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ABSTRACT

One way of evaluating muscle quality is to determine its
fiber type composition in histological sections. A complete
muscle fiber type characterization system requires
combining information from successive muscle histology
images with different ATPase stain. Due to the local and
global deformations introduced in slide preparation process,
a precise non-rigid registration is essential to construct the
spatial correspondences between these successive images.
This study proposes an approach for automated non-rigid
registration of successive muscle histological sections. We
propose a feature-based registration that uses a two stage
approach: a rigid initialization followed by a non-rigid
refinement. The rigid initialization step globally aligns
successive tissue slides by finding correspondences between
individually segmented muscle fibers using Fourier shape
descriptors and computing the global rigid transformation
using a voting scheme tolerant to mismatches. In the non-
rigid stage we establish precise point correspondences using
the normalized cross correlation metric and compute the
non-rigid distortion using a polynomial transformation that
minimizes the mean square distance between these control
points.

Index Terms—histological image registration, muscle
fiber typing, sarcopenia.

1. INTRODUCTION

Sarcopenia is the age related loss of skeletal muscle mass,
strength and function. As the proportion of elderly people in
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the population increases, the incidences of sarcopenia are
anticipated to increase dramatically [1]. In clinical practice
radiological screenings (CT and MRI) and functional
performance assays are being used to assess muscle quality;
however there is no clearly defined test or an accepted
threshold of functional decline for sarcopenia diagnosis [2].
Hence, there is a need for improved methods to measure the
muscle quality and better criteria for defining at what level
muscle mass and strength become “deficient” [3].

Skeletal muscle consists of individual fibers that are
responsible for contraction and force generation. Based on
their characteristics with respect to contraction time, force
production and resistance to fatigue, muscle fibers are
classified as type I, IIA, IIX and IIB [4]. The relative
distribution of distinct fiber types in a muscle provides
insight into muscle quality. Recent studies showed that there
is an association between the loss in type II muscle fibers
and sarcopenia [3, 4]. In clinical and laboratory practice,
muscle fiber type composition is identified through a
qualitative  microscopic  examination of successive
histological cross-sections with distinct ATPase stain. Fig. 1
demonstrates region of interest (ROI) images from two
successive serial cross-sections of a rat gastrocnemius
muscle stained with ATPase stain at distinct pH levels.

In this study, we propose a registration framework to
align serial cross-sections of digitized muscle histology
slides for automated muscle fiber characterization. We
develop a two-stage approach consisting of a rigid
initialization followed by a non-rigid refinement. The rigid
initialization globally aligns the tissue slides by finding
correspondences between individually segmented muscle
fibers from successive slides using their Fourier shape
descriptors. The global rigid transformation is computed
using a voting scheme tolerant to mismatches. In the non-
rigid stage we establish precise point correspondences using
the normalized cross correlation metric and compute the
non-rigid distortion using a polynomial transformation that
minimizes the mean square distance between these control
points.
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Fig.1 Sample images of successive serial cross-sections of
a rat gastrocnemius muscle stained with ATPase at (a) pH
4.5 and (b) 10.4, respectively.

2. METHODS

Image registration is the process of geometrically aligning
two images of same or partially overlapping scenes so that
the corresponding points in these two images have the same
coordinates after transformation [5]. Medical image
registration methods, which are reviewed in a number of
survey articles [5-7], can be classified according to the
nature of registration basis and the nature of transformation.
With respect to registration basis, these methods can be
classified as feature-based or image content-based methods.
According to the nature of transformation, registration
methods vary from global rigid, affine and projective to
curved transformations, which can be modeled by spline
warps or polynomial transformation functions.

Histology applications deal with soft tissue; hence a
precise non-rigid registration is essential due to the local and
global deformations introduced in the slide preparation
process. In [8], authors proposed a hierarchical elastic
registration framework using the mutual information metric.
As reported in their study, this approach produced
acceptable results in only 80% of the cases. Although a
mutual information based approach does not assume any
functional relationship between the image intensities, it
requires the initial positions of the slides (or the region of
interest images) to be roughly aligned, otherwise the search
space, which maximizes the mutual information metric, is
too large and is subject to numerous local minima.

