂B

1 (θ, φ) − x1

)
δ
(
x̂B

2 (θ) − x2

)
δ
(
x̂B

3 (θ, φ) − x3

)
.

(12)

We use the second of these expressions to represent the rota-

tion of κ. The benefit of this will become clear soon.

The blur-free projection data Pκ of our molecule κ is

[Pκ] (θ, φ, x1, x2) = δ
(
x̂B

1 (θ, φ) − x1

)
δ
(
x̂B

2 (θ) − x2

)
,

(13)

as can be seen by applying (5) and (6) to (12). The 4D Fourier

transform of Pκ is

[F4Pκ] (Θ, Φ, ξ1, ξ2)

=
1

(2π)2

2π∫
0

π∫
0

e−i(bxB
1 (θ,φ)ξ1+φΦ)dφ e−i(bxB

2 (θ)ξ2+θΘ)dθ.

(14)

The distance-dependently blurred projection data of κ can

be obtained by applying (9), (10) and two dimensional con-

volution in x1 and x2 to (12):

[Phκ] (θ, φ, x1, x2)

= h
(
x1 − x̂B

1 (θ, φ) , x2 − x̂B
2 (θ) , x̂B

3 (θ, φ)
)
.

(15)
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The 4D Fourier transform of the distance-dependently blurred

projection data of κ is

[F4Phκ] (Θ, Φ, ξ1, ξ2) =
1

(2π)2

2π∫
0

π∫
0

H (ξ1, ξ2, x̂3 (θ, φ))

e−i(bxB
1 (θ,φ)ξ1+φΦ)dφ e−i(bxB

2 (θ)ξ2+θΘ)dθ.

(16)

3.4. Fourier analysis for the point object

We take a closer look now at the complex exponentials in

(14) and (16). Following Xia, Lewitt and Edholm [7] and

Dubowy and Herman [5], we apply the stationary phase

method to the 4D Fourier transforms of blur-free (14) and

distance-dependently blurred (16) projection data sets.

We first define a new function

fθ,Φ,ξ1 (φ) = x̂B
1 (θ, φ) + φ

Φ
ξ1

. (17)

We also need two other functions:

IP
ξ1,Φ (θ) =

π∫
0

e−ifθ,Φ,ξ1 (φ)ξ1dφ, (18)

IPh

ξ1,ξ2,Φ (θ) =

π∫
0

H
(
ξ1, ξ2, x̂

B
3 (θ, φ)

)
e−ifθ,Φ,ξ1 (φ)ξ1dφ,

(19)

which are the inner integrals of (14) and (16). The integrals

in (18) and (19) are highly oscillatory of the form of (4) and

hence can be approximated using stationary phase theory.

Noting from (1) and (3) that the partial derivative of x̂B
1 (θ, φ)

with respect to φ is x̂B
3 (θ, φ), we get that the stationary points

φ̃ of fθ,Φ,ξ1 satisfy f ′θ,Φ,ξ1

(
φ̃
)

= x̂B
3

(
θ, φ̃

)
+ Φ

ξ1
= 0. In

other words, if Sθ,Φ,ξ1 is the (easily shown to be finite) set of

stationary points of fθ,Φ,ξ1 , then

Sθ,Φ,ξ1 =
{

φ̃ | x̂B
3

(
θ, φ̃

)
= −Φ

ξ1

}
. (20)

This is known as the frequency-distance relation and was dis-

cussed initially in the context of SPECT by Xia, Lewitt and

Edholm [7] and then adapted to electron microscopy with sin-

gle axis data collection mode by Dubowy and Herman [5].

The stationary phase approximation is valid only if the

stationary points are non-degenerate; i.e., if the second deriva-

tive of fθ,Φ,ξ1 is not zero at any stationary point φ̃. This fol-

lows easily from (1) and (3) provided that x̂B
1

(
θ, φ̃

)
�= 0.

The same equations also imply that the set TΦ,ξ1 of θ for

which x̂B
1

(
θ, φ̃

)
= 0 for some φ̃ ∈ Sθ,Φ,ξ1 is finite.

