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ABSTRACT

One way of evaluating muscle quality is to determine its 
fiber type composition in histological sections. A complete 
muscle fiber type characterization system requires
combining information from successive muscle histology 
images with different ATPase stain. Due to the local and 
global deformations introduced in slide preparation process, 
a precise non-rigid registration is essential to construct the 
spatial correspondences between these successive images. 
This study proposes an approach for automated non-rigid 
registration of successive muscle histological sections. We 
propose a feature-based registration that uses a two stage 
approach: a rigid initialization followed by a non-rigid
refinement. The rigid initialization step globally aligns 
successive tissue slides by finding correspondences between 
individually segmented muscle fibers using Fourier shape 
descriptors and computing the global rigid transformation
using a voting scheme tolerant to mismatches. In the non-
rigid stage we establish precise point correspondences using 
the normalized cross correlation metric and compute the 
non-rigid distortion using a polynomial transformation that
minimizes the mean square distance between these control 
points.

Index Terms—histological image registration, muscle 
fiber typing, sarcopenia.

1. INTRODUCTION

Sarcopenia is the age related loss of skeletal muscle mass, 
strength and function. As the proportion of elderly people in 
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the population increases, the incidences of sarcopenia are
anticipated to increase dramatically [1]. In clinical practice 
radiological screenings (CT and MRI) and functional 
performance assays are being used to assess muscle quality; 
however there is no clearly defined test or an accepted 
threshold of functional decline for sarcopenia diagnosis [2].  
Hence, there is a need for improved methods to measure the 
muscle quality and better criteria for defining at what level 
muscle mass and strength become “deficient” [3].

Skeletal muscle consists of individual fibers that are 
responsible for contraction and force generation. Based on 
their characteristics with respect to contraction time, force 
production and resistance to fatigue, muscle fibers are 
classified as type I, IIA, IIX and IIB [4]. The relative 
distribution of distinct fiber types in a muscle provides 
insight into muscle quality. Recent studies showed that there 
is an association between the loss in type II muscle fibers 
and sarcopenia [3, 4]. In clinical and laboratory practice, 
muscle fiber type composition is identified through a 
qualitative microscopic examination of successive 
histological cross-sections with distinct ATPase stain. Fig. 1 
demonstrates region of interest (ROI) images from two 
successive serial cross-sections of a rat gastrocnemius 
muscle stained with ATPase stain at distinct pH levels.

In this study, we propose a registration framework to 
align serial cross-sections of digitized muscle histology 
slides for automated muscle fiber characterization. We 
develop a two-stage approach consisting of a rigid 
initialization followed by a non-rigid refinement. The rigid 
initialization globally aligns the tissue slides by finding 
correspondences between individually segmented muscle 
fibers from successive slides using their Fourier shape 
descriptors. The global rigid transformation is computed 
using a voting scheme tolerant to mismatches. In the non-
rigid stage we establish precise point correspondences using 
the normalized cross correlation metric and compute the 
non-rigid distortion using a polynomial transformation that 
minimizes the mean square distance between these control 
points.
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2. METHODS

Image registration is the process of geometrically aligning 
two images of same or partially overlapping scenes so that 
the corresponding points in these two images have the same 
coordinates after transformation [5]. Medical image 
registration methods, which are reviewed in a number of 
survey articles [5-7], can be classified according to the 
nature of registration basis and the nature of transformation. 
With respect to registration basis, these methods can be
classified as feature-based or image content-based methods. 
According to the nature of transformation, registration 
methods vary from global rigid, affine and projective to 
curved transformations, which can be modeled by spline 
warps or polynomial transformation functions. 

Histology applications deal with soft tissue; hence a 
precise non-rigid registration is essential due to the local and 
global deformations introduced in the slide preparation 
process. In [8], authors proposed a hierarchical elastic 
registration framework using the mutual information metric. 
As reported in their study, this approach produced 
acceptable results in only 80% of the cases. Although a 
mutual information based approach does not assume any
functional relationship between the image intensities, it 
requires the initial positions of the slides (or the region of 
interest images) to be roughly aligned, otherwise the search 
space, which maximizes the mutual information metric, is 
too large and is subject to numerous local minima.