2.1. Data description

In our study, we used frozen histological sections of rat
gastrocnemius muscle from young and aged animals (twelve
vs. 30 months, respectively). Tissue sections were sectioned
at 12pum thickness and were mounted onto glass slides.
Successive sections were subjected to acidic and alkaline
sensitive ATPase staining at pH levels 4.5 and 10.4,
respectively. Finally, tissue slides were imaged with Nikon
light microscope at 10x objective and were used for further
analysis.
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Fig.2 (a) Normalized histogram of the image given in Fig.
I(a), (b) estimated Gaussian mixture model, (c) color
labeled segmentation, and (d) segmented muscle fibers.

2.2. Segmentation

The proposed rigid initialization step uses a higher-level
context for feature correspondence computation. We first
segment individual muscle fibers and calculate their Fourier
shape descriptors. These descriptors are used to compute
spatial correspondences that are essential to calculate the
rigid global transformation.

We use a clustering based approach to segment the
muscle histology images. After examining the histograms of
the images, we observed that the intensity distribution could
be modeled using a Gaussian mixture model, where each
component is associated with the intensity distribution of a
certain fiber type or the connective tissue surrounding the
muscle fibers. The parameters of the mixture (i.e., mean, L;
and variance, o;, where i =1,...,7, and 7 is the number

of mixture components) are estimated using the expectation
maximization algorithm [9]. The number of mixture
components is also estimated by finding the significant
peaks in the image intensity histogram. Finally, we apply
morphological operations (e.g., opening, watershed
transform) to refine final muscle fiber boundaries. Fig. 2
shows the intermediate steps of the segmentation process for
the sample image given in Fig. 1 (a).

2.3. Rigid Initialization

The goal of the rigid initialization step is to globally align
the two successive slides so that the search space for the
non-rigid refinement is smaller; hence the probability of
mismatch is lower leading to a more robust and more precise
registration. We propose a feature-based approach, in which
we utilize the shape descriptors of the segmented muscle
fibers in successive images to compute the correspondences.



Fig.3 Segmentation of muscle fibers is shown in binary
form, while a few of corresponding muscle fibers are shown
using the same boundary colors.

We begin by representing the boundary of each fiber as a
periodic function in the complex plane:

N

s(f) = x()+ jy(t) = DS, for t € [0.277] (2.1)
k=-N

where the complex Fourier descriptors S, =a, + jb,,

a,,b, € R describe the spatial frequency contents of the

contour points [10]. Each parameter S, has a phase,

o, = tanfl(ﬂ), and a magnitude, |S, E4/a; +b; .
a
Using Fourier descriptors, we can achieve a compact shape
representation invariant to rotation, translation and scale.
Rotation only affects the phase component; hence we
achieve the rotational invariance by using the magnitude of
the complex Fourier descriptors. For translation invariance,
we simply discard the S, term, which corresponds to the
center of mass information. Finally, the scale invariance is
achieved by scaling each S, term by the absolute value of a

chosen element (e.g.,S)). Accordingly, the corresponding
Fourier shape descriptors are computed as follows:

C.,=IS, /IS | k=23,...,N-1 (2.2)

Using these descriptors, we establish correspondences
between muscle fibers in successive images. Fig. 3 shows
four sample corresponding muscle fibers in two successive
images. In fact, each of the correspondences (i.c., a matching
pair of muscle fiber) defines a rigid transformation, which is
computed using the iterative closest point (ICP) algorithm
[11]. Using the boundary points of the corresponding muscle
fibers, the ICP algorithm iteratively computes the rigid
registration parameters, i.e., the rotation angle 0, and the
translation in x and y directions t, and t,, respectively that
rigidly aligns the matching pair of muscle fibers.

