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ABSTRACT

Computer-aided prognosis (CAP) is a new and exciting complement
to the field of computer-aided diagnosis (CAD) and involves de-
veloping computerized image analysis and multi-modal data fusion
algorithms for helping physicians predict disease outcome and pa-
tient survival. At the Laboratory for Computational Imaging and
Bioinformatics (LCIB)1 at Rutgers University we have been devel-
oping computerized algorithms for high dimensional data and image
analysis for predicting disease outcome from multiple modalities in-
cludng MRI, digital pathology, and protein expression. Additionally,
we have been developing novel data fusion algorithms based on non-
linear dimensionality reduction methods (such as Graph Embedding)
to quantitatively integrate prognostic information from multiple data
sources and modalities. In this paper, we briefly describe 5 repre-
sentative and ongoing CAP projects at LCIB. These projects include
(1) an Image-based Risk Score (IbRiS) algorithm for predicting out-
come of ER+ breast cancer patients based on quantitative image
analysis of digitized breast cancer biopsy specimens alone, (2) seg-
menting and determining extent of lymphocytic infiltration (identi-
fied as a possible prognostic marker for outcome in Her2+ breast
cancers) from digitized histopathology, (3) segmenting and diag-
nosing highly agressive triple-negative breast cancers on dynamic
contrast enhanced (DCE) MRI, (4) distinguishing patients with dif-
ferent Gleason grades of prostate cancer (grade being known to be
correlated to outcome) from digitzed needle biopsy specimens, and
(5) integrating protein expression measurements obtained from mass
spectrometry with quantitative image features derived from digitized
histopathology for distinguishing between prostate cancer patients at
low and high risk of disease recurrence.

Index Terms— computer-aided prognosis (CAP), breast cancer,
prostate cancer, personalized medicine, digital pathology, MRI, data
fusion, multi-modal

1. INTRODUCTION

It has always been accepted that cancer is a complex disease which
we do not yet fully understand [1]. Predictive, preventive, and
personalized medicine (PPP) has the potential to transform clinical
practice by decreasing morbidity due to diseases such as cancer by
integrating multi-scale, multi-modal, heterogeneous data to deter-
mine the probability of an individual contracting certain diseases. In
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the clinic, the same treatment applied to two patients with diseases
that look very similar have vastly different outcomes under the same
treatment. A part of this difference is undoubtedly patient specific,
but a part must also be a result of our limited understanding of the
relationship between disease progression and clinical presentation.

An understanding of the interplays of different hierarchies of
biological information from proteins, tissue, metabolites, and imag-
ing will provide conceptual insights and practical innovations that
will profoundly transform people’s lives. There is a consensus
among clinicians and researchers that a more quantitative approach,
using computerized imaging techniques to better understand tu-
mor morphology, combined with the classification of disease into
more meaningful molecular subtypes, will lead to better patient
care and more effective therapeutics [2]. With the advent of digital
pathology, multi-functional imaging, mass spectrometry, immuno-
histochemical, and FISH techniques, acquisition of multiple, or-
thogonal sources of genomic, proteomic, multi-functional imaging,
and histologic information for disease characterization is becoming
routine at several institutions [1]. Computerized image analysis
and high dimensional data fusion methods will likely constitute an
important piece of the prognostic tool-set to enable physicians to
predict as to which patient may be susceptible to a particular disease
and also for predicting disease outcome and survival. These tools
will also have important implications in theragnostics; the ability to
predict how an individual may react to various treatments, thereby
providing (1) guidance for developing customized therapeutic drugs
and (2) enable development of preventive treatments for individuals
based on their potential health problems. A theragnostic profile that
is a synthesis of various biomarker and imaging tests from different
levels of the biological hierarchy (genomic, proteomic, metabolic)
could be used to characterize an individual patient and her/his drug
treatment outcome.