2.1. Data description

In our study, we used frozen histological sections of rat 
gastrocnemius muscle from young and aged animals (twelve
vs. 30 months, respectively). Tissue sections were sectioned 
at 12 m thickness and were mounted onto glass slides.
Successive sections were subjected to acidic and alkaline 
sensitive ATPase staining at pH levels 4.5 and 10.4, 
respectively. Finally, tissue slides were imaged with Nikon 
light microscope at 10x objective and were used for further 
analysis.  

2.2. Segmentation

The proposed rigid initialization step uses a higher-level 
context for feature correspondence computation. We first 
segment individual muscle fibers and calculate their Fourier 
shape descriptors. These descriptors are used to compute 
spatial correspondences that are essential to calculate the 
rigid global transformation. 

We use a clustering based approach to segment the 
muscle histology images. After examining the histograms of 
the images, we observed that the intensity distribution could 
be modeled using a Gaussian mixture model, where each 
component is associated with the intensity distribution of a 
certain fiber type or the connective tissue surrounding the 
muscle fibers. The parameters of the mixture (i.e., mean, i

and variance, i, where ni ,,1 , and n is the number 
of mixture components) are estimated using the expectation 
maximization algorithm [9]. The number of mixture 
components is also estimated by finding the significant 
peaks in the image intensity histogram. Finally, we apply 
morphological operations (e.g., opening, watershed 
transform) to refine final muscle fiber boundaries. Fig. 2 
shows the intermediate steps of the segmentation process for 
the sample image given in Fig. 1 (a).

2.3. Rigid Initialization

The goal of the rigid initialization step is to globally align 
the two successive slides so that the search space for the
non-rigid refinement is smaller; hence the probability of 
mismatch is lower leading to a more robust and more precise 
registration. We propose a feature-based approach, in which 
we utilize the shape descriptors of the segmented muscle 
fibers in successive images to compute the correspondences.  

Fig.1 Sample images of successive serial cross-sections of 
a rat gastrocnemius muscle stained with ATPase at (a) pH 
4.5 and (b) 10.4, respectively.

a b

Fig.2 (a) Normalized histogram of the image given in Fig.
1(a), (b) estimated Gaussian mixture model, (c) color 
labeled segmentation, and (d) segmented muscle fibers.

a b

dc

1424



We begin by representing the boundary of each fiber as a 
periodic function in the complex plane:

s(t) x(t) jy(t) Ske
jkt

k N

N

for t [0,2 ]   (2.1)

where the complex Fourier descriptors Sk ak jbk , 
ak,bk describe the spatial frequency contents of the 
contour points [10]. Each parameter Sk has a phase, 

k tan 1(bk

ak

), and a magnitude, | Sk | ak
2 bk

2 .

Using Fourier descriptors, we can achieve a compact shape 
representation invariant to rotation, translation and scale. 
Rotation only affects the phase component; hence we 
achieve the rotational invariance by using the magnitude of 
the complex Fourier descriptors. For translation invariance, 
we simply discard the S0 term, which corresponds to the 
center of mass information. Finally, the scale invariance is 
achieved by scaling each Sk term by the absolute value of a 
chosen element (e.g., S1). Accordingly, the corresponding 
Fourier shape descriptors are computed as follows:

|||| 12 SSC kk , 1,,3,2 Nk       (2.2)
Using these descriptors, we establish correspondences 

between muscle fibers in successive images. Fig. 3 shows 
four sample corresponding muscle fibers in two successive 
images. In fact, each of the correspondences (i.e., a matching
pair of muscle fiber) defines a rigid transformation, which is 
computed using the iterative closest point (ICP) algorithm 
[11]. Using the boundary points of the corresponding muscle 
fibers, the ICP algorithm iteratively computes the rigid 
registration parameters, i.e., the rotation angle , and the 
translation in x and y directions tx and ty,, respectively that 
rigidly aligns the matching pair of muscle fibers. 

