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ABSTRACT

X-ray differential phase-contrast tomography is a recently-developed
modality for the imaging of low-contrast biological samples. Its
mathematical model is based on the first derivative of the Radon
transform and the images, in practice, are reconstructed using a
variant of filtered back-projection (FBP). In this paper, we develop
an alternative reconstruction algorithm with the aim of reducing the
number of required views, while maintaining image quality. To that
end, we discretize the forward model based on polynomial B-spline
functions. Then, we formulate the reconstruction as a regularized
weighted-norm optimization problem with a penalty on the total
variation (TV) of the solution. This leads to the derivation of a novel
iterative algorithm that involves an alternation of gradient updates
(FBP step) and shrinkage-thresholding (within the framework of the
fast iterative shrinkage-thresholding algorithm). Experiments with
real data suggest that the proposed method significantly improves
upon FBP; it can handle a drastic reduction in the number of projec-
tions without noticeable degradation of the quality with respect to
the standard procedure.

Index Terms— Differential phase-contrast imaging, Iterative
filtered back-projection, B-spline functions, Total-variation regular-
ization.

1. INTRODUCTION

X-ray phase-contrast imaging modalities are promising alternatives
to conventional tomography for visualizing the structure of many
biological samples. Phase-contrast methods can be divided into
analyzer-based [1], interferometric [2], and propagation-based tech-
niques [3]. The differences between these methods are related to
their physical setup and the signal that they measure.

The physical setup of X-ray differential phase-contrast imaging
(DPCI) is based on grating interferometry [4]. Its physical model
involves the first derivative of the object’s refractive-index. The con-
sequence is that images can be reconstructed using a variant of the
filtered back-projection (FBP) algorithm found with conventional to-
mography. Because the FBP method requires a large number of
view angles, the total scan time can be very long. Our main goal
in this work is to reduce the number of views, hence the total acqui-
sition time, while maintaining image quality. This is made possible
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through the refinement of the reconstruction procedure and the in-
troduction of regularization constraints.

The development of iterative methods for DPCI is very re-
cent [5-8]. Their common philosophy is a maximum-a-posteriori
type criterion which involves a least-squares data term and a suit-
able regularization term. In this paper, we investigate an alternative
approach for deriving an iterative algorithm with good convergence
properties. The key idea is to take advantage of the FBP in the
course of iteration. It is a concept that originates from CT [9], but
which has not yet been transposed to DPCI. The contributions of
this paper are

e A rigorous discretization of the DPCI forward model using
B-splines.

e A variational formulation of iterative FBP involving a weighted-
norm least-squares term with a penalty that imposes a regu-
larization on the solution.

e A fast iterative-shrinkage algorithm tailored to the problem.

e The demonstration on real data that the approach can signifi-
cantly reduce the acquisition time at no cost in image quality.

The paper is organized as follows: We describe the physi-
cal model of DPCI followed by our discretization scheme and the
required mathematical properties in Section 2. In Section 3, we
present our variational formulation and the resulting reconstruc-
tion algorithm. We formulate the reconstruction as a regularized
weighted-norm optimization problem and derive our new recon-
struction scheme. We present a real experiment to validate the
proposed method in Section 4. We summarize and conclude our
work in Section 5.

2. FORWARD MODEL

2.1. Physical Model

An X-ray plane wave can be characterized by its intensity and phase.
However, only the intensity is directly measurable. Therefore, to ac-
cess the phase information, it is necessary to transfer it to the inten-
sity domain. To that end, the physical setup of DPCI is based on
grating interferometry (GI), as shown in Figure 1. Two grating lay-
ers are placed behind the object (with respect to the beam source).
The first grating is a phase grating that produces a phase shift of .
The second grating is an absorption grating.

The object, which is illuminated by a plane wave, introduces the
phase shift A¢(y, 6) in the transmitted wave. Its proportionality to
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Fig. 1: The physical setup of differential phase-contrast imaging is
based on grating interferometers. The phase grating introduces a
phase shift in the transmitted wave. The absorption grating is used
to adjust the received wave to the resolution of the detector.

the Radon transform of the refractive index is expressed by

£6(5,0) = SRS (o1, 22)}(,0),

where
R{F}w.0) = [ 1(@)50 ~ (z.0))d.

with ¢ = (z1,22) and @ = (cos6,sin@). The Radon transform
R{f}(y,0), withy € R and 6 € [0, 7], represents the set of line
integrals of f € L2(R?) perpendicular to @ with (signed) distance y
from the origin.

The object causes the wave to be refracted; the refraction angle
is proportional to the derivative of the phase shift with respect to y.
The wave then reaches the phase grating which essentially splits it
into first and second diffraction orders. Since the period of the grat-
ing (4um) is much larger than the wavelength, the angle between
the two diffracted beams is very small and they overlap almost com-
pletely. When there is no object, the illumination plane wave pro-
duces a periodic fringe pattern at the detector with a period that is
half the grating pitch.

