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Abstract. Cardiac fiber architecture plays an important role in electro-
physiological and mechanical functions of the heart. Yet, its inter-subject
variability and more particularly, its relationship to the shape of the my-
ocardium, is not fully understood. In this paper, we extend the statis-
tical analysis of cardiac fiber architecture beyond its description with a
fixed average geometry. We study the co-variation of fiber architecture
with either shape or strain-based information by exploring their principal
modes of joint variations. We apply our general framework to a dataset
of 8 ex vivo canine hearts, and find that strain-based information appears
to correlate best with the fiber architecture. Furthermore, compared to
current approaches that warp an average atlas to the patient geometry,
our preliminary results show that joint statistics improves fiber synthe-
sis from shape by 8.0%, with cases up to 25.9%. Our experiments also
reveal evidence on a possible relation between architectural variability
and myocardial thickness.

1 Introduction

Cardiac disease is the leading cause of death throughout the world. The study of
heart structures and functions is essential for better diagnostics and treatments.
In particular, the cardiac fiber architecture, a complex structure of myofibers
organized as laminar sheets [12], plays an important role in electrophysiology,
mechanical functions and remodeling processes [7] of the heart. Yet, its structural
variability across a population [4] is not fully understood. Current knowledge has
in fact been mostly based on histology studies [11]. Recent advances in diffusion
tensor imaging (DTI) enable better 3D models of the cardiac fiber and laminar
architecture [13]. However, existing 3D statistical atlases (on ex vivo human [16]
and canine [19] DTI) focus on modeling the average diffusion tensor field in an
average cardiac geometry and typically ignore the impact of shape variations on
the cardiac fiber and laminar architecture. Current fiber models often rely on
simplistic mathematical descriptions [21], where fiber directions are assumed to
vary linearly across the myocardium wall, or on registering a DTI atlas onto a
patient space [23]. Recent work on coupling shape and fiber variability [10,14] has
only focused on the fiber orientation in the left ventricle. Notwithstanding the
current models, a general framework for characterizing the joint variability of the
complete cardiac fiber architecture with explicit or high-order shape information
remains yet to be made. In particular, what shape information correlates best

K. Mori et al. (Eds.): MICCAI 2013, Part II, LNCS 8150, pp. 492–500, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Joint Statistics on Cardiac Shape and Fiber Architecture 493

with the cardiac fiber and laminar architecture, and can their joint shape and
fiber variations improve the synthesis of complete fiber structures? This finds
direct application, for instance, in detecting architectural discrepancies, which is
relevant for studies on hypertrophic hearts, in in vivo DTI, where acquisition is
limited, and in electromechanical simulations with refined patient-specific models
of the heart.

This paper proposes a novel statistical framework for analyzing the joint vari-
ations between general shape and fiber characteristics. Our approach is inspired
by the principal geodesic analysis [9] of DTI [25,17] and extends the statistical
analysis of DTI beyond the simple use of atlas geometries. More precisely, we
exploit principal modes of joint variations of a Riemannian structure [8,18,25]
that embeds both shape and fiber information. We explore shape variability [3]
using the most recent advances in morphometry, which include Deformation-
Based Morphometry (DBM), based on the relative positions of structures, and
Tensor-Based Morphometry (TBM), based on local structure differences [15,6].
The next section details our general framework and how it may improve syn-
thesis of diffusion tensor fields. The results investigate on the possible relations
between the shape of the myocardium and the cardiac fiber architecture within
a population of canine hearts. We additionally show evidence on a hypothetical
diversity of fiber architecture in thicker myocardial areas.

2 Method

To study the correlation between cardiac shape and fiber architecture, we pro-
pose to take advantage of the latest advances in morphometry (DBM/TBM) and
diffusion tensor analysis, both embedded into a Log-Euclidean framework [2].

Preliminary Atlas Construction – The variability study necessitates a com-
mon reference space. Consequently, an anatomical atlas is first built from N
hearts with the method described in [16]. A prior rigid registration aligns all
hearts in common space. The underlying symmetric Log-Demons [24] produces
then the diffeomorphic transformations {φ1...N} that register each rigidly aligned
heart onto the average heart. These nonrigid deformations are defined in terms
of stationary velocity fields, φ = Exp(v). The diffusion tensor fields {D1...N} are
then warped using these deformations onto the atlas space. The Finite Strain
strategy [1] is used since it preserves geometric features [19]. Additionally, the
variations of temperature during acquisition are compensated for normalizing
the diffusion tensor matrices with their distributions modes as in [19]. Hereafter,
D will represent a compensated and reoriented diffusion tensor field. This atlas
construction keeps shape and fiber information as independent, avoiding any
bias from one to the other in the joint statistical analysis.

