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Abstract. In this paper, we present a liver segmentation approach. In
which, the relation between neighboring slices in CT images is utilized to
estimate shape and statistical information of the liver. This information
is then integrated with the graph cuts algorithm to segment the liver
in each CT slice. This approach does not require prior models construc-
tion, and it uses single phase CT images; even so, it is talented to deal
with complex shape and intensity variations. Moreover, it eliminates the
burdens associated with model construction like data collection, manual
segmentation, registration, and landmark correspondence. In contrast,
it requires a low user interaction to determine the liver landmarks on a
single CT slice only. The proposed approach has been evaluated on 10
CT images with several liver abnormalities, including tumors and cysts,
and it achieved high average scores of 81.7 using MICCAI-2007 Grand
Challenge scoring system. Compared to contemporary approaches, our
approach requires significantly less interaction and processing time.

1 Introduction

In liver CAD systems, the liver segmentation is the first and essential process,
and its accuracy is of special significance. However, this process is difficult be-
cause of low contrast between the liver and surrounding tissues , great differences
in liver shape and intensity , and the existence of liver abnormalities. In liter-
ature, there are many attempts to solve the liver segmentation problem and
various approaches have been proposed, including intensity or texture based ap-
proaches, deformable and statistical model-based approaches, and probabilistic
atlases based approaches. Survey and comparison of different liver segmentation
approaches have been presented in [1,2].

In the intensity based approaches, one or multiple intensity thresholds, region
growing, or watershed methods are applied to extract an initial binary volume
which consequently refined using morphological filters or knowledge-based ap-
proaches. Recent approaches of this category have been proposed in [3,4], and
by Beck and Aurich in [2]. In the deformable model-based approaches, an initial
contour or surface is deformed to minimize a predefined energy function. In [5,6],
deformable models have been coupled with shape models and intensity thresh-
olding to perform liver segmentation. Additionally, Gradient vector flow (GVF)
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active contour [7] has been utilized for liver segmentation by R. S. Alomari et al.
in [8] and by Chi et al. in [2]. The implicit deformable models, also called implicit
active contours or level sets [9], have been utilized for liver segmentation as well.
The statistical models have been received high interest from the investigators
of liver segmentation approaches. They construct linear or non-linear models to
represent the variation in liver shape and appearance like the approaches pre-
sented in [10,11,12]. In addition to statistical shape models, probabilistic atlases
have been integrated into different liver segmentation approaches [13].

Despite this prosperous literature, we can conclude that the intensity- and
deformable-based approaches were highly affected by the liver abnormalities.
The statistical model- and probabilistic atlas-based approaches could enhance
the results; however, they added a burden of model construction and match-
ing. In this paper therefore, we present a knowledge-based liver segmentation
approach. In this approach, we benefit from the high correlation between conse-
quent slices of the same patient to define the shape constrains, and to estimate
the statistical parameters of the liver and non-liver tissues. For initialization,
the user segment one slice in the volume to define these constrains, and con-
sequently they automatically updated from the nearby slices. A graph cuts al-
gorithm based on the defined constrains is applied in a slice-by-slice manner
to automatically segment the whole volume. Additionally, to reduce the com-
putational time, we build the graph in a narrow band area defined from the
adjacent slice. This proposed approach share the concept of constrains propaga-
tion with the method of Lee et al. [14]. However, the segmentation is performed
from large to small liver cross sections which increases the ability of capturing
separated and damaged liver parts. Moreover, shape and intensity constrains
are integrated directly into the graph cuts segmentation algorithm and they are
updated based on the segmentation results of the slices that have been processed
so far.

The rest of this paper is organized as follows: in Sect. 2, the proposed approach
is described. The evaluation results of the proposed approach are presented and
discussed in Sect. 3. Finally, the paper is concluded in Sect. 4.

2 Proposed Segmentation Approach

The proposed segmentation approach mimics the human methodology in deter-
mining the boundary of liver. In this methodology, the correspondence between
adjacent slices in CT image helps in alleviating the ambiguity of the liver bound-
ary and in detecting the liver abnormalities. The whole procedure of the proposed
approach is as follows:

Step-1: Performing image normalization in soft tissue window and then ap-
plying nonlinear diffusion filter to each slice.
Step-2: Selecting one slice containing nearly the largest liver cross section as
the start slice and then define the liver object on it.
Step-3: Estimating initial shape, intensity, and graph cuts constrains from the
start slice.
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for all lower slices, starting from the start slice to the last one. do
Step-4: Define a narrow band around the liver object.
Step-5: Performing slice segmentation using shape-based graph cuts algo-
rithm.
Step-6: Adding the segmentation results of this slice to the output volume.
Step-7: Updating shape, intensity, and graph cuts constrains according to
the segmentation results of the current slice.

end for
for all upper slices, starting from the start slice to the first one. do
Repeat Step-4 and Step-5.
if the segmented object contains multiple parts then
Step-8: Selecting the left most one as the liver object.

end if
Repeat Step-6 and Step-7.

end for
Step-9: Applying the postprocessing procedure to the output volume.