At the Laboratory for Computational Imaging and Bioinformat-
ics (LCIB) at Rutgers University, we have been developing an array
of computerized image analysis and high dimensional data analy-
sis, fusion tools for quantitatively integrating molecular features of a
tumor (as measured by gene expression profiling or mass spectrom-
etry), results from the imaging of the tumor cellular architecture and
microenvironment (as captured in histological imaging), the tumor
3-d tissue architecture and vascularization (as measured by dynamic
contrast enhanced (DCE) MRI), and its metabolic features (as seen
by metabolic or functional imaging modalities such as Magnetic
Resonance Spectroscopy (MRS)). In this paper, we briefly describe
5 representative and ongoing CAP projects at LCIB in the context
of breast and prostate cancer and involving digitized histopathology,
DCE-MRI, and protein expression measurements obtained via mass
spectrometry.
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2. IMAGE-BASED RISK SCORE FOR ER+ BREAST
CANCERS

The current gold standard for achieving a quantitative and repro-
ducible prognosis in estrogen receptor-positive breast cancers (ER+
BC) is via the Oncotype DX (Genomic Health, Inc.) molecular as-
say, which produces a Recurrence Score (RS) between 0-100, where
a high RS corresponds to a poor outcome and vice versa. In [3],
we presented Image-based Risk Score (IbRiS), a novel CAP scheme
that uses ony quantitatively-derived information (architectural fea-
tures derived from spatial arrangement of cancer nuclei) from dig-
itized ER+ BC biopsy specimens (Figure 1(a)) to help clinicians
predict which ER+ BC patients have more aggressive disease and
consequently need adjuvant chemotherapy over and above standard
hormonal therapy. The hypothesis behind IbRiS is that quantitative
image features can be used to implicitly model tumor grade which is
known to be correlated with outcome in ER+ BCs.

(a) (b) (c)

Fig. 1. Nuclear centroids from an (a) ER+ BC histopathology image
are used to construct associated (b) Delaunay Triangulation and (c)
Minimum Spanning Tree graphs. A total of 12 architectural features
are extracted from these graphs and used to quantitatively model
phenotypic appearance and hence implicitly the grade of ER+ BC
biopsy specimen.

Using the nuclear centroids as vertices, two graphs (Delau-
nay Triangulation (DT) (Figure 1(b)) and Minimum Spanning Tree
(MST) (Figure 1(c))) are constructed and used to extract a total of
12 architectural features for each image. Graph Embedding [4], a
non-parametric, non-linear dimensionality reduction technique is
employed to project the features onto a reduced 3D space while
simultaneously preserving object-class relationships. This allows
us to observe the discriminability of the architectural features with
respect to low and high RS on a smooth, continuous manifold
(Figure 2(a)). The 3D embedding is subsequently unraveled into
a normalized 1D IbRiS scale (Figure 2(b)). With a large enough
cohort of annotated data, prognostic thresholds θ1 and θ2 could be
learnt and employed for making prognostic predictions of outcome.

The separation between samples with high and low RS (Fig-
ure 2(a)) is reflected quantitatively by the classification accuracy
> 84% [3] of a support vector machine (SVM) classifier. Further-
more, by re-labeling the samples into three classes of low, interme-
diate, and high RS (Figure 2(b)) we are able to qualitatively confirm
that the variations in phenotype described by the architectural fea-
tures are truly representative of the underlying differences in geno-
type that affect disease outcome.

3. LYMPHOCYTIC INFILTRATION AND OUTCOME IN
HER2+ BREAST CANCERS

The identification of phenotypic changes in BC histopathology with
respect to corresponding molecular changes is of significant clin-

(a) (b)

Fig. 2. 37 ER+ histopathology images are plotted in (a) a 3D Graph
Embedding space created by reducing the 12 architectural features.
The embedding is linearized into (b) the 1D IbRiS scale. Overlaying
Recurrence Score labels allows us to identify prognostic thresholds
θ1 and θ2 for distinguishing poor and good outcome ER+ BC’s.

Low infiltration
Medium infiltration
High infiltration

Fig. 3. 41 HER2+ histopathology images plotted in the reduced 3D
space obtained by applying Graph Embedding to the original 50 fea-
ture (dimensional) space. The manifold of quantiative image fea-
tures shows a smooth continuum between low, medium, and high
levels of LI; ground truth labels were determined by an expert on-
cologist.