The changes in the refraction angle induced by the object lead to
some local displacements of the fringes at the detector. An absorp-
tion grating is placed at distance d and a phase stepping technique
(PST) [4] is used to extract the pulse shifts at each pixel. The latter
is proportional to the refraction angle induced by the object. There-
fore, the physical model of DPCI is based on the first derivative of
the Radon transform (FDRT) of the refractive index of the object f;

90:0) = 2500.0) = S RUN@O. D

where ¢(y, 0) is the phase of the intensity oscillation at each pixel,
and g» is the absorption grating period.
2.2. Model Discretization

To formulate the reconstruction problem, it is necessary to discretize
the forward imaging operator. We use the discretization scheme
based on polynomial B-spline functions proposed in [7]. This leads
to the matrix version of (1) given by

g = Hec, @

where c is a vector of B-spline coefficients in lexical order, g is the
output vector, and H is the system matrix with

[H] i,y = RO{B™ (- — ) Hy;, 04) 3)

and §; = i A6 and y; = j A y. We use tensor-product B-
splines of degree n: " (x) = B"(x1)8"(x2). The B-spline is
n+1
BT (x) = %xﬁ, where A} f(x) is the n-fold iteration of the
finite-difference operator A, f(x) = w andzy =
max(0, z). Therefore, to compute the matrix entries, it is sufficient
to have R 8™ (y;, 6;), with
n+1 n+1

sin , 2n

AN
ROHE"Hy,0) = =52yt

2.3. Modified FBP for DPCI

Since the data is a derivative of the Radon transform, one can use a
variant of FBP. For brevity, let us denote the FDRT of f by,

RO f(y,60) = any(y,0)~

oy
Proposition 1. [Modified filtered back-projection]
ROR() « RV (0} (@) = f(2), @

where R is the adjoint of the first derivative of the Radon trans-
form operator and h is the convolution kernel whose Fourier trans-

Sformis ?L(w) = ‘i—‘

Proof. Since the adjoint of a% is —8%, we have
W (1) 0
RY ARV fH=) = R {aTﬂRf(y,')}(fv)

D (AR R} ()
(B)

2 (2 @)

where R”* is the Radon adjoint operator defined as
R {g}(@) = [ al(.6).000,
0

with g(y,0) € La(R x [0,7]). (—A) and (—A)% are the Laplace
and square-root Laplace operators, whose Fourier transforms are
[|w||? and ||w||, respectively. The Fourier-slice theorem results in
(A). The sequential application of the Radon adjoint and the Radon
transform on the function f is the filtering operator

RRSHw) = 2n(—L) 2 {f}(=), ©)

where (—A)_% is a fractional integral operator with transfer func-
tion . It yields the equality (B). We thus have

(-2) P ROYRY Y @) = J(@),
which implies (4) using the Fourier-slice theorem. O

Within our discretization framework, the modified FBP de-
scribed by Proposition 1 is expressed as

co=H"Wg, (©)

where g is an (M x 1) data vector, W corresponds to the filtering
operation in (4), H is the (M x N) forward projection matrix (3),
and H7 is its transpose. It is the standard technique that is used in
practice for the reconstruction of DPCI tomograms.
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3. IMAGE RECONSTRUCTION

We shall now see how the quality of the reconstructions can be im-
proved through iterations. The key observation is that (6) corre-
sponds to the first iteration of a basic steepest-descent algorithm on
the weighted least-squares criterion

1||He — gl = (He — g)" W(He — g), )

which is aimed at imposing consistency between the reconstructed
image and the measurements.

In order to derive our algorithm, we make two crucial modifica-
tions to this criterion. First, we adjust the frequency response of the
theoretical filter in Proposition 1 to avoid the singularity at zero, re-
placing it with the filter W whose response is M%’ which has also
the advantage of being positive-definite. Second, we handle the fact
that the reconstruction problem is ill-posed (in the case of a limited
number of views) by adding a suitable regularization term.

We therefore reformulate the reconstruction in terms of the op-
timization problem

argmin{J(c) £ %HHC - g||3,~v +¥(c)}, @®)

where ¥ (c) is the regularization term.

We use total-variation (TV) regularization to enhance edges in
the reconstructed image. Since the null space of the imaging opera-
tor contains a zero frequency, we also use Tikhonov regularization,

argmin{J(c) = }|[He — g|[3 + Mllel® + XD _|[{Lekill1},
Ji(c) Z_,_/

J2(e)
©))
where the sum is computed over every B-spline coefficient and
{Lc}; € R? is the gradient vector of the image at position 4. The
discrete gradient operator is computed using Proposition 2.