2.1 Preprocessing

The first aim of this process is to map the raw CT data encoded in either
twelve or sixteen bits to gray scale data encoded in eight bits. The mapping or
normalization is performed in a soft tissue window determined by selecting the
lower (Lo) and upper (Hi) bounds of the right distribution in the histogram of
the raw CT data. This mapping is performed according to (1).

Ig(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Io(x, y) ≤ Lo

255(Io(x,y)−Lo)

Hi−Lo
if Lo ≤ Io(x, y) ≤ Hi,

255 if Io(x, y) ≥ Hi

(1)

where, Io is the raw CT image, Ig is the produced gray level image.
After mapping the whole CT volume to a gray scale volume, a nonlinear

diffusion filter [15] is applied to each 2D slice in the volume to reduce the noise
and increase the liver homogeneity.

2.2 Estimation of the Shape and Intensity Constrains

The shape constrains are applied as a prior probability of the liver location,
and the intensity constrains are defined as the probability of the liver intensity
model at each pixel. These constrains are automatically determined for each slice
according to the segmented liver in the previous slice. The estimation process is
performed according to the following procedure.

1. Define; the binary image of liver segmentation in the start slice as Tempstr,
the binary liver object in this slice as objectinTempstr, the binary image of
liver segmentation in the previous slice as Tempprv, the binary liver object in
this slice as objectinTempprv, the pixels belonging to the liver in the previous
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(a) (b) (c) (d)

Fig. 1. Constrains estimation, (a) sample previous slice (liver contour in red and the
minor axis in green), (b) the contour of the estimated shape template shown on the
current slice, (c) the estimated constrains for graph cut (object in green and background
in red), and (d) the slice after applying the narrow band constrain

slice as Liverprv, and the pixels not belonging to the liver in the pervious
slice as non− Liverprv.

2. Determine the minor axis of the ellipse that fit the object in Tempprv and
denote it as max (Fig. 1a).

3. Erode the Tempprv with a disk structuring element of radius round(0.02×max)

and considering the result as the shape template of the current slice (Fig. 1b).
This erosion value has been decided after studying the average change of the
minor liver axes in different cases.

4. If Area(objectinTempprv) ≥ 0.1×Area(objectinTempstr),calculate the histogram
of Liverprv and non− Liverprv as the intensity model; else, use the previously
used intensity model.

5. Erode Tempprv with a disk structuring element of radius round(0.1 × max)

and the result is considered as the object hard constrains in the graph cuts
algorithm (Fig. 1c).

6. Dilate the Tempprv with a disk structuring element of radiusmax(2, round(0.1×
max)). Then, the edge of the resulting binary template is determined and
dilated with a disk structuring element of radius 1. The result of this step
is considered as the background hard constrains in the graph cuts algorithm
(Fig. 1c).

7. Define a narrow band window surrounding the liver object as the smallest
rectangle fitting the dilated object calculated in Step 5 (Fig. 1d).

2.3 Segmentation Using Graph Cuts

The aim of this process is to find a labeling A = {A1, A2, , Ap, , A|P |} which minimize
the the total energy function considering the estimated constrains as in (2).

ET (A) = (1− λ)RD(A) + λRs(A) + μB(A), (2)

where, μ determines the relative importance of the boundary term ,B(A), versus
the regional term and λ determines the relative importance of the data penalty,
RD(A), versus the shape penalty ,Rs(A). The data penalty reflects on how the
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intensity of a pixel fits into the intensity model of the object (liver) and back-
ground (non liver tissues). The shape penalty is encoded as the prior probability
of a pixel to be inside or outside the liver object. The data, shape, and boundary
penalties are calculated as in (3), (4), and (5), respectively.