The important fact is that all stationary points of fθ,Φ,ξ1

satisfy the same condition stated in (20). This means that we

can use H
(
ξ1, ξ2,− Φ

ξ1

)
in place of H

(
ξ1, ξ2, x̂

B
3 (θ, φ0)

)
and factor it out of the summation over stationary points that

can be used to approximate the integral in (19). Since the in-

tegrals for IP
ξ1,Φ and IPh

ξ1,ξ2,Φ differ only in H , the approxima-

tion to (19) can be written as a product of the approximation

of (18) and H
(
ξ1, ξ2,− Φ

ξ1

)
. This establishes the relationship

between IP
ξ1,Φ and IPh

ξ1,ξ2,Φ as follows: For all θ /∈ TΦ,ξ1 ,

IPh

ξ1,ξ2,Φ (θ) = H

(
ξ1, ξ2,−Φ

ξ1

)
IP
ξ1,Φ (θ) . (21)

The values of the outer integrals in (14) and (16) are not

affected by the values of the inner integrals for the finitely

many θ ∈ TΦ,ξ1 . This implies that the 4D Fourier transform

of the distance-dependently blurred projection data is related

to the 4D Fourier transform of blur-free projection data:

[F4Phκ] (Θ, Φ, ξ1, ξ2)
≈ H

(
ξ1, ξ2,− Φ

ξ1

)
[F4Pκ] (Θ, Φ, ξ1, ξ2) .

(22)

4. CORRECTION OF THE PROJECTION DATA

The result in (22) based on the frequency-distance relation

suggests a correction method for the Fourier coefficients of

the distant-dependently blurred projection data in order to es-

timate the true projection data. The Fourier coefficients for

the corrected projection data of v can be obtained by a di-

vision of the Fourier coefficients of the distance-dependently

blurred projection data Phv by the CTF H; i.e., as

[F4Phv] (Θ, Φ, ξ1, ξ2) /H

(
ξ1, ξ2,−Φ

ξ1

)
. (23)

At this step some regularization is required to avoid amplifi-

cation of noise present in the data.

This is our final result. The advantage of correction in

this fashion is that any of the large collection of reconstruc-

tion algorithms can be applied to the so-corrected data in the

same way as is done currently with data corrected for the CTF

that is appropriate only for a single layer of a specimen. The

pipeline of reconstruction for 3D molecules from 2D projec-

tions needs to be simply amended by the new correction step,

no other modifications are needed.

5. NUMERICAL RESULTS

We tested the correction method proposed in the previous sec-

tion on a simple phantom composed of seven spheres digi-

tized on a 128×128×128 cubic voxel array. We computed the

distance-dependently blurred projection data of that phantom
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Fig. 1. Comparison of the distance-dependently blurred pro-

jections (first column) with the corrected projections (second

column) and the ideal projections obtained with no blurring

(third column) for three projection directions.

for 1600 directions. The set of micrographs was corrected ac-

cording to (23). The results are presented in Fig. 1. Some

blurring is still present in the corrected projections; this is

due to having only a finite number of projection directions,

the discrete Fourier transform implementation and numerical

difficulties with (23) at places where the CTF is near zero.

The reconstruction obtained from the projections cor-

rected by our method is illustrated in Fig. 2.

6. FUTURE WORK

Testing the results of the proposed correction method is the

subject of our ongoing work. One technical difficulty in the

implementation is the accurate computation of 4D Fourier

transforms. The existence of spherical Fourier transform al-

gorithms suggests that we will be able to overcome this. We

plan to evaluate the proposed correction method on more

complicated phantoms and in presence of noise.

The stationary phase approximation is mathematically

justified only for high frequency coefficients. We plan to de-

velop a weighting scheme that smoothly transitions between

different methods of correction for high and low frequencies.
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Fig. 2. Reconstruction from 1600 projections. Top: 3D ren-

dering for voxel values thresholded at 0.5. Bottom: corre-

sponding cross sections through the phantom (top row) and

reconstruction (bottom row).
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