Proposition 2. Let f(x) = >, cxf"(x — k). The gradient of f
on the Cartesian grid is

Ll ha) = (el el hal) ] el ik s

%[kla ko] = ((ha[k1, ] * c[k1, ][, ka] * ba[-, k2])[k1, ko] ,
(10)

where k1, ko € Z, hilk1, k2] = 87 (ki + ) —B" (ki — 3), and
bi[lﬁ,kz] = B"(ki)fori = 1,2,

To solve the nonlinear TV problem, we develop a modified ver-
sion of the gradient-based fast iterative shrinkage-thresholding algo-
rithm (FISTA) method [10], which requires the repeated evaluation
of the proximal map of the non-smooth part, J>(c). It is given by

. 1
prox, {2 }(2) = argmin {ZIZ —ul* + /\ZH{Lu}illl
an

To find the solution of (11), we express the second term in the dual
space using a dual ball B(; o) and the corresponding dual variable

pair (p,q),

ZII{Lu}iHl = max

(P,Q)EB(pﬁq)

<LT(p, q), u> :
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where L7 is the adjoint of the discrete gradient operator L. We have
that

1
min 5z =l + A 3| [{Lukll

. 1
= min max -

2 T
z—ul|"+ A <L , 7u>
in 5l I (p,a)

= max

1 T 2 1, 9
—||lz — AL" (p,q)||” — =||z||” -
- I (P, Q)" — 5 Il

Thus, prox, {J2}(z) = z — ALT(p*, q*), where

* * . 1
(P",q") = argmin Sz = AL (P @) + 15, 4, (Py ) . (12)
p,q

Problem (12) is then solved using the FISTA algorithm. The final
ingredient is the gradient of the quadratic function .J; (c)

Vii(c) = (HTVVH + All) c—H'"Wg.

The resulting reconstruction procedure is summarized in Algo-
rithm 1. Since the condition number of (HWH + A1) is close to
1, our iterative FBP can be expected to converge rapidly.

Algorithm 1 FISTA-BASED ITERATIVE FBP

Input: HYWH + M\ I, v = H'Wg, ¢, 7 < Anax(HWH +
A1), and prox, {J2}.
Output: The reconstructed image f.
: Initialization: n = 0, up = co, to = 1.
: repeat ~
Cnt1 < prox  {Jo}(u, +7(v — (H'WH + M\ Du,,)).
tni1  (14+V1+482) /2.

1
2
3
4
5: Upi1e Cnyl + o=t (Cnt1 — Cn)-
6
7
8

tn+1
n+<n+1.

: until convergence.

s flx) =Y, e (2 — k).

4. EXPERIMENTAL RESULTS

To validate the proposed reconstruction method, we conducted ex-
periments with real data acquired at the TOMCAT beam line of the
Swiss Light Source at the Paul Scherrer Institute in Villigen, Switzer-
land. The synchrotron light is delivered by a 2.9 T super-bending
magnet [11]. The energy of the X-ray beam is 25 kev. Each projec-
tion contains nine phase steps over two periods to describe the cor-
responding curve of the PST. For each step, a complete 180-degree
tomogram is collected. The projections are collected using a CCD
camera to record the individual projections.

We assembled a real phantom composed of a tube with three
cylindrical sub regions that are filled with liquids of different refrac-
tive indices. A cross section is the 2-D sample that we retain. Its size
is 1357 x 1357 pixels.

We took measurements along 1200 projection angles and used
the reconstruction obtained with the FISTA-based iterative FBP
method as the ground truth. We then used a subset of the measure-
ments to compare the performance of the traditional FBP algorithm
with our method.

We used cubic B-spline for our algorithm. Based on our experi-
ence, the Tikhonov regularization parameter can be very small; we
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Fig. 2: The reconstructed phantom using FISTA-based iterative FBP
method with 1200 directions is considered as the oracle (a). The
images reconstructed from 38 projections using our method and an
FBP-type method are shown in (b) and (c), respectively.
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Fig. 3: The SSIM and SNR metrics for images reconstructed from a
subset of projections.

set it to 107°. The TV parameter is set to 102

the measurement vector.

The reconstructed images using our algorithm and the FBP-like
method with 38 projection angles are shown in Figure 2. To compare
the reconstructed images, we use the signal-to-noise ratio (SNR) and
the structural similarity measure (SSIM [12]) with a window size of
20.

X ||g||2 where g is

The FBP-like method performs poorly on the boundaries of the
image, as exemplified in Figure 2.c. To compare the reconstructions
with different numbers of projections, we consider a region in the
middle of the object as marked with the white dashed line in Fig-
ure 2.a. The comparison results are shown in Figure 3. These results
suggest that the proposed algorithm is capable of reconstructing the
data as well as the standard imaging procedure, while using only
one-twentieth of the number of viewing angles.
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5. CONCLUSION

We have formulated a novel iterative FPB algorithm for X-ray differ-
ential phase-contrast tomography. The algorithm was derived from
the minimization of a weighted-norm error criterion subject to suit-
able ¢1-{y regularization constraints. The quality of the physical
phantom reconstruction is excellent, including in extreme conditions
where the number of views is reduced by a whole order of magni-
tude.
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