RD (Ap) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

log(pr(Ip∈”obj”))
log(pr(Ip∈”obj”))+log(pr(Ip∈”bkg”))

if Ap = 1

log(pr(Ip∈”bkg”))
log(pr(Ip∈”obj”))+log(pr(Ip∈”bkg”))

if Ap = 0

(3)

Rs (Ap) =

⎧
⎨

⎩

1− shapetemp if Ap = 1

shapetemp if Ap = 0
(4)

Bpq = e
− |Ip−Iq|2

2σ2 × 1

d(p, q)
, (5)

where, shapetemp is the estimated shape template of the objected (liver) in the
current slice, Ip is the intensity value of a pixel p, pr (Ip ∈ “obj”(“bkg”)) is the
probability of p to be an object(”obj”) or background (”bkg”) pixel, and d(p, q) is
the Euclidian distance between pixels p and q.

This total energy function can be minimized efficiently using the graph cuts
algorithm [16]. To achieve this goal, a graph with cut cost equaling the value of
ET (A) is constructed using the edge weights defined in (6), (7), and (8). Further-
more, the hard constrains defined in Sect. 2.2 are implemented via infinity cost
edges.

wsp =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if p ∈ ”obj”

0 if p ∈ ”bkg”

(1− λ)RD (Ap = 0) + λRs (Ap = 0) otherwise

(6)

wpt =

⎧
⎪⎪⎨

⎪⎪⎩

0 if p ∈ ”obj”

∞ if p ∈ ”bkg”

(1− λ)RD (Ap = 1) + λRs (Ap = 1) otherwise

(7)

wpq = Bpq(p, q), (8)

wsp, wpt are the weight of the links to terminal nods, and wpq is the weight of the
link between two adjacent pixels.

2.4 Postprocessing

In this process, any tissue surrounded by the segmented liver tissue is added to
the final segmentation which smoothed using a 3D filter. To achieve this goal
the following procedure has been applied.

1. Perform hole filling to each 2D slice.
2. Perform binary image closing to the whole 3D volume using a ball structuring

element of radius 3.
3. Perform hole filling to each 2D slice again.
4. Smooth the final volume by applying a binary median filter of 3× 3× 3 size..
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3 Results and Discussion

Data Sets: The data set used for evaluation is the MICCAI2007 grand challenge
test set [17]. This test set contains 10 CT images acquired using variety of CT
scanners. In some cases, the entire anatomy is rotated around the z-axes. Most
images in this data set have liver abnormalities, including tumors, metastasis,
and cysts of different sizes.

Parameter Setting: All parameters have been adjusted using 5 CT images
having different characteristics; 3 from MICCAI2007 training data set and 2 from
a local data set. Graph cuts parameter μ was set to 2. The parameter λ was set
to 0.2. The parameter σ in the boundary term was dynamically selected from
each slice as the average absolute intensity difference between the neighboring
pixels (σ = 1

|P |
∑

p∈P,q∈Np
|Ip − Iq|).

Evaluation Metrics: The proposed approach has been evaluated using the scor-
ing system of MICCAI-2007 Grand Challenge workshop [2] which includes five
metrics; Volumetric Overlap Error (VOE), Relative Volume Difference (RVD),
Average Symmetric Surface Distance (ASD), Root Mean Square Symmetric Sur-
face Distance (RMD), Root Mean Square Symmetric Surface Distance (RMD),
and Maximum Symmetric Surface Distance (MSD). Moreover, the final precision
score has been calculated according to themethod presented byHeimann et. al. [2].

3.1 Experiments on Clinical Data

The segmentation approach has been implemented using Matlab environment on
Windows-based personal computer with a Corei7(2.8GHz) processor and 6GB of
memory. The evaluation results of the segmentation approach which calculated
by the committee of the ”3D Segmentation in the Clinic: A Grand Challenge”
workshop of MICCAI2007 are shown in Table 1.

Comparative results of the proposed approach, the best automatic method
(Kainmüller et al.) and all interactive methods reported by T. Heimann et.
al. in [2] are shown in Table 2. As in [2], All approaches has been classified
according to the time required for interaction. Less than 1 min was regarded
as low interaction, less than 5 min as medium interaction, and more than 5
min as high interaction. Referring Table 2, the proposed approach share the
best position with Beichel et. al. MBR. Additionally by referring the recent
results on sliver07.org database [17], the proposed approach is in the third place
of all methods. However, the proposed approach is significantly faster, requires
less amount of interaction, and does not require extensive manual refinement.
The automatic method of Kainmüller et. al. achieved this results by using an
extensive training set of 112 liver shapes to build a statistical shape model (SSM)
consists of around 7.000 landmarks. The total score of the same method was 73

when the number of training shapes used to build the SSM was 43 [10].
Since the shape and intensity constrains are estimated in a case-specific man-

ner, the proposed approach is robust for liver shape variations and existence
of liver abnormalities. Fig. 2 show that, the proposed approach can efficiently
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Table 1. Evaluation results of the proposed approach

