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ABSTRACT 
 
Detection and identification of macromolecular complexes 
in cryo-electron tomograms is challenging due to the ex-
tremely low signal-to-noise ratio (SNR). While the state-of-
the-art method is template matching with a single template, 
we propose a 3-step supervised learning approach: (i) pre-
detection of candidates, (ii) feature calculation, and (iii) fi-
nal decision using a support vector machine (SVM). We use 
two types of features for SVM: (i) correlation coefficients 
from multiple templates, and (ii) rotation invariant features 
derived from spherical harmonics. Experiments conducted 
on both simulated and experimental tomograms show that 
our approach outperforms the state-of-the-art method. 
 

Index Terms— Cryo-electron tomography, template 
matching, support vector machines, spherical harmonics 
 

1. INTRODUCTION 
 
Cryo-electron tomography (CET) is the highest-resolving 
imaging technique to visualize biological samples in 3D 
under near-to-native conditions [1]. In CET, 2D projections 
of the frozen-hydrated sample are obtained from different 
tilt angles using a transmission electron microscope (TEM) 
and the sample’s 3D density (tomogram) is reconstructed 
from those images. The attainable resolution of CET is ap-
proximately 5-10nm and is sufficiently high to distinguish 
individual macromolecular complexes, which allows study-
ing the abundance and interactions of macromolecules [2]. 
Furthermore, CET also enables studying the structures of 
macromolecules in situ, which requires alignment and aver-
aging of different instances of a macromolecule [3]. 

Both above-mentioned applications require accurate de-
tection of macromolecules in tomograms. However, their 
localization is hampered by the low SNR of the tomograms 
(typically 0.1 – 0.01) and the incomplete sampling in Fouri-
er space caused by the limited tilt range of the specimen 
(“missing wedge” problem) [1]. 

The state-of-the-art approach for macromolecule detec-
tion in CET is template matching [4]: a tomogram is corre-
lated (most commonly “local correlation” [5]) with a struc-

tural template of the molecule under scrutiny in different 
orientations. The maxima of the correlation function indi-
cate possible locations of the target macromolecule (candi-
dates). The template matching approach is widespread due 
to three major reasons: (i) It is robust to noise compared to 
many other detection approaches [6]. (ii) The handling of 
the “missing wedge” problem can be integrated into the cor-
relation score [4]. (iii) The computation is efficient using 
Fast Fourier Transforms (FFT) [5]. 

The performance of template matching is nevertheless 
limited: (i) False positive matches occur due to high-contrast 
features (e.g., membranes and gold fiducials used for projec-
tion alignment). (ii) Human interaction is required to set the 
correlation threshold for putative detections. 

To reduce the false positive rate and to avoid subjective 
thresholding, we present a protocol that uses a supervised 
learning technique (SVM) for the binary classification of the 
candidates from template matching. For each candidate, we 
use two different sets of features: correlation coefficients 
from multiple templates, and rotation invariant features de-
rived from spherical harmonics expansion of sub-
tomograms. The former features utilize the power of 
matched filtering while the latter can be computed fast. 
 

2. METHOD 
 
For an input 3D tomogram V , the objective of detection 
and identification of a target macromolecular complex in V  
is to find a set of sub-tomograms {v1, ,vn}  containing the 
replicas of the molecule, and their corresponding positions 
{p1, , pn}  (center of mass) and orientations {r1, , rn}  (Eu-
ler angles). 
 
2.1. Detection and identification workflow 
 
The proposed workflow (Figure 1, lower part) consists of 
three steps described in the following. 

1. Template matching and peak extraction. This is 
the pre-detection step for obtaining the candidates. Given a 
tomogram V  and the structural template T  of the target 
macromolecular complex, we calculate the six-dimensional 
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local constrained cross-correlation function LCCC(p, r )  
[4]. Orientations are sampled explicitly and translations are 
efficiently computed using FFT [5]. The calculation is paral-
lelized in our implementation to gain a further speedup. The 
candidates C = { ′v1, , ′v ′n }  are found by determining the 
local maxima of the LCCC (peak extraction), yielding their 
corresponding positions and orientations. 

2. Feature calculation. After obtaining the candidates, 
their corresponding features are calculated (section 2.2). 

3. Prediction using SVM. In this step, a SVM is used 
to discriminate the true and false positives in the candidates. 
Their class labels will be predicted by the classifiers de-
scribed in section 2.3. Finally, all the candidates labeled as 
the positive class: {v1, ,vn}∈C,n ≤ ′n  are the output of 
our detection and identification approach. 
 

 
Figure 1. Detection and identification workflow. The panel 
above the dashed line shows the generation of classifiers. 

 
2.2. Features of sub-tomograms 
 
After the pre-detection step, we characterize the sub-
tomograms of candidates using features that are robust to 
noise and efficient to compute. Here, we propose two sets of 
features based on correlations from multiple templates and 
spherical harmonics. 
 
