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Abstract. This paper presents an automated multi-organ segmenta-
tion method for 3D abdominal CT images based on a spatially-divided
probabilistic atlases. Most previous abdominal organ segmentation meth-
ods are ineffective to deal with the large differences among patients
in organ shape and position in local areas. In this paper, we propose
an automated multi-organ segmentation method based on a spatially-
divided probabilistic atlas, and solve this problem by introducing a scale
hierarchical probabilistic atlas. The algorithm consists of image-space di-
vision and a multi-scale weighting scheme. The generated spatial-divided
probabilistic atlas efficiently reduces the inter-subject variance in organ
shape and position either in global or local regions. Our proposed method
was evaluated using 100 abdominal CT volumes with manually traced
ground truth data. Experimental results showed that it can segment the
liver, spleen, pancreas, and kidneys with Dice similarity indices of 95.1%,
91.4%, 69.1%, and 90.1%, respectively.

1 Introduction

Abdominal organ segmentations from medical images are crucial tasks in medical
imaging. Organ region information can be utilized for such purposes as computer-
aided diagnosis or computer-assisted surgery. Recently, statistical shape models
(SSM) [IH5] or probabilistic atlases (PA) [6HI0] both of which are statistically
computed from multi-atlases, are widely used for abdominal organ segmentation.
Both SSMs and PAs are generally registered to the target images as prior knowl-
edge. By incorporating such prior knowledge into the post-processing, organs of
interest can be segmented.

In abdominal organ segmentation, traditional SSM-based methods are special-
ized for a particular organ, such as the liver [I] or the pancreas [2,4]. Recently,
SSM-based methods have also been applied to multi-organ segmentation [3]5].
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Although SSM-based methods have high ability for abdominal organ segmenta-
tion, it remains difficult to construct an ideal “mean shape” of an organ. Due
to large inter-subject differences, the “mean shape” of a special dataset may not
exist. Furthermore, since SSMs cannot represent the positional information of an
organ, it is difficult to register an SSM to the organ of the segmentation target.

Unlike SSMs, PA is relatively easy to register a PA to an target image. Park
et al. first applied PA to abdominal organ segmentation [6]. This approach was
improved for multi-organ segmentation by Shimizu et al. [7], Oda et al. [8], and
Linguraru et al. [9,[10]. Recently, methods based on target-specific PAs [2,11]
has been proposed for abdominal organ segmentation. Instead of generating
population-based PAs prior to the segmentation process, target-specific PAs are
dynamically generated for unlabeled target images by selecting suitable atlases
that are specialized to unlabeled target images based on the atlas-and-target
similarities in a global view. Since global similarity does not represent the local
difference between the atlases and the target images, important local information
may be overlooked in PA generation.

A hierarchical registration method integrated with a weighting scheme im-
proved segmentation accuracy. Wolz et al. [I1] proposed a hierarchical atlas
registration method that is integrated with a weighting scheme in global, organ,
and pixel levels. In this paper, we propose an approach that is more sensitive to
inter-subject differences both in the global and local views. By applying hierar-
chical divisions to image space, we generate spatial-divided PAs that are specific
to each unlabeled target image for organ segmentation. Such PAs are generated
by assigning a global weight and local weights to each atlas. We use the generated
PA to segment the organ areas with a maximum a posterior (MAP) estimation
and a graph cut method [I2].

2 Organ Segmentation Based on Spatial-Divided PAs

2.1 Overview

In our method, all atlases are aligned using a spatial normalization method in
the pre-processing step. Each unlabeled target image is also normalized by the
same process before segmentation. After that, we hierarchically divide the global
image space into N sub-spaces:

N = (2%)3 (k=0,1,2,--- , M), (1)

where the scale level of k is decided by equally dividing an image into 2% parts
along the x—, y—, and z— axes, respectively. As shown in Fig. 1, number N of
sub-spaces increases in the order of 1 —+ 8 — 64 — 512 — --. with increasing
scale-level k. On each scale level k, atlas-and-target registration is performed
based on the MRF non-rigid registration method [13] in each sub-space.

We used a multi-scale weighting scheme to define “global weight” and “local
weights” for PA generation. The image similarity between each atlas and target
image on the global image space (N = 1) is used to define the global weight.
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Fig. 1. In our proposed method, the image space is hierarchically divided into sub-
spaces. Atlas-and-target registrations are implemented in each step. Gobal and local
weights between each atlas and target image are obtained for N = 1, N = (2¥)%. These
weights are then used to generate PAs for organ segmentation.

The image similarities between each atlas and the target image on the sub-spaces
(N = (2%)3) are computed to define the local weights. Using the global weight
and the local weights, a spatial-divided PA that is specific to the target image
is generated. Finally, the generated PA is used to segment the organ areas using
a MAP estimation and a graph cut method.

