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Abstract. Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) 
have been widely used to study the functional activities of the human brain 
during task-free and task-performance periods, respectively. However, due to 
the difficulty in strictly controlling the participating subject’s mental status and 
their cognitive behaviors during fMRI scans, it has been very challenging to tell 
whether or not an R-fMRI/T-fMRI scan truly reflects the participant’s 
functional brain states in task-free/task-performance. This paper presents a 
novel approach to characterizing the brain’s functional status into task-free or 
task-performance states. The basic idea here is that the brain’s functional state 
is represented by a whole-brain quasi-stable connectivity pattern (WQCP), and 
an effective sparse coding procedure was then applied to learn the atomic 
connectivity patterns (ACP) of both task-free and task-performance states based 
on training R-fMRI and T-fMRI data. Our experimental results demonstrated 
that the learned ACPs for R-fMRI and T-fMRI datasets are substantially 
different, as expected. However, a certain portion of ACPs from R-fMRI and T-
fMRI datasets are overlapping, suggesting that those subjects with overlapping 
ACPs were not in the expected task-free/task-performance states during R-
fMRI/T-fMRI scans. 

Keywords: DTI, fMRI, connectivity, cortical landmarks. 

1 Introduction 

In the brain imaging field, resting state fMRI (R-fMRI) [1, 2] and task-based fMRI 
(T-fMRI) [3] have been widely employed to investigate the functional activities of the 
human brain in task-free and task-performance periods. However, it has been rarely 
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studied (as far as we know) whether or not the R-fMRI/T-fMRI data was really 
reflecting the subject’s task-free/task-performance states, in that it is very difficult to 
strictly control the participating subject’s mental status and their cognitive behaviors 
during fMRI scan sessions. For instance, if a participating subject’s brain was active, 
e.g., in some active cognitive processes, during the R-fMRI scan, how different will 
this R-fMRI data be from other strict R-fMRI data acquired during task-free states? 
Similarly, if a participating subject’s brain was in resting state, e.g. not strictly 
following the administered task-performance paradigm [10], how different will this T-
fMRI data be from other strict T-fMRI data scanned during task-performance states? 
If these differences are substantial, can we quantitatively characterize and 
automatically differentiate those unreliable or false R-fMRI/T-fMRI data from strict 
R-fMRI/T-fMRI data? The answers and solutions to these questions can significantly 
enhance our understanding of the function mechanisms of the brain and enable us to 
detect and control the quality of R-fMRI/T-fMRI data in the subsequent quantitative 
analysis, e.g., inference of resting state networks (RSNs), functional connectivity 
analysis, and task-based functional region localization.   

In response to the above unanswered questions, this paper presents a novel 
computational framework to characterize the brain’s task-free and task-performance 
functional states by learning from both R-fMRI and T-fMRI datasets. The basic idea 
is that we represent the brain’s functional status by whole-brain quasi-stable 
connectivity patterns (WQCP), and then apply a sparse coding approach to learn the 
atomic connectivity patterns (ACP) of both task-free and task-performance states 
from large-scale temporally segmented WQCPs. Notably, the integration and pooling 
of many WQCPs from different brains are enabled by our recently developed and 
validated 358 consistent cortical landmarks, or regions of interests (ROIs), in [5], 
which provide intrinsic structural and functional correspondences across individuals 
and populations. Thus, the WQCPs from different temporal segments of multiple 
brains can be readily pooled and effectively compared via sparse coding and 
representation methods, which can learn the most descriptive atomic patterns in 
forming a meaningful dictionary to represent and discriminate those WQCPs. Our 
experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI 
datasets are substantially different, as expected, but the overlapping ACPs suggest 
that certain subjects were not in the expected task-free/task-performance states and 
should be considered as outliers in the following steps of data analysis.                                   

2 Materials and Methods 

2.1 Overview 

The flowchart of the proposed computational framework is summarized in Fig. 1. 
First, 358 cortical ROIs discovered and validated in our recent study in [5] are located 
in the brain using DTI data (green bubbles in the left panel of Fig. 1). Then, both 
resting state fMRI (R-fMRI) and visual-task fMRI (T-fMRI) time series for each ROI 
are extracted. By using a sliding time window, the dynamic functional connectivity 
time series between each pair of ROIs are measured and the cumulative connectivity 
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Fig. 1. The flowchart of our computational framework. (1) fMRI signal extraction for each 
ROI; (2) Measurement of dynamic functional connectivity strength; (3) Manual segmentation 
and collection of WQCP training samples; (4) FDDL sparse learning and classification.  

strength of each ROI at each time point is summed. It is observed that the functional 
connectivity strengths are relatively stable in a continuous time period, and then the 
dynamic functional connectivity time series are manually segmented into quasi-stable 
time periods (called WQCP above), which form a set of WQCP training samples. 
Finally, the WQCP samples from both R-fMRI and T-fMRI datasets were combined 
together for sparse representation learning via the Fisher discriminative dictionary 
learning (FDDL) method [4].   