2.1 Shape and Fiber Information

Shape Information can be expressed viaDBM [3] which analyzes the displace-
ment of material. Unfortunately, the space of transformations {φ1...N} typically
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Fig. 1. Average heart warped along two principal modes of joint shape and fiber varia-
tions (shown are 3 axial views). Statistics are performed using both velocity components
and diffusion tensor information. Shape components, U (shape), are shown on the left.
Fiber components, U (fiber), in a septal region are shown on the right.

forms a complex Riemannian structure. The velocity fields {v1...N} are therefore
preferred since they lie on a tangent vector space where standard Euclidean met-
rics can be used for analysis. Shapes can alternatively be analyzed using TBM,
which uses information on local changes in shapes. In particular, the strain ten-
sor measures how a local deformation differs from a rigid transformation, and is
therefore adequate for analyzing differences in myocardium walls across a popu-
lation. Among different definitions, the right Cauchy-Green deformation tensor
C(φ) = 2E + Id, where E is the strain tensor E = 1/2(∇φT +∇φ +∇φT∇φ),
is a 3× 3 symmetric positive semi-definite (SPSD) matrix, and can thus be an-
alyzed in a tangent vector space with its Log-representation Log(C), which is
also related to the Hencky strain tensor, 1

2Log(C). Similarly, C(v), a measure
of Riemannian elasticity [5], is also a SPSD matrix and its Logarithm forms a
tangent vector space.

Fiber Information consists of the diffusion tensor field {D1...N}. Each SPSD
matrix D can be similarly expressed in the Log-domain with Log(D). Hereafter,
we use the compact representation [2] vec(D) = (Dxx,

√
2Dxy, Dyy,

√
2Dxz,√

2Dyz, Dzz), which contains the non-repeating elements of D and preserves
norms,
‖vec(D)‖ = ‖D‖.

Statistics on shape and fibers are facilitated with previous Log-representations.
For instance, averages are computed using the Fréchet mean: [18]: Mean{φ1...N} =

Exp
(

1
N

∑N
i=1 vi

)
, Mean{C1...N} = Exp

(
1
N

∑N
i=1 Log(Ci)

)
, and Mean{D1...N} =

Exp
(

1
N

∑N
i=1 Log(Di)

)
.
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2.2 Statistics on Joint Shape and Fiber Variations

Rather than considering changes in shape and in fiber characteristics as indi-
vidual features, we propose to study their joint variations, which describes how
each influence one another.

Joint Data – Let us first define the vector x(shape) as the raster-scan of shape
information across a region Ω of the heart with n = |Ω| voxels, with, for in-
stance, the velocity components within Ω, x(shape) = (vx,y,z1 , ..., vx,y,zn )T , or the
compact deformation Log-tensors, x(shape) = (vec(Log(C1)), ..., vec(Log(Cn)))

T .
Similarly, let us define the vector x(fiber) = (vec(Log(D1)), ..., vec(Log(Dn)))

T .

The joint data matrix is the concatenation X =
(

x(shape)

x(fiber)

)
−
(

μ(shape)

μ(fiber)

)
, with

N columns, each with the shape and fiber information of one heart, centered

around their average values μ(·) = 1
N

∑N
j=1 x

(·)
j .

Principal Modes of Joint Variations – We now find the orthonormal ba-
sis U = {u1...N−1} that maximizes the variability within the data X : u1 =

argmax‖u‖=1

∑N
i=1〈u, xi〉2 and uk=1...N−1 = argmax‖u‖=1

∑N
i=1

∑k−1
j=1 〈uj , xi〉2+

〈u, xi〉2.
Since X lies on a Euclidean vector space, the inner product is set with

〈u, x〉 = uTx [18], and the principal components U are computed with the eigen
decomposition of the covariance matrix XXT = UΛUT . Fortunately, the N − 1
non-trivial eigenvectors U of XXT can be efficiently computed [22] by decom-
posing the smaller N × N Gram matrix XTX = V ΛV T , with U = XV . Each
eigenvector uj , a column of U , is a principal mode of joint variation (illus-
trated in Fig. 1), and can be separated into shape and fiber components since

uj = (u
(shape)
j , u

(fiber)
j ), e.g., u

(fiber)
j is the last 6|Ω| elements of vector uj. Note

that any type of shape and fiber information lying on vector spaces may be used,
for instance, Fig. 1 illustrates such joint variation modes when shape is modeled
with velocity field components.