ical importance in predicting BC outcome. One such example is
the presence of lymphocytic infiltration (LI) in BC histopathology,
which has been correlated with nodal metastasis and distant recur-
rence in human epidermal growth factor amplified (HER2+) breast
cancers. In [5], we introduced a computerized image analysis sys-
tem for detecting and grading the extent of LI in a digitized HER2+
BC biopsy image. The methodology comprised a region-growing
scheme to automatically segment all nuclei (lymphocytic and non-
lymphocytic) within the image. The segmentation was then refined
via Maximum a Posteriori estimation, which utilizes (1) size and
intensity information to isolate lymphocytic nuclei and (2) Markov
Random Fields to separate clusters of LI from the surrounding base-
line level of immune response. The centroids of the resulting lym-
phocytic nuclei are used to construct graphs (Voronoi Diagram (VD),
DT, MST) and a total of 50 architectural features are extracted from
each histopathology image. The features are reduced to a 3D em-
bedding space via Graph Embedding. Figure 3 shows this smooth
LI manifold, which reveals a continuum between low, intermediate,
and high levels of LI. The extent and grade of LI so determined could
be converted into a prognostic score (analagous to IbRiS for ER+
BCs and shown in Figure 2(b)) for predicting likelihood of tumor
metastasis and distant recurrence.
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In conjunction with the architectural features, a SVM classifier
was able to successfully distingish samples with different levels of
LI extent at > 90% classification accuracy [5].

4. IDENTIFYING TRIPLE-NEGATIVE BREAST CANCERS
ON DCE-MRI

Triple negative (TN) breast cancers lack expression of all 3 major re-
ceptors (ER, progesterone (PR), HER2), which are targets of specific
therapies. It is important to identify TN cancers quickly since they
have an extremely aggressive clinical course and poor prognosis.

The two main lesion descriptors typically used by radiologists
when evaluating a breast MRI are the lesion shape (morphology)
and the contrast enhancement kinetics. Although breast MRI detects
lesions with high sensitivity, the so called BIRADS based descrip-
tors used by radiologists are still somewhat qualitative and thus have
low specificity, resulting in high inter-observer variability. Further-
more, since it has been shown that morphology is most likely not a
primary descriptor of TN breast cancers, it is extremely important
to explore other features such as contrast-enhancement patterns that
arise in dynamic contrast enhanced (DCE) MRI images [6]. One

(a) (b)

Fig. 4. By reducing image features for (a) the kinetic texture, con-
trast entropy and (b) signal intensity into a 3D Graph Embedding
space, it becomes possible to distinguish between TN and non-TN
breast lesions, a task that is difficult for even a trained radiologist.

DCE-MRI slice from each of 24 invasive breast cancers (13 TN, 11
non-TN) were analyzed according to morphology, kinetic signal in-
tensity, static texture, and kinetic texture features. The performance
of each feature was analyzed qualitatively using graph embedding
and quantitatively using a SVM classifier [6].

The SVM classifier showed that kinetic texture provided the best
classification with accuracy of 92%, sensitivity of 92%, and speci-
ficity of 91%. Graph embedding on the coefficients fitted to the
contrast entropy versus time curves, showed excellent separation be-
tween the TN and non-TN lesions (Figure 4(a)). Figure 4(b) shows
the corresponding plot for signal intensity versus time, which is not
quite as effective in separating the TN and non-TN lesions as kinetic
texture (Figure 4(a)).

5. AUTOMATED GLEASON GRADING ON PROSTATE
CANCER HISTOPATHOLOGY

Prostate cancer (CaP) is diagnosed in over 200,000 people and
causes 27,000 deaths in the US annually. However, the five-year
survival rate for patients diagnosed at an early stage of tumor de-
velopment is very high. If CaP is found on a needle biopsy, the

(a) (b) (c)

Fig. 5. Gleason grade (a) 3 and (b) 4, prostate cancer biopsy spec-
imens. The results of applying graph embedding to a set of quanti-
tative image descriptors derived from Gleason grade 3 and 4 speci-
mens is shown in (c). Note the excellent separation between grades
3 (green circles) and 4 (blue squares) in (c).