2.2 Spatial Normalization

Spatial normalization is achieved by aligning all atlases to a common space based
on scaling and translation with p’ = pT1ST>, where p is the coordinate of an
voxel in the original atlas space and p’ is the transformed coordinate of this
voxel. Translation matrices T7 and 75 and scaling matrix S are defined as

1 0 0 0 1000 w000
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= = = h
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All of the parameters in these matrices are automatically computed from the
extracted abdomen, the lung area, and the kidney area. Here, the C; and C,
are the values of the centroid point of the abdomen in the axial direction x and
y, B, is the position of the bottom of the lung area in axial direction, w mm
and h mm are the width and height of the abdomen area, and d is the distance
between the bottom of the lung area and the kidneys in the z—axis. All the
other parameters of Cg, C’y, B.,w,h and d are the average values statistically
computed from multiple atlases. In addition, we interpolate all of the atlases
and the target images to isotropic voxels.



168 C. Chu et al.

2.3 PA Generation

For each voxel p located in sub-space Uj, the probability that each voxel p
belongs to organ [ is repeatedly calculated by

Apeu, ( ngwsé L2 Z/Zw BHS (3)

where

p 1ifl =10

(L) = {O otherwise. (4)
Here, i represents the index of the atlases, j represents the index of the sub-
spaces, [ represents the label of each organ, and L; is the label of voxel p in
the manual segmentation of atlas 7. w! is the global weight and wy; is the local
weight in sub-space U; between atlas A; and target image Z. w! and wy; are
explained below.

Global Weight Calculation. For a given target image, the image similarity
between each atlas A; and target image Z on the global image space (N = 1) is
calculated. Here, normalized cross correlation (NCC) is used for the similarity
evaluation:

NCC(A;,T) = Cov(A;, T)/(v/Var(A;)y/Var(Z)), (5)

where Cov(A;,Z) is the covariance of atlas A; and target image Z, Var(A;) and
Var(Z) are the variances of atlas A; and target image Z. The global weight of
atlas A; is then defined by

WI(A;) = 1 — NCC(A;, 7). (6)

Local Weight Calculation. On each divided sub-space U;(j =1,--- ,N), we
calculate the similarities between atlas A; and target image Z based on the sum
of the squared intensity differences (SSD). The SSD between atlas A; and target
image Z in each sub-space U; is then normalized into the range of [0, 1] to define
the local weight as

w‘?-(Uj) =1- SSDUj (AZ‘,I). (7)

v]

2.4 Organ Segmentation

We obtain a coarse segmentation result using a MAP estimation that is defined
by
Cp = arg max Pry(Ip|l)Prp(l), (8)

where C' is the coarse segmentation result, p is voxel in the target image, and
[ represent the label of each organ. Pry(l) is the prior probability of organ I,
which is given by the generated PA. Prp(Ip|l) is the intensity distribution of
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Table 1. Mean and SD of dice similarity index (DSI) and average surface distance
(ASD) of 100 CT volumes. Results of different scale level of sub-space k are shown.

Dice similarity index (%) Average surface distance (mm)
Liver  Spleen Pancreas Kidneys Liver  Spleen Pancreas Kidneys
N=1 95.1£1.0 90.6£5.8 67.4+15.5 89.6+£5.4 1.21+0.2 0.92+0.5 1.984+0.6 1.30£0.4
N=8 95.1£1.0 90.94+5.9 67.8£15.5 89.64+5.6 1.21+£0.2 0.91£0.5 1.97+0.7 1.304+0.4
N=64 95.1+1.0 91.4+5.7 69.1£15.3 90.1+£5.0 1.20£+0.2 0.894+0.4 1.88+0.6 1.26+0.4
N=51294.6£1.5 89.44+8.3 65.7£19.5 88.1+8.5 1.25+0.3 1.0+ 0.5 1.89+0.7 1.354+0.5

each organ [, which is approximated by Gaussian distribution Prp,(Ip|u, 07).
and o} are estimated by an EM algorithm.

We assign organ label [ to each voxel p based on Eq. () to obtain the coarse
segmentation result, which is then refined by following the graph cut method
shown in [8[12].

3 Experiments and Results

We evaluated our proposed method using a diverse dataset of 100 portal-phased
abdominal CT volumes. The acquisition parameters of the CT volumes are
512 512 pixels, 263-538 slices, and 0.546-0.820 mm of pixel spacing. All of the
CT volumes were acquired in the period from 2004 to 2009. The ages of the
patients in the CT volumes ranges from 26 to 83. Manual segmentations were
generated by one of three trained raters using a semi-automatic method based on
region growing and graph cut method. After the semi-automated segmentation,
a slice-by-slice manual correction process is performed by an expert rater for all
the CT images.