2.3 Joint Shape and Fiber Space
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Fig. 2. Joint shape and fiber space
where points represent hearts

Spectral Coordinates – The projection
of x onto the principal modes of varia-
tions U provides a compact representation
of a heart with the spectral coordinate
p = (x−μ)TU in N−1 dimensions, i.e., it
is the heart coordinate in the joint shape
and fiber space (illustrated in Fig. 2). Re-
ciprocally, a spectral coordinate p can syn-
thesize data, x̂ = μx + UpT , for instance,
the diffusion tensor field Dp:

Dp = Exp

(
μ(fiber) +

K∑
i=1

piu
(fiber)
i

)
,

(1)
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Fig. 3. Error when reconstructing from shape with an increasing number of variation
modes. a) Fiber angular differences with ground truth (εe1 in degrees). b) Angular
error of the laminar sheet normal (εe3). c) Norm differences of DTI Log-tensor (εD).
Strain-based measures (green/blue curves) appears to better capture the joint variabil-
ity between shape and fiber architecture (lower is better).

with K = N − 1. If u(shape) is expressed in terms of a velocity field, the heart

shape can also be synthesized with φp = Exp
(
μ(shape) +

∑K
i=1 piu

(shape)
i

)
.

Partial Spectral Projection – Partial information may be similarly used to
infer the spectral coordinate p̂ of a heart. For instance, if only shape information
is available for a heart, the projection of x(shape) onto the normalized eigenvec-
tors U (shape) approximates p̂ = (x(shape) − μx)

TU (shape). The whole shape and
fiber information, x̂ =

(
x̂(shape); x̂(fiber)

)
, is in turn recovered using the spectral

reconstruction (Eq. (1)).

3 Results

We apply the proposed joint statistical framework to the JHU dataset of 8
ex vivo canine hearts [12] (DTI with b = 0 images of size 256 × 256 × 130,
resolution 0.31× 0.31× 0.80) in order 1) to determine which shape information
(DBM or TBM) has the best correlation with fiber architecture, 2) to show the
advantage of using second-order joint statistics over a first-order average atlas
to synthesize fibers in a given geometry, and 3) to propose some insights on
shape-fiber correlations.

3.1 Correlation between Cardiac Shape and Fiber Architecture

We now verify how much information is correlated between cardiac shape and
fiber architecture. To do so, we utilize the principal modes of variations of the
joint data matrix in order to reconstruct the diffusion tensor field Eq. (1) from
different types of shape characteristics: a) from explicit velocity components,
x(shape) = (v1, ..., vn)

T , b) Riemannian elasticity, x(shape) = (vec(Log(C(v1))), ...,
vec(Log(C(vn))))

T , and c) Cauchy-Green strain, x(shape) = (vec(Log(C(φ1))), ...,
vec(Log(C(φn))))

T . The explicit use of velocity fields (DBM) has the advantage
to produce synthetic transformations, i.e., geometries can be synthesized. Fig. 1
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Fig. 4. Reconstruction error showing the angular difference (in degrees) between re-
constructed fibers and ground truth. Worst case on left, best on right. The deformation
strain suggests that larger errors may occur in areas with high compression in blue (i.e.,
in thicker myocardial regions).

illustrates such synthesized hearts with spectral coordinates varying between
plus or minus two standard deviations, pi = ±2

√
λi. However, strain-based mod-

els (TBM) capture shape information on a higher order level that describes local
nonrigid morphological changes. We study these two approaches by comparing
their reconstruction capabilities.

The diffusion tensor fields of all hearts are reconstructed from spectral co-
ordinates (using Eq. (1)) that are approximated with our three types of shape
information. An increasing number of modes of joint variations is used during
reconstruction, from K = 0, which corresponds to what the current state-of-the-
art is capable of, i.e., reusing only the average tensor field, to K = N − 1, which
takes advantage of the full joint variations between shape and fiber architecture.

The reconstruction error εD̂ is defined as a geodesic distance between the true

and the reconstructed tensor field, D from the dataset and D̂ from Eq. (1): εD̂ =
1

|Ω|
∑

i∈Ω ‖Log(Di)− Log(D̂i)‖2 where Ω covers the myocardium. Additionally,

the angular difference of fiber orientations between the true fiber field (defined

with the first eigenvector e1 of D) and the reconstructed fiber field (ê1 of D̂)
is measured with εê1 = 1

|Ω|
∑n

i∈Ω cos−1 |e1(i) · ê1(i)|. The angular difference of

the third eigenvector of D, εê3 , quantifies in a similar manner the reconstruction
error of the laminar sheet structure [12]. Fig. 3 shows a decreasing reconstruction
error when more modes of joint variations are used.

