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ABSTRACT

A new framework for accurate registration of the segmented left
ventricle (LV) on cardiac first-pass magnetic resonance imaging (FP-
MRI) to precisely analyze the myocardial transit of contrast agent,
especially in the ischemically damaged heart, is proposed. Due to
the continuous physiological motion of the heart that causes the
LV wall to change shape significantly, within the same scan, at the
same cross section, we propose a new registration methodology that
involves three steps: (i) global target-to-reference frame-to-frame
alignment based on maximizing normalized mutual information
(NMI); (ii) local alignment based on using a B–splines transforma-
tion model that maximizes a new similarity function that accounts
for the 1��– and 2��–order NMI between the globally aligned frames
followed by (iii) a refinement step which is based on deforming each
pixel of the target wall over evolving closed equi–spaced contours
(iso–contours) to closely match the reference wall. Respective iso–
contours in both reference and target frames are matched based on
solving the Laplace equation. We have tested our framework on
�� FP-MRI datasets that have been collected from patients with is-
chemic damage resulting from heart attacks and who are undergoing
experimental therapy, and have documented an improvement in the
visualization and display of perfusion–related indexes.

Index Terms— Perfusion MRI, nonrigid registration, functional
mapping, ischemic heart disease.

1. INTRODUCTION

Cardiac and respiratory motion causes the heart to move within and
through the image plane, as the heart progresses through its periodic
cycle. Also, the heart undergoes large shape changes as it contracts.
These rigid and nonrigid changes limit quantification of perfusion
parameters on time series data. Importantly, unlike late gadolin-
ium assessments which essentially characterize a steady physiologic
state, first-pass perfusion characterizes a dynamic state and thus has
challenges related to limitations of temporal sampling, of the gated
cardiac images. To improve spatial correspondence of regions–of–
interest, the first-pass temporal data must be registered to compen-
sate for artifacts from patient motion, breathing, and heart contrac-
tion. However, the registration is subject to multiple challenges
stemming from highly nonrigid deformations, low signal to noise
ratio, and large variation of the contrast enhanced image intensities.

A number of registration approaches have been introduced to
correct the motion of the heart on perfusion images. In particular,
Breeuwer et al. [1] proposed a translation / rotation-based rigid reg-
istration approach, using normalized cross-correlation (NCC) as a

�Corresponding author:- Tel:(502)-852-5092, Fax:(502)-852-6806, E-
mail: aselba01@louisville.edu

similarity measure. A similar approach was proposed by Wong et
al. [2] using normalized mutual information (NMI) as a similarity
metric. Bidaut and Vallee [3] introduced a multiresolution registra-
tion approach employing cardiac masks to restrict the registration to
the area of the nearly rigid motion of the heart. Their approach is
based on minimizing the mean squared differences (MSD) between
perfusion sequence images and the reference image. Gallippi et
al. [4] corrected the cardiac motion using a statistics-based registra-
tion approach. All of the images are registered to the central image of
the perfusion sequence using intensity variations and edge directions
as similarity measures. Stegmann et al. [5] proposed the use of ac-
tive appearance models (AAMs) to segment the LV and to compen-
sate for motion in the perfusion images. Adluru et al. [6] proposed
an iterative model-based registration approach whereby the distance
between the actual and ideal perfusion curve are used as a criterion
for registration. Milles et al. [7] proposed a two-pass, coarse-to-fine,
registration approach using independent component analysis (ICA)
to deal with local intensity change of the perfusion images. In their
framework, each image frame is registered to a time-varying refer-
ence image that is constructed from three identified images of the left
and the right ventricle intensity curves using ICA. The registration
is achieved based on minimizing the sum of squared differences.

Recently, Wollny et al. [8] proposed a multiresolution nonrigid
registration approach based on the quasi-periodicity of respiratory
motion. Their registration framework uses a semi–local B-splines
parametric transformation to optimize the normalized gradient field
(NGF) similarity metric. To compensate for cardiac translation and
deformation, Tarroni et al. [9] proposed a nonrigid registration algo-
rithm using a 2D multi-scale extension of NCC. In their approach,
each image frame is registered to both a template frame and five
other additional frames created by resizing the reference frame. The
transformation parameters are determined according to the template
with peak cross-correlation value, and then contour adaptation was
achieved using an edge-based level set method.