2.2.1. Multi-template based features 
Correlation coefficients from multiple templates can reveal 
more information about the candidates than coefficients 
from a single template. Given a set of templates T1, ,Tn , 
the features for the candidate at position p  are calculated as 

 (max
r
LCCCT1

(p, r ), ,max
r
LCCCTn

(p, r )) , (1) 
where LCCCT1

 is the correlation function using T1  as the 
template. In practice, the peak value is searched in a small 
area around p  in order to account for the possible variations 
of the peak position due to different templates and the noise. 
For each sub-tomogram, the computational complexity of 
these features is O(TM ⋅N logN ) , where T is the number of 
templates, M is the number of sampled orientations, and N is 
the number of voxels of the sub-tomogram. 
 
2.2.2. Spherical harmonics based features 
For the second feature set we use spherical harmonics to 
construct a rotation invariant descriptor for 3D data [7]. Ro-

tation invariant features are attractive here because they do 
not require an exhaustive angular search and are hence fast 
to compute. 

The first step of calculating these features for a sub-
tomogram v  centered at the position of a candidate is to 
convert v  to spherical coordinates: 
 v(x, y, z) = f (r,θ,φ) . (2) 
For the spherical coordinates holds r ∈ 0,R[ ] , θ ∈ 0,π[ ]  

and φ ∈ 0, 2π[ ) . Here, we use spline interpolation for the 
non-uniformly sampled data points. For each radius, 
f (r,θ,φ)  is expanded by spherical harmonics transform and 

its expansion coefficients are: 

 f̂l
m (r) = f (r,θ,φ)Yl

m (θ,φ)
φ=0

2π

∫θ=0

π

∫ . (3) 

Herein, Yl
m  is the spherical harmonic of degree l  and order 

m  and Yl
m  is the complex conjugate of Yl

m . Since rotating 
a spherical function will not change the L2 -norm within 
each frequency l , the vector 

 ( f̂0
0 (r) , f̂1

m (r)
m=−1

1

∑ , , f̂L
m (r)

m=−L

L

∑ )  (4) 

is rotation invariant. 
We note the following about this vector: (i) The compu-

tational complexity is O(R ⋅L2 log2 L) , where R is the num-
ber of radii and L is the maximal degree of the spherical 
harmonics transform. (ii) Strictly speaking, the vector will 
differ to some extent for sub-tomograms depicting the same 
macromolecules in different orientations because the un-
sampled regions in Fourier space (“missing wedge”) depend 
on the orientation of the macromolecules. Nevertheless, as 
we shall see below the variations are sufficiently small to 
allow for discrimination of different macromolecules. 
 
2.3. Generation of classifiers 
 
Due to the low SNR of experimental tomograms, it is diffi-
cult to obtain a ground truth of the identities of sub-
tomograms. Here, we simulate tomograms as the ground 
truth. To make the simulation as realistic as possible, it is 
conducted as follows: (i) Obtain atomic models of different 
molecules from the Protein Data Bank (PDB) and convert 
them to density maps of appropriate pixel size and resolu-
tion. (ii) Randomly position and rotate duplicates of the den-
sity maps in a volume. Moreover, beads of various sizes 
with the density of gold are added. (iii) Project the volume 
along different directions according to defined angular tilt 
geometry. (iv) Add noise to the projections, convolute them 
with the contrast transfer function (CTF), and add further 
noise [8]. The projections are low-pass filtered to the first 
zero-crossing of the CTF. (v) Reconstruct the tomogram 
from the projections using weighted back-projection. 

After the simulation, the steps 1 and 2 described in sec-
tion 2.1 have to be executed on the simulated tomograms to 
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obtain the candidates and their features. Subsequently, the 
class labels of all candidates are determined by their dis-
tances to the ground truth locations. If the candidate is clos-
er than a threshold T, it is labeled as positive, otherwise 
negative. Finally, the labels and corresponding feature vec-
tors constitute the training set of the SVM. 

LIBSVM [9] is used as the implementation of SVM. 
Specifically, we choose the RBF kernel for training and the 
best parameters C  and γ  are determined by a grid search. 
Additionally, five-fold cross-validation is applied to avoid 
overfitting. To account for the unbalanced training set, dif-
ferent weights are assigned to the classes according to the 
quantity of the samples in each class. The obtained classifi-
ers are then used to predict the class labels of the incoming 
candidates from a new tomogram. 

3. EXPERIMENTS 

We first generated the classifiers as described in section 2.3. 
Ten tomograms ( 512× 512× 512 voxels) were simulated, 
each of which contained 5 different types of abundant ob-
jects (30 copies of each): 80S ribosome (PDB ID: 3IZS, 
3IZF, 3IZB and 3IZE), 60S ribosome (PDB ID: 3IZB and 
3IZE), 20S proteasome (PDB ID: 1PMA), GroEL (PDB ID: 
1SS8) and gold beads of different sizes. All of the tomo-
grams were simulated with defocus value 4 μm and pixel 
size 0.47 nm. The resulting tomograms were finally binned 
twice (pixel size 1.88 nm) to be consistent with typical pro-
cessing of experimental tomograms. 

In this paper we focus on the identification of 80S ribo-
somes (positive class). After template matching 1000 peaks 
(more than three times the amount of 80S ribosomes) were 
extracted to ensure a high coverage of the positive class. 
The class labels of the candidates were then determined. In 
this case, 258 candidates were labeled as the positive class 
(86% coverage) and the remaining 742 as the negative class. 