Ideally, if all the correspondences are correct, the 
computed values of the rigid transformation parameters for 
all of the corresponding muscle fiber pairs will be very close 
to each other. However, there are mismatches in these 
correspondences due to several reasons (e.g., segmentation 
inaccuracies, similarly shaped muscle fibers, etc.). In order 
to compensate these mismatches and to calculate the true 
global rigid transformation, we use a voting scheme 
introduced in [12]. Using the rigid 

transformation parameters computed for all of the 
corresponding muscle fiber pairs, we construct three 
histograms for each rigid transformation parameter, , tx and 
ty. Our hypothesis is that the correct global transformation
corresponds to a peak among all compatible matchings, 
while the mismatches generate random transformations in 
the entire solution space. Fig. 4 shows the histograms of the 
rigid transformation parameters , tx, and ty, constructed for 
the sample successive ROI images.

2.4. Non-rigid refinement

Due to the non-rigid deformations introduced during the 
slide preparation process, there are local misalignments 
between the two images after the global rigid initialization 
stage. In the non-rigid registration stage, we use a set of 
control points (i.e., sub-sampled muscle fiber boundary 
points) that are fairly distributed in the spatial domain. In 
order to precisely localize the corresponding matching 
location in both images, we use a small patch (e.g., 32×32) 
around these candidate control points and generate the 
normalized cross correlation (NCC) surface over a slightly 
larger window (e.g., 64×64) around the corresponding 
location determined using the rigid initialization in the 
successive image. The NCC is robust to intensity variations 
between distinctly stained images; hence it can capture the 
structural similarities and allow us to compute precise point 
correspondences [7]. For each control point, we update the 
correct match location using the offset associated with the 
peak in the resulting NCC surface.

Among commonly used non-rigid transformations such 
as thin-plate spline, local weighted mean or polynomial, we 
choose polynomial transformation. Compared to others, 
polynomial transformation is faster to compute and it 
provides satisfactory results in correcting the distortions 
encountered in our histological sections. In our application, 
we use second degree polynomials. For a set of N control 
point pairs ),( ii yx and ),( ii yx , the second degree 
polynomial transformation is expressed as follows:
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iiiiiii

iiiiiii   (2.3)

where Ni ,,2,1 and fa ,, are the coefficients of 
the polynomial transformation, which are computed using 
least squares minimization.

Fig.4 Sample histogram voting results for rigid initialization
parameters (a) , (b) tx, and (c) ty, where peaks locations 
correspond to the resulting global rigid alignment.

a b c

Fig.3 Segmentation of muscle fibers is shown in binary 
form, while a few of corresponding muscle fibers are shown 
using the same boundary colors.
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3. EXPERIMENTAL RESULTS

Fig. 5 shows the registration results for the sample ROIs 
from successive tissue regions by overlaying the two images 
after global rigid initialization and non-rigid refinement 
stages. Although the center regions in the image are well-
aligned (see Fig. 5 (a)), there are misalignments in the upper 
right and lower regions. Fig. 5 (b) shows the two images 
overlaid after the non-rigid refinement stage, which corrects 
such local deformations and aligns the two images 
accurately.

We applied the proposed registration framework on six 
pair -three from young and three from aged rats- of ROI 
images captured from successive muscle tissue slides stained 
with ATPase stain at pH=4.5 and pH=10.4. Motivated by 
our goal of muscle fiber typing, we evaluated the proposed 
registration approach by comparing the overlap score 
between individual muscle fibers manually marked in 
successive images. For practical reasons, we manually 
delineated five muscle fibers in each pair of successive 
images and computed the overlap ratio as follows:

))(),(max(
))((

4.105.4

4.105.4

pHpH

pHpH

FAreaFArea

FTFArea
s (3.1)

where 5.4pHF and 4.10pHF are the muscle fibers delineated 

in successive images with different ATPase stain, and T is 
the computed transformation matrix between the two 
images. Using this overlap measure, the proposed 
registration approach produced a remarkable overlap score 
of 94.5±3.2%, which is promising for future applications.

4. SUMMARY

This study presents a registration approach to spatially align 
distinctly stained muscle histology slides for automated 
muscle fiber characterization. Using high-level shape 
features, we first compute the rigid initialization. The non-
rigid refinement is achieved by establishing precise point 
correspondences using the NCC metric. Validation over a 
set of image pairs demonstrates promising results for future 
applications.
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Fig.5 Sample successive region of interest images are 
overlaid together after (a) global rigid initialization, and (b) 
non-rigid refinement.

a

b

1426