In summary, the above-mentioned approaches show the follow-
ing limitations: (i) most of the methods heavily depend on image
intensity for thresholding or extracting image features; (ii) most of
them depend on using rigid registration only and do not account for
the nonrigid deformations of the heart; (iii) parametric shape based
approaches depend on the existence of good texture features in per-
fusion images and may perform poorly on some frames due to noise
and the lack of well-defined features. To overcome these limitations,
we propose a novel framework for accurate nonrigid registration of
FP-MRI that has the ability to handle large deformations of the heart
to precisely analyze the the myocardial transit of contrast agent. In
this paper, we will focus on accurate registration of the FP-MRI data.
The segmentation of the LV wall borders is fully described in [10].
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Fig. 1. The proposed framework for analyzing first-pass perfusion MRI.

(a)

(b)

Fig. 2. Marginal (a) and joint (b)
2��–order MGRF model for the
reference and target images.

2. MATERIAL AND METHODS

We propose a new registration framework for the improved visual-
ization of transmural perfusion gradients on cardiac FP-MRI. The
proposed framework begins with segmented LV walls from the FP-
MRI data and consists of three main steps (see Fig. 1). Each step
will be discussed in detail in the following sections.

2.1. Rigid Registration

The registration of cardiac FP-MRI remains the most challenging
task due to the high deformations related to heart contraction and
respiratory motion. In order to capture the global motion of the
heart, the segmented myocardial walls are co-aligned by a rigid, 2D
affine transformation based on maximizing the NMI (the similarity
measure) [11]. The result of the NMI-based rigid alignment for one
image frame is demonstrated in Fig. 6(c).

2.2. Nonrigid Registration

Because of the large deformations in the LV shape due to heart con-
traction and respiratory motion during MRI acquisition, elastic, spa-
tially variant, local warping models are needed for its correction. In
this paper, we propose a two-step nonrigid registration approach to
handle these deformations, the details of which are outlined below.

2.2.1. B–splines based nonrigid registration

In this paper, we use the B–splines transformation model [12] to lo-
cally register the globally aligned LV walls due to its flexibility and
effectiveness for modeling large deformations. The basic idea of
using B–splines is to deform an object by manipulating an under-
lying lattice, �, of control points, ����: � � �� � � � � � � �� � �
�� � � � � � � �, to maximize a new similarity function that accounts
for 1��– and 2��–order NMI. The B-splines deformation model is
demonstrated as follows [12]:
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where � � �	�, � � �
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the uniform cubic B-spline [12]:
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Similarity measure: We propose a new similarity metric (�) that
accounts for both the 1��– and 2��–order NMI between the reference
(�) and the target (�) images. Let � � ��� �� and � denote
finite sets of object (“1”) and background (“0”) labels, and a 2-D
arithmetic lattice supporting an FP-MRI grayscale image and its goal
binary “object-background” region map� 
 � � �, respectively.
The proposed similarity metric is defined as follows:
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where �	 and �	 are the reference and target gray scale images,
respectively, and�
 and�
 are the reference and target region map
images, respectively. ���� is the Shannon entropy of the image sig-
nals, ���� � �

�

������ ������� ��� �������, and ���� �� is their

joint entropy, ���� �� � �
�


������ ������� �� ��� ������� ��.

Estimation of the ���–order NMI: To accurately approximate the
marginal, ���	� and ���	�, and joint, ���	��	�, probability dis-
tributions of the gray levels, we use the linear combination of dis-
crete Gaussians (LCDG) with positive and negative components.
The parameters of the LCDG-models (mean and covariance) are es-
timated using a new version of the expectation maximization (EM)
algorithm called the modified EM algorithm [13].
Estimation of the 	��–order NMI: We use a generic Markov-Gibbs
random field (MGRF) image model to accurately estimate the 2��–
order marginal, ���
� and ���
�, and joint, ���
��
�, probability
distributions (see Fig. 2). For simplicity and by symmetry consider-
ations, the interaction structure is limited to the pixel’s nearest �–
neighbors (Fig. 3(a)) for the estimation of ���
� and ���
�; while
for the estimation of ���
��
� the structure includes ��–neighbors
(�-neighbors in the target frame and �- neighbors in the reference
frame, Fig. 3 (b)). For both structures, Gibbs potentials are bi-valued
and depend only on whether each pair of labels are equal or not. Un-
der these assumptions, our model is similar to the Potts model and
differs only in that the potentials are estimated analytically.
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Fig. 3. Interaction neighborhood systems for the estimation of the
MGRF marginal (left) and joint (right) probabilities.