The two feature sets were computed for all candidates
(section 2.2). For the multi-template based features (MT), 3 
templates (80S ribosome, 60S ribosome and 20S pro-
teasome) were used, resulting in a 3 dimensional feature 
vector. For the spherical harmonics based features (SH), the 
radii for decomposing the sub-tomograms ranged from 1 to 
7 voxels, and L was set to 16. Consequently, the dimension 
of the SH feature space was 119. 

The features and the class labels of the candidates 
formed the training sets for the SVMs. After the training, the 
obtained classifiers were evaluated both on simulated and 
experimental tomograms in the following. 

3.1. Application to the simulated tomograms 

Ten additional tomograms were simulated as the ground 
truth for the assessment. After the detection and identifica-
tion protocol was applied with both feature sets, the class 
labels of the test sets were predicted. As a comparison, we 

also evaluated the state-of-the-art approach (template match-
ing with a single template followed by thresholding, ST).  

The results are shown in Table 1: both SVM approaches 
perform vastly superior to the ST approach on simulated 
data. Interestingly, even though MT has far fewer features 
than SH, both of them have similar capabilities to distin-
guish 80S ribosomes. Furthermore, the ROC curves of all 
classifiers are shown in Figure 2. MT and SH clearly over-
come the ST approach. However, the qualitative behaviors 
of the MT and SH curves differ slightly: the MT approach 
performs better at low false positive rates whereas the SH 
approach is superior at high false positive rates. 
 

Features Accuracy Precision Recall 
MT 96.2% 94.9% 91.5% 
SH 96% 91.8% 94.4% 
ST 61.4% 32.4% 33.1% 

Table 1. Identification results on simulated tomograms. For 
a fair comparison, the threshold for ST was set such that the 
positive class had roughly the same amount as MT and SH. 

 

 
Figure 2. ROC curves of classifications for 80S ribosomes 
on simulated tomograms. The correlation threshold is varied 
for plotting the ROC curve of ST. 

 
3.2. Application to an experimental tomogram
 
The performances of the proposed approaches were further 
evaluated on an experimental tomogram of endoplasmic 
reticulum (ER) microsomes derived from canine pancreas 
(Figure 3a). The tomogram (tilt range: -60° to +60°, 3° in-
crement) was acquired on a FEI Tecnai Polara TEM 
equipped with a Gatan GIF 2002 energy filter (300 kV ac-
celeration voltage, 4 µm defocus, object pixel size 0.47 nm). 

After template matching with the 80S ribosome tem-
plate (Figure 3b), 500 peaks were extracted and these candi-
dates were subjected to classification. As a result, MT pre-
dicted 222 as positives and 278 negatives, while the num-
bers from SH were 224 and 276, respectively. Due to the 
lack of the ground truth, we first evaluated the resulting pos-
itive classes based on their averages (Figure 3c), as obtained 
by sub-tomogram alignment [10]. The averages of the MT- 
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and SH-positives exhibited ribosome-specific features and 
readily distinguishable ER-membranes, in contrast to the ST 
average, which was clearly affected by false positives with 
strong signals, probably gold beads. Thus, the averages sug-
gest improvements of detection accuracy by our approaches. 
 

 
Figure 3. (a) A slice of an experimental tomogram. The 
arrow points to an ER-associated 80S ribosome. (b) The 
isosurface of the template of 80S ribosome (upper row) and 
its corresponding central 2D slice (lower row). (c) The aver-
ages of the positive class from various identification ap-
proaches. The additional densities in the lower parts of MT 
and SH maps are the ER-membranes. 

 
Features Accuracy Precision Recall 

MT 81% 88.3% 74% 
SH 79% 85.7% 72.5% 
ST 57% 61.2% 51.7% 

Table 2. Identification results on an experimental tomogram 
based on the ground truth from manual labeling. 

For a further assessment, the candidates were manually 
labeled by experts. According to the subjective decisions, 
the results were evaluated (Table 2), which also indicate 
clear improvements over the ST approach, even if the SVM 

was trained using simulated data. Hence, by improving the 
quality of simulation further improvements can be expected. 
 

4. CONCLUSION 
 
We presented a protocol to detect and identify macro-
molecular complexes in cryo-electron tomograms using a 3-
step approach with two feature sets: MT and SH. The MT 
approach accurately incorporates the “missing wedge” prob-
lem, but is computationally slower than the SH approach. 
Moreover, based on the results from simulated tomograms, 
the MT approach is more powerful when high specificity is 
targeted whereas the SH approach performs better for high 
sensitivity. When applied to ribosomes, both approaches 
yield superior results to the state-of-the-art approach (ST) in 
simulated and experimental tomograms. It remains to be 
explored whether combining these two sets of features can 
provide significant further improvements. While the method 
was applied to detect ribosomes here, it is expected to pro-
vide similar advantages for the detection of other complex-
es.  In the future it will be interesting to determine the min-
imum mass of complexes that can be detected in tomograms 
with satisfactory specificity and sensitivity. 
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