Four organs, the liver, spleen, pancreas, and the kidneys were selected as
segmentation objects. Each atlas was in turn segmented using a leave-one-out
cross validation method. We evaluated the segmentation performance using
the Jaccard index (JI), the Dice similarity index (DSI), and the average sur-
face distance (ASD) defined in [I]. For each case of sub-space number N =
1, 8, 64, 512 (k = 0, 1, 2, 3), we evaluated the segmentation results (Table
). We also compared the segmentation results to state-of-the-art methods of
abdominal organ segmentation (Table ). Fig. 2l gives examples of the segmen-
tation results. Fig. [3] shows the changes of the generated PAs with a different
number of sub-spaces.

4 Discussion

We presented a spatially-divided PA generation method based on hierarchi-
cal sub-space divisions. We applied spatially-divided PA to abdominal organs
segmentation to deal with the local inter-subject differences in organ shape and
position. Table [l shows that the segmentation accuracy of the spleen, pancreas,
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Table 2. Comparison of segmentation performance with SSM- and PA-based methods.
Results are shown using average JI and ASD. (Middle group: Single organ segmenta-
tion, lower group: Multi-organ segmentation).

Jaccard index (%) Average surface distance (mm)
Method Cases Liver Spleen Pancreas Kidneys Liver Spleen Pancreas Kidneys
Proposed 100 90.6 84.5 54.6 82.3 1.20 0.89 1.88 1.26

Okada [3] 28 888 - - 1.46 - -
Heimann [I] 35 923 - - - 1.40 - -
Shimizu [2] 20 - - 57.9 - - - -
Erdt @ 40 - - 612 - - =170
Chen 5] 20 - - - ~ 081 075 - 0.77
Shimizu [7] 10  89.0 83.5 35.0 82.5 - - - -
Oda8 100 89.0 745 421 808 - - -
Linguraru [9] 20 92.7 91.0 - 1.2 0.7 -
Linguraru [1I0] 40 - - 30 21 - 1.8

Wolz [11] 100 89.5 84.6 49.6 88.1 - - -

and the kidneys are statistically improved (paired t-test, p < 0.01) when sub-
space number N increased from 1 to 64. By adding a local weight to each sub-
region, the local variations among patients in organ appearance were signifi-
cantly reduced by our proposed method. This can be observed in Fig.[8l The PA
of N = 64 matches the organs in the target image more closely, leading to high
segmentation accuracy. On the other hand, segmentation accuracy decreased for
N = 512. Since the size of the sub-space becomes smaller for N = 512, the
texture information and the relationship among neighborhood voxels failed. In
this case, the atlas-and-target registrations in the small local areas cannot guar-

Liver best Liver worst Spleen best Spleen worst

Fig. 2. Worst and best segmentation results for liver, spleen, pancreas, and kidneys.
Segmentation results are outlined in yellow lines and manual segmentation result is
shown in red. Dice similarity indices are given.
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DSI=61.6% DSI=65.8% DSI=75.4% DSI=70.3%

Fig. 3. Examples of generated PAs in different sub-space numbers of N = 1, 8,64, 512.
First row gives axial slices of generated PAs. Second row shows correspondence seg-
mentation results based on the above PAs.

antee a fine global appearance of generated PAs. Experiments are necessary to
determine the most suitable N in the future.

Table 2 shows that our proposed method achieves a relatively favorable per-
formance compared to the state-of-the-art methods. Especially on the pancreas,
which is the most challenging structure, the segmentation accuracy has been
greatly improved compared to the previous PA-based methods [7HI0]. Although
the accuracy of the pancreas in our experiment is not as high as in the SSM-
based pancreas-specific method [214], the results remain acceptable that were
obtained from a large and diverse atlas database. Note that previous work [2//4]
only tested small number of cases.

The run-time of the PA generation took more than two hours for each target
image. Since 99 CT volumes must be registered to the target image both in
the global space and the sub-spaces, a significant number of registrations are
required. Increasing the speed of the proposed approach is expected by selecting
a suitable sub-set of atlases based on a fast similarity comparison.

5 Conclusion

In this paper, we proposed a multi-organ segmentation method using locally
generated target-specific PAs. We evaluated the segmentation performance of
our proposed method using 100 CT volumes and obtained 95.1%, 91.4%, 69.1%,
and 90.1% of the Dice similarity indices for the liver, spleen, pancreas, and the
kidneys, respectively. Future work includes the addition of the shape information
for the pancreas segmentation, and the reduction of the computation time by
developing of fast registration and similarity comparison methods.
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