The �-neighborhood (Fig. 3(a)) has two types of symmetric pair-
wise interactions, specified by the absolute distance � between two
pixels in a given map: (i) horizontal and vertical pairs with � � �,
and (ii) the diagonal pairs with � �

�
�. In addition to � � � �

������, the ��-neighborhood (Fig. 3(b)) has one more type of pair-
wise interactions between a given pixel location on the target map
and the reference map with � �

�
�. Let � � ���� � � �� de-

note the family of the neighboring pixel pairs supporting the Gibbs
potentials and ���� denote its cardinality. For simplicity, we will
use � to refer to either �� or ��. The potentials of each type are
bi-valued because only the coincidence of the labels is taken into ac-
count: �� � ������������� where ����� � ����� �

�	 if � � ��

and ����� � ������ ��	 if � �� ��; � � �. Then, the marginal
probability of the MGRF model of the region maps is as follows:
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where� is the approximate partition function [14]: � � 	
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The MGRF model is identified analytically by using the approxi-
mate maximum likelihood estimates of the potentials [14]: ����� �
������ � � 	 
������	 � �; where 
������	 denotes the rela-
tive frequency of the equal label pairs in the equivalent pixel pairs.
Similarly the joint MGRF probability, �������	, can be esti-
mated using Eq. (3) and the neighborhood system of Fig. 3 (b) with
� � � � ������

�
��. We used a gradient descent method to find

the best resolution of the lattice 	 (control points) to maximize the
proposed similarity metric in Eq. (2). The B-splines based regis-
tration for the globally aligned frame shown in Fig. 6(c), using the
proposed similarity metric, and the corresponding deformation field,
are shown in Fig. 6(d) and (e), respectively.

2.2.2. Iso-contours based nonrigid registration

For accurate analysis of the perfusion data, we need to be sure that
there is a one-on-one pixel match in all co-aligned LV walls. For this
reason, we propose a new refinement registration step that will assure
that there is a one-on-one pixel match between all registered frames
of a given perfusion sequence. The refinement registration step is
based on deforming each pixel of the target wall over evolving closed
equi-spaced contours (iso-contours) to closely match the reference
wall. To generate these closed iso-contours, the first step is to extract
the centerline of both reference and target walls.
Centerline extraction: The main idea of the proposed centerline
approach is to find point-to-point correspondences between the inner
and outer borders of the LV wall. Then, the centerline is extracted
by picking the points that are located equidistant from the two cor-
respondence points (see e.g., Fig. 4 (c)). The point-to-point corre-
spondences between the wall borders are estimated based on solving
the ���-order Laplace equation: 
�� � ���
��� 
 ���
��� � �,
for a scalar field �. After the potential, ���� �	, between the borders
is found by solving the Laplace equation, its gradient vectors induce
the streamlines, linking the corresponding border points.

The process of the extraction of the centerline using the Laplace-
based method is shown in Fig. 4. A distance map is generated inside
the LV wall by finding for every inner point the minimum Euclidean
distance to the wall boundaries (Fig. 4 (a)). The Laplace equation
is then applied to wall borders to co-locate the corresponding border
points (Fig. 4 (b)). Then, for each streamline linking corresponding
border points, the streamline point located at equidistance from both
borders is selected as a candidate location on the centerline (Fig. 4
(c)). Finally, the centerline is generated using a closed spline fit for
the selected points, (Fig. 4 (d)).
Evolution of the generated iso-contours: Following the extraction
of the centerline, a collection of equi–spaced contours (iso-contours)
within the LV wall, generated at equal distances from the centerline,
are formed (Fig. 5). Again, we use the Laplace equation applied to
the corresponding iso-contours of the reference and target LV walls
to co-locate the corresponding contour points. The result of the pro-
posed iso-contours based nonrigid registration is shown in Fig. 6 (f).