Ideally, if all the correspondences are correct, the
computed values of the rigid transformation parameters for
all of the corresponding muscle fiber pairs will be very close
to each other. However, there are mismatches in these
correspondences due to several reasons (e.g., segmentation
inaccuracies, similarly shaped muscle fibers, etc.). In order
to compensate these mismatches and to calculate the true
global rigid transformation, we use a voting scheme
introduced in [12]. Using the rigid
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Fig.4 Sample histogram voting results for rigid initialization
parameters (a) 0, (b) tx, and (c) ty, where peaks locations
correspond to the resulting global rigid alignment.

transformation parameters computed for all of the
corresponding muscle fiber pairs, we construct three
histograms for each rigid transformation parameter, 6, t, and
t,. Our hypothesis is that the correct global transformation
corresponds to a peak among all compatible matchings,
while the mismatches generate random transformations in
the entire solution space. Fig. 4 shows the histograms of the
rigid transformation parameters 0, t,, and t,, constructed for
the sample successive ROI images.

2.4. Non-rigid refinement

Due to the non-rigid deformations introduced during the
slide preparation process, there are local misalignments
between the two images after the global rigid initialization
stage. In the non-rigid registration stage, we use a set of
control points (i.e., sub-sampled muscle fiber boundary
points) that are fairly distributed in the spatial domain. In
order to precisely localize the corresponding matching
location in both images, we use a small patch (e.g., 32x32)
around these candidate control points and generate the
normalized cross correlation (NCC) surface over a slightly
larger window (e.g., 64x64) around the corresponding
location determined using the rigid initialization in the
successive image. The NCC is robust to intensity variations
between distinctly stained images; hence it can capture the
structural similarities and allow us to compute precise point
correspondences [7]. For each control point, we update the
correct match location using the offset associated with the
peak in the resulting NCC surface.

Among commonly used non-rigid transformations such
as thin-plate spline, local weighted mean or polynomial, we
choose polynomial transformation. Compared to others,
polynomial transformation is faster to compute and it
provides satisfactory results in correcting the distortions
encountered in our histological sections. In our application,

we use second degree polynomials. For a set of /N control
point pairs (x,,y,)and(x], /), the second degree
polynomial transformation is expressed as follows:
{ X\ =ax! +bhxy, +oy! +dx; +ey, + f, (2.3)
yi=ax] +byxy, +e,y! vdyx +ey, + f,
where i =1,2,...,N and a,..., f are the coefficients of

the polynomial transformation, which are computed using
least squares minimization.



Fig.5 Sample successive region of interest images are
overlaid together after (a) global rigid initialization, and (b)
non-rigid refinement.

3. EXPERIMENTAL RESULTS

Fig. 5 shows the registration results for the sample ROIs
from successive tissue regions by overlaying the two images
after global rigid initialization and non-rigid refinement
stages. Although the center regions in the image are well-
aligned (see Fig. 5 (a)), there are misalignments in the upper
right and lower regions. Fig. 5 (b) shows the two images
overlaid after the non-rigid refinement stage, which corrects
such local deformations and aligns the two images
accurately.

We applied the proposed registration framework on six
pair -three from young and three from aged rats- of ROI
images captured from successive muscle tissue slides stained
with ATPase stain at pH=4.5 and pH=10.4. Motivated by
our goal of muscle fiber typing, we evaluated the proposed
registration approach by comparing the overlap score
between individual muscle fibers manually marked in
successive images. For practical reasons, we manually
delineated five muscle fibers in each pair of successive
images and computed the overlap ratio as follows:
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Area(F ;s NT(F,104))

s = 3.1)
max(Area(F,;;_,s), Area(F,;_4))

where F,,_,sand ', , are the muscle fibers delineated

in successive images with different ATPase stain, and 7 is
the computed transformation matrix between the two
images. Using this overlap measure, the proposed
registration approach produced a remarkable overlap score
of 94.5+3.2%, which is promising for future applications.

4. SUMMARY

This study presents a registration approach to spatially align
distinctly stained muscle histology slides for automated
muscle fiber characterization. Using high-level shape
features, we first compute the rigid initialization. The non-
rigid refinement is achieved by establishing precise point
correspondences using the NCC metric. Validation over a
set of image pairs demonstrates promising results for future
applications.
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