2.2 Data Acquisition and Pre-processing 

Twenty-six healthy adolescent volunteers participated in this study under IRB 
approvals. Multimodal DTI and fMRI datasets were acquired on a 3T GE MRI 
scanner. Both resting state fMRI and block-based visual task fMRI scans were 
acquired for each volunteer. Acquisition parameters for the scans were as follows. 
fMRI: 64×64 matrix, 4mm slice thickness, 220mm FOV, 30 slices, TR=2s; Visual 
task design and imaging parameters are referred to our recent publication [7]. DTI: 
256×256 matrix, 3mm slice thickness, 240mm FOV, 50 slices, 15 DWI volumes, b-
value=1000. The pre-processing of the DTI data included brain skull removal and 
motion correction. Both resting state and visual task-based fMRI datasets were pre-
processed using the FSL FEAT.  

2.3 WQCP Extraction  

Based on the DTI data of each subject, we predicted the 358 cortical landmarks via 
the functional ROI prediction approaches in [5]. In brief, these 358 cortical landmarks 
were optimized to possess consistent group-wise structural connection patterns, and 
thus have structural and functional correspondences across individuals and 
populations. The left panel of Fig.1 shows an example of the distributions of the 358 
cortical landmarks on a cortical surface. In particular, these 358 cortical landmarks 
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stable, each WQCP segment is averaged among the time axis, resulting in a single 
WQCP vector. Two experts performed segmentation work and independently 
checked. Finally we obtained a collection of 1149 consistent WQCP vectors from the 
datasets in Section 2.2. Specifically, there are 474 WQCP vectors for resting state 
data and 675 WQCP vectors for visual task data. All these WQCP segments and 
vectors were pooled together as training samples and represented using the following 
methods. 

2.4 FDDL for Sparse Representation of WQCP  

Sparse representation has been widely demonstrated to exhibit very good performance 
in a variety of image analysis applications such as image classification [4, 9]. 
Typically, there are two steps in the sparse representation based image classification 
method: coding and classification. In sparse representation, learning the descriptive 
and representative dictionary is the key. Sparse dictionary learning has been used in 
the brain activity and function study [11]. This paper adopted the recently developed 
Fisher discriminative dictionary learning (FDDL) based sparse representation 
methodology [4] and tailored it for our functional brain state learning applications.  

Briefly, the FDDL method employs a Fisher discrimination criterion to learn a 
structured dictionary, based on which the classification is performed. Here, the 
learned dictionary is denoted by ܦ ൌ ሾܦଵ, ,ଶܦ … , ௜ܦ ௖ሿ, whereܦ  is the sub-dictionary 
corresponding to the class ݅, and c is the total number of classes learned. Also, ܣ ൌ ሾܣଵ, ,ଶܣ … ,  ௜ is theܣ ௖ሿ represents the training WQCP vector samples, whereܣ
sub-set of the training WQCP vector samples belonging to the class i. In addition, ܺ ൌ ሾ ଵܺ, ܺଶ, … , ܺ௖ሿ represents the coding coefficient matrix of A over D. The FDDL 
model is represented as follows: ܬሺ஽,௑ሻ ൌ ,ܣሺݎሺ஽,௑ሻሼ݊݅݉݃ݎܽ ,ܦ ܺሻ ൅ ଵԡܺԡଵ ൅ ଶ݂ሺܺሻሽ           (2) 

where the first term on the right ݎሺܣ, ,ܦ ܺሻ is called the discriminative fidelity term; 
the second term ԡܺԡଵ is the sparsity constraint; and the last term ݂ሺܺሻ is a Fisher 
discrimination constraint imposed on the coefficient matrix. ଵ and ଶ are scalar 
parameters for trade-off between sparsity and discrimination capability. Here, 
ଵ=0.005 and ଶ=0.05. 