3. EXPERIMENTAL RESULTS AND CONCLUSIONS

The proposed framework was tested on cross-sectional FP-MRI data,
with a typical �� time frames, obtained from patients with prior my-
ocardial infarctions, documented by viability MRI, who were under-
going a novel myoregeneration therapy. Short-axis images were ob-
tained using a ���T Espree system, Siemens Medical Solutions, USA
Inc., with phased array wrap-around reception coils: slice thickness
�� mm, in-plane resolution ����	���� mm�, FOV ���	��� mm�,
and image size of ��� 	 ��� pixels.

Basic steps of the proposed registration sequence for one of the
�� image frames are demonstrated in Fig. 6. To highlight the advan-
tages of our approach, checkerboard displays before and after each
step of the proposed registration are shown in Fig. 6(g) through (j).
The reference object is shown in red and the target object is shown
in blue. Figure 6(g) shows the superimposed target and reference
walls before any registration steps are applied. Figure 6(h) shows
the effect of the global alignment with some resultant improvement
of matching the edges. Figure 6(i) shows further marked improve-
ment after the B-splines registration step. Figure 6(j), with a further
application of the Laplace–based local alignment of contours, shows
a near ideal match of the target and reference contours.

Since the ultimate goal of the proposed framework is to improve
the visualization of transmural perfusion gradients on FP-MRI, the
co-aligned frames can allow us to construct signal intensity versus
time plots (see Fig. 1) and to derive perfusion-related indexes (e.g.,
initial up-slope, peak signal intensity, and time-to-peak signal, and
the average plateau signal intensity change, see Fig. 1) from these
perfusion curves. For visual assessment of the perfusion-related in-
dexes, we use pixel-wise parametric maps that represent the regional
wall transit of the contrast agent. An example of the pixel-wise
parametric images for the peak signal intensity for one of the test
datasets before and after applying the proposed registration approach
is shown in Fig. 7. The figure clearly demonstrates a more contin-
uous and homogenous appearance of the perfusion index map after
registration when compared with that before registration.

In total, we propose a novel framework for the accurate non-
rigid registration of cardiac first-pass perfusion MRI for improved
visualization of perfusion gradients of these time series images. The
proposed framework employs an initial 2D affine, rigid registration
to account for the global motion of the heart, and a local nonrigid
registration to handle the local deformations of the LV wall using a
B-spline transformation model that maximize a new similarity met-
ric. The latter accounts for the 1
� and 2�
 order NMI between the
globally registered frames. This is followed by a refinement step that
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(a) (b) (c) (d)

Fig. 4. Illustration of the centerline extraction: (a) distance map of a typical LV wall,
(b) streamlines found by solving Laplace equation, (c) the identified centerline points
(blue), and (d) the extracted centerline.

Fig. 5. An example of the generated iso-contours
for the reference (left) and target (right) LV walls.
The centerline is shown in yellow.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Step-by-step registration for one target image to the reference: (a) reference image,
(b) target image, (c) global registration applied to the target, (d) B–splines registration, (e)
obtained deformation field used for the B-splines registration, and (f) Laplace-based registra-
tion. Subsequent checkerboard visualization of the superimposed target and reference walls
before global (g), after global (h), after B–splines (i) and after iso-contours (j) registration.

Min Max

(a)

(b)

Fig. 7. Parametric maps for the peak signal in-
tensity index obtained before (a) and after (b)
the proposed registration for one test dataset.
The red and blue colors of the color scale re-
flect high and low values, respectively.

is based on deforming the target wall over evolving iso-contours, us-
ing a Laplace method, to more closely match the reference wall.

Our future work will explore the effectiveness of the pro-
posed approach for analyzing perfusion-related indexes of both
the transient phase– peak signal intensity, time-to-peak, and initial
up-slope– and the more slowly varying phase (plateau phase), as
indexed using the signal change during this phase. Also, we will
study the usefulness of pixel-by-pixel image displays of the derived
perfusion indexes to investigate both regional perfusion differences
and transmural manifestation, and improvement with treatment.
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