Case VOE RVD ASD RMD MSD Total Score Time (sec.)
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Initial Total

#1 5.2 80 2.4 87 0.7 82 1.4 81 14.7 81 82 35 221
#2 5.9 77 5.0 74 0.8 80 1.7 76 19.4 74 76 40 223
#3 3.9 85 2.2 88 0.7 83 1.1 84 14.0 82 84 37 218
#4 5.0 80 2.5 86 0.7 81 1.4 80 10.4 86 83 36 122
#5 6.1 76 1.2 94 1.0 76 1.9 74 21.5 72 78 36 118
#6 5.8 78 0.7 96 0.8 79 1.8 74 20.1 74 80 37 204
#7 3.8 85 1.5 92 0.5 87 1.2 84 16.0 79 85 38 170
#8 6.2 76 1.1 94 1.0 75 2.3 68 22.2 71 77 35 113
#9 4.2 84 1.2 94 0.5 87 1.2 83 16.0 79 85 37 284
#10 4.5 82 0.5 98 0.6 86 1.2 84 11.5 85 87 36 108
Average 5 80 1.8 90 0.7 82 1.5 79 16.6 78 81.7 36.7 178.1
Std. Dev. 0.9 3.6 1.3 7.0 0.18 4.3 0.4 5.5 4.1 5.3 3.8 1.5 60.8

Table 2. Comparative results of the proposed segmentation approach

Method VOE RVD ASD RMD MSD Final Runtime
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score [min]

Beichel et. al. MBR(high) 5.2 80 1.0 91 0.8 80 1.4 80 15.7 79 82 36
Proposed approach(low) 5 80 1.8 90 0.7 82 1.5 79 16.6 78 82 3
Kainmüller et. al.(Automatic) 6.1 76 −2.9 85 0.9 76 1.9 74 18.7 75 77 15
Beck and Aurich(high) 6.6 74 1.8 88 1.0 74 1.9 73 18.5 76 77 7
Dawant et. al.(med) 7.2 72 2.5 86 1.1 73 1.9 74 17.1 77 76 20
Second rater 6.4 75 4.7 75 1.0 75 1.8 75 19.3 75 75
Lee et. al.(low) 6.9 73 1.3 88 1.1 73 2.1 71 21.3 72 75 7
Beichel et. al. CBR(med) 6.5 74 1.1 90 1.1 72 2.5 66 23.4 69 74 31
Wimmer et. al.(med) 8.1 68 6.1 68 1.3 67 2.2 69 18.7 75 69 4 − 7
Slagmolen et. al.(med) 10.4 59 3.7 70 2.0 50 5.0 34 40.5 47 52 60
Beichel et. al.(low) 14.3 48 3.1 62 3.6 34 7.9 24 49.2 38 41 30

(a) (b) (c) (d)

Fig. 2. Segmentation results of cases containing large and dense liver tumors

extract the liver in different cases containing large and dense tumors. Referring
Table 1, the average performance of the proposed approach (81.7) cab be regarded
as closer to the reference manual segmentation than the human performance (75)
[2]. Small deviation of these scores shows the ability of the proposed approach to
deal with extreme cases as well as easy and moderate cases. The processing time
required to segment a CT volume ranges from 2−5 minutes and it is significantly
less than the manual or other conventional segmentation methods. In general,
the proposed approach can efficiently utilize the anatomical knowledge of the
liver to achieve accurate segmentation results.
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4 Conclusion

In this work, we proposed a novel shape-based approach for liver segmentation
in portal-venous CT images using a case-specific knowledge. In which, the re-
lation between consequent slices of the same image is exploited to estimate the
shape and intensity information of the liver. Then, this information is integrated
into the graph cuts algorithm to segment the whole CT image. Unlike the other
shape-based segmentation approaches which use training data to build a statis-
tical model, the proposed technique does not require prior model construction.
Accordingly, it is not restricted to the trained model, and it can be applied when
there is no training data available. The evaluation results demonstrated the high
precision of the proposed approach. It efficiently estimates the liver boundary
even with the existence of large and dense liver abnormalities. The utilization
of a case-specific knowledge increases the ability of the proposed approach to
deal with difficult and atypical liver shapes. Additionally, it removes the bur-
den of model construction and matching. A low processing time required by the
proposed approach makes it suitable for clinical application.
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