Specifically, there are two classifiers that can be used: global classifier (GC) and 
local classifier (LC) [4]. This study adopted the GC to perform the sparse coding 
learning and classification. For one input WQCP vector sample y, first, the sparse 
coding coefficients can be obtained by solving the following: 

ෝ ൌ ݕሼԡ݊݅݉݃ݎܽ െ ԡଶଶܦ ൅ ԡԡଵሽ                    (3) 

where ෝ ൌ ሾෝଵ;ෝଶ; … ;ෝ௖ሿ and ෝ௜ is the coefficient vector linked to the ܦ௜ .  is a 
constant parameter. Then, the sample y is attributed to the class, associated with 
which the sub-dictionary has the minimum representation error defined by Eq. 4: ݁௜ ൌ ԡݕ െ ௜ෝ௜ԡଶଶܦ ൅ ݓ · ԡෝ െ ݉௜ԡଶଶ                    (4) 
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  In total, we found 11 WQCP samples 
in 8 task-free subjects and 2 WQCP 
samples in 2 task-based subjects that 
were classified into the uncertain ACP 
#10. This pattern (Fig. 4(10)) exhibits 
quite high global functional connectivity, 
and Fig. 5 shows two examples from both 
T-fMRI and R-fMRI WQCP samples. In 
addition to the shared ACP #10 in Figs.3-
4, we further investigated the potential 
outliers in both resting state and task-
performance WQCP samples. For 
instance, there is one WQCP sample in a 
task-free subject, but it was clustered into 
the ACP #4, which is considered as one 
task-performance ACP. Importantly, we 
found 37 WQCP segments (out of totally 
675 task-performance WQCP samples) in 
17 subjects that were clustered into the 
task-free ACPs, as shown by the red 
boxes in the right side of Fig. 3 (highlighted by the yellow arrows). The quantitative 
summaries are provided in Table 1. These results imply that the participants in our 
experiments exhibited relatively good resting performance for high quality R-fMRI 
data, but they did not perform equally well in visual task experiments, as 17 of them 
exhibited resting state ACP patterns during the task-performance scans, suggesting 
these subjects were not well following the administered tasks in certain periods. Thus, 
we should take additional caution when analyzing the task-based fMRI datasets of 
these 17 subjects.   

4 Discussion and Conclusion 

This paper presents a novel framework for quantitative characterization of task-free 
and task-performance functional brain states via sparse representation of whole-brain 
quasi-stable connectivity patterns (WQCP). Experimental results have demonstrated 
that though the learned ACPs for R-fMRI and T-fMRI datasets are substantially 
different, a certain portion of overlapping ACPs between the two datasets suggests 
that some subjects were not in the expected task-free/task-performance states during 
R-fMRI/T-fMRI scan sessions. This result has important implications in detecting and 
controlling R-fMRI/T-fMRI data quality for other data analysis tasks. In the future, 
we will examine the detailed functional connectivity patterns in all ACPs. For 
instance, the ACP #16 in Fig. 4 can be clustered into several functional sub-networks 
(Fig. 6), and it turns out that the widely replicated default mode network [1] is within 
 

Table 1. The numbers and percentages of 
subjects with detected outlier ACP patterns. 

ACP 
Rest 

Num/Percent
Task 

Num/Percent 
Pattern #1 0 - 
Pattern #2 0 - 
Pattern #3 0 - 
Pattern #4 1/3.8% - 
Pattern #5 0 - 
Pattern #6 0 - 
Pattern #7 0 - 
Pattern #8 0 - 
Pattern #9 0 - 

Pattern #10 8/30.8% 2/7.7% 
Pattern# 11 - 1/3.8% 
Pattern #12 - 4/15.4% 
Pattern #13 - 4/15.4% 
Pattern #14 - 3/11.5% 
Pattern #15 - 11/42.3% 
Pattern #16 - 3/11.5% 
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one clustered sub-network, as highlighted by the 
red lines in Fig. 6. This result suggests that we can 
possibly define and cluster resting state networks, 
e.g., the ones within the black boxes in Fig. 6, 
within each temporally quasi-stable ACP pattern, 
in which the temporal patterns of functional 
connectivities are much more homogeneous and 
stable than those in traditional RSN identification 
methods that consider the entire R-fMRI scan 
period [2].  
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Fig. 6. The default mode network 
(DMN) in ACP pattern #16 
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