This experiment shows that fiber architecture is correlated with the shape
of the heart. Furthermore, strain-based information (TBM) appears to better
capture the joint variability between shape and fiber architecture in comparison
to using explicit deformation components (DBM).

3.2 Reconstruction of Cardiac Fiber Architecture from Shape

Our joint statistical framework is now evaluated with a leave-one-out strategy,
where N atlases are built and analyzed by successively removing one heart at a
time from the training set. The diffusion tensor fields of omitted hearts are recon-
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Table 1. Leave-one-out – Improvements in tensor reconstruction

Heart #1 #2 #3 #4 #5 #6 #7 #8
Total

Improv. εD̂

Total
Improv. σε

D̂

Velocity -0.8% -0.8% 5.6% 16.4% 1.6% -2.4% 15.0% 5.4 % 5.0% 3.0%

Strain(v) -0.2% -1.1% 9.0% 25.8% 0.8% -0.8% 19.5% 11.1% 8.0% 4.1%

Strain(φ) -0.3% 0.4% 6.8% 25.9% 0.6% -0.5% 19.3% 9.3% 7.7% 3.6%
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Fig. 5. Joint distribution of reconstruction error, εê1 on the y-axis (fiber angular error),
and deformation, |C| on the x-axis (strain determinant) for each and all hearts. Coloring
is the joint probability in a log-scale. Larger reconstruction errors (εê1 > 45◦) are more
frequent in compressed areas (mode at |C| = 0.88, illustrated with the green arrow),
i.e., shape and fiber directions may be less correlated in thicker myocardial regions.

structed, as described earlier, and we measure the improvement in reconstruction
accuracy when compared to registering a DTI atlas. Warping an average tensor
field is considered here as the current state-of-the-art for synthesizing fibers [23].
We compare εD̂ with the reconstruction error of a warped atlas, εμD . Table 1
shows the improvement for each heart, which is measured with (εD̂ − εμD )/εμD .
We also measure the decrease in the standard deviation of reconstruction error,
σεD̂

. The reconstruction improves by 5.0% for εD̂, and 3.0% for σεD̂
, when using

velocity components as shape information; 8.0% and 4.1% for εD̂ and σεD̂
when

using the Riemannian elasticity Log-tensor, and 7.7% and 3.6% for εD̂ and σεD̂
when using the deformation strain Log-tensor. Fig. 4 shows the worst and best
reconstruction when using the deformation strain Log-tensor, with respectively
−0.5% and 25.9% improvements on εD̂; −0.4% and 15.8% on fiber angular er-
rors εê1 ; and −1.1% and 13.9% on angular errors of the laminar sheet normal
εê3 . Note that areas with larger discrepancies appears to be in areas subject to
compression, i.e., in thicker myocardial areas.

3.3 Localization of Higher Reconstruction Error

The joint probability between the reconstruction error and the deformation
strain determinant is studied in order to verify the last observation, notably in
thicker myocardial areas. Fig. 5 shows such 2D histograms for all hearts. Areas
with high angular errors, εê1 > 45◦, have in fact an average distribution mode
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inferior to 1, at |C| = 0.88, which suggests, perhaps, that higher reconstruction
errors tend to happen in areas subject to compression. This may indicate that
cardiac shape and fiber information are less correlated in thicker myocardial
regions.

4 Conclusion

We presented a general statistical framework where both shape and fiber infor-
mation are exploited concurrently. Our method extends previous work on joint
statistics [10,14], which is only based on fiber orientation in the left ventricle,
to a complete description of fiber and laminar architecture in the whole heart.
Moreover, it also extends the description of shape variability using a higher-order
description of shape differences with strain tensors (TBM), which appears to be
better correlated with the cardiac fiber architecture. Our experiments showed
that such joint variability facilitates the synthesis of complete cardiac fiber and
laminar architectures. Compared to current approaches that only use an average
atlas, our method infers a diffusion tensor field from shape with an improvement
of 8.0% on average, with cases up to 25.9%. The reconstruction accuracy would
most probably increase with the availability of new hearts since they would
further refine the joint shape and fiber variability. An additional experiment
also revealed that shape and fiber information may be less correlated in thicker
myocardial regions. This finding may be relevant in the study of hypertrophic
hearts. Future work will use high-order fiber models [20] and focus on other fiber
structures, such as in muscles and brains.
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