tumor is then assigned a Gleason grade (1-5). Gleason grade 1
tissue is highly differentiated and non-infiltrative while grade 5 is
poorly differentiated and highly infiltrative. Gleason grading is
predominantly based on tissue architecture (spatial arrangement of
nuclei and glands) and tumor morphology (shape and size of glands
and nuclei). As tissue regions transform from (a) benign to malig-
nant, and (b) tumor regions transform from lower to higher grades,
the architecture and morphology of the images undergo significant
changes: nuclear proliferation and infiltration increase, glands in the
prostate tissue become smaller, circular, and uniform, and the over-
all texture of the tissue is altered. Since Gleason grade is known to
be strongly correlated to disease outcome, accurately distinguishing
between different Gleason grades is critical for making treatment de-
cisions. While pathologists are able to reliably distinguish between
low and high Gleason grades (1 and 5), there is a great deal more
inter-, and intra-observer variability when it comes to distinguishing
intermediate Gleason 3 and 4 patterns (see Figures 5(a), (b)).

At LCIB, we have developed a CAP system that employs mor-
phological, architectural, and textural features derived from prostate
needle biopsy specimens [7] to distinguish intermediate Gleason pat-
terns. These features include information traditionally used in the
Gleason grading paradigm (morphology and nuclear density) as well
as features not considered by pathologists (such as second-order co-
adjacency and global texture features). By employing these features
in conjunction with a SVM classifier, we were able to distinguish
between 40 samples of Gleason grades 3 and 4 with an accuracy of
96.2%. Figure 5 illustrates these results, where each point on the
scatter plot represents a CaP biopsy sample (Gleason grade 3 shown
with green circles while Gleason grade 4 samples as blue squares).
The distance between any two samples is related to their similarity
in the original, high dimensional feature space; samples that cluster
together have similar feature values and likely to belong to the same
Gleason pattern.

6. INTEGRATED PROTEOMIC, HISTOLOGICAL
SIGNATURES FOR PREDICTING PROSTATE CANCER

RECURRENCE

Following radical prostatectomy (RP), there remains a substantial
risk of disease recurrence (estimated at 25-40%). Studies have iden-
tified infiltration beyond the surgical margin, and high Gleason score
as possible predictors of prostate cancer recurrence. However, owing
to inter-observer variabilty in Gleason grade determination, cancers
identified with the same Gleason grade could have significantly dif-
ferent outcomes. Discovery of a predictive biomarker for outcome
following RP would allow for therapeutic intervention if the patient
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was found to have poor prognosis. Protein expression features of
excised prostate tissue may add complementary prognostic informa-
tion to standard morphologic and architectural features derived from
histopathology.

In [8], we attempted to integrate morphological and architec-
tural features quantitatively extracted from digitized excised prostate
specimens along with protein expression measurements obtained via
electrospray mass spectrometry from the dominant tumor nodule;
the idea being to develop an integrated prognostic meta-marker
for predicting diease recurrence following RP. To accomodate two
widely different modalities (imaging and proteomics), we developed
the Generalized Fusion Framework (GFF) for homogeneously rep-
resenting each of the data types in a normalized, and dimensionality
compatible meta-space representation prior to classification in the
fused space.

Greater separation between prostate cancer recurrence (red
squares) and non-recurrence (green circles) cases was observed in
the combined morphologic, architectural, proteomic space (Fig-
ure 6(g)) compared to the individual modality spaces (Figures 6(c)-
(e)). These results appear to suggest that inclusion of comple-
mentary proteomic measurements with traditional Gleason grading
based morphologic and architectural measurements may allow for
improved prediction of CaP recurrence following RP.
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Fig. 6. From excised prostate glands (a) morphological, (b) archi-
tectural, and (c) protein expression features were extracted and sub-
sequently reduced to a lower dimensional space via the GFF. The
reduced dimensional spaces were then combined. Note the greater
separation between CaP recurrence (red squares) and non-recurrence
(green circles) cases in the combined morphologic, architectural,
proteomic space compared to the individual modality spaces.

7. CONCLUDING REMARKS

In this paper we have highlighted some of our ongoing projects in
the newly emerging field of computer-aided prognosis (CAP). While
the highlighted projects were focused on prostate and breast cancer
outcome prediction, one can easily concieve of similar models be-
ing applied to survival prediction for other diseases. Other groups
such as Gurcan et al. [9] are applying similar techniques to predict-

ing surival outcome in the context of follicular lymphomas. Futher
developments in this area will only come about by close and ded-
icated interactions between computer and imaging scientists, clini-
cians, oncologists, radiologists, and pathologists.
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