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ABSTRACT

In this paper we present a novel geometric calibration procedure for cone-beam computed tomography (CBCT)
devices with arbitrary geometry using a calibration phantom containing steel beads. In contrast to typical
calibration procedures the position of the beads does not have to be known precisely as it is also recovered
during calibration. In addition, the arrangement of the beads inside the phantom is very flexible and does not
have to follow hard constraints. The bead centers are extracted with subpixel precision from the projection
images while taking the absorption properties of the calibration phantom into account. Based on the recovered
center positions and phantom geometry, the projection geometry is computed for every projection image. This
geometry can be arbitrary and does not have to lie on a specific path, e.g. a circle. This allows to calibrate devices
with reproducible mechanical errors in the gantry movement. We present an evaluation of the point extraction
and the calibration procedure on ground-truth data and show reconstruction results on a device calibrated using
the proposed calibration method.
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1. INTRODUCTION

Cone-beam computed tomography (CBCT) devices such as digital volume tomographs (DVT) are nowadays
commonly used, for instance in maxillofacial and oral surgery. In order to obtain the best possible reconstruction
results these devices need to be calibrated accurately, since an inaccurate calibration leads to artifacts and loss
of detail in the reconstruction which can impair the diagnostic value. DVT manufacturers generally suggest to
perform a calibration once a year, since the old calibration becomes less accurate over time due to vibrations and
mechanical changes. Apart from commercial CBCT devices, there are also research-oriented setups which can
have different geometries and are potentially often modified. For such devices a precision calibration phantom
may not be available or too expensive. In this case it would be desirable to be able to use a low-cost hand-made
phantom in order to calibrate the device. Since such a phantom will not reach micron accuracy on the placement
of the beads, a method is required to optimize both for the geometry of the CBCT device and the geometry of the
calibration phantom. To address this issue we propose a novel geometric calibration method for CBCT devices.
Our calibration phantom design consists of an object (e.g. a cylinder) which contains several steel beads. These
beads are extracted in the projection images and then used in a bundle adjustment procedure to optimize the
geometry of the device. The position of the beads does not have to be known exactly since their exact position is
also recovered during the calibration procedure. We use a general formulation for the projection geometry which
does not make any assumptions on the movement of the gantry, e.g. that it moves on a circular path. Instead
we compute the exact gantry configuration for every projection which allows us to also calibrate devices with
repeatable mechanical aberrations.

For geometric calibration of CBCT devices we can roughly distinguish between two approaches: methods
which estimate parameters specific to the cone-beam geometry1–3 and methods which estimate a general projec-
tion matrix.4–6 One advantage of using a projection matrix is that the complex geometric relationships between
the device parameters and the projection geometry need not be explicitly modeled. For instance, Navab et al.5

estimate the projection matrix for each projection image from correspondences between known 3D points in
the calibration phantom and their image projections. We use a similar approach for initializing our calibration
procedure. However, in contrast to previous work dealing with general gantry motions (i.e. not only circular
ones), we do not assume that the calibration phantom is known to high accuracy as we are also optimizing the
point positions.
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2. METHOD

Our calibration procedure comprises the following steps: acquiring projection images of the calibration phantom,
extracting the bead centers from the projection images, computing an initial calibration and performing the
bundle adjustment procedure. Each of these steps is described in detail in the following sections. In addition, we
discuss the parameterization of the projection geometry and the design guidelines for the calibration phantom.

2.1 Projection Geometry Parameterization

Instead of using a custom parameterization specific to a certain device geometry we chose to parameterize the
geometry using the pinhole camera model.7 In this model the projection geometry is represented by a 3 × 4
projection matrix P which can be decomposed as P = K

[
R t

]
with K a 3 × 3 matrix containing the camera

intrinsic parameters and R and t the camera rotation and translation respectively. Since modern flat panel
detectors have square pixels which are arranged in a grid, K is of the form

K =

⎡

⎣
f 0 px
0 f py
0 0 1

⎤

⎦ (1)

where f is the focal length and p =
[
px py

]�
is the principal point. The geometric configuration of the device

is then given by one set of global intrinsic parameters K for the gantry and for each projection image Ij the
spatial configuration (i.e. rotation Rj and translation tj) of the gantry. Given the projection matrix P a 3D-

point X =
[
X Y Z 1

]�
given in homogeneous coordinates is projected to the homogeneous image point

x = PX =
[
x y w

]�
which in inhomogeneous coordinates is x̂ =

[
x
w

y
w

]�
.

2.2 Phantom Design

One common choice for the design of the calibration phantom is to use a cylinder in which a number of steel beads
are embedded. The cylinder itself should be made of a material with low X-ray absorption, for instance acrylic
glass. The placement of the steel beads in the cylinder should be as balanced as possible, so that they cover
the biggest possible detector area during a full revolution of the device. However, the projections of the steel
beads should not intersect in the projection images since this will decrease the accuracy of the point extraction.
Intersecting bead projections are in particular an issue for devices in which the tilt angle of the X-ray source is
not zero. Our method requires at least 6 steel beads to work, but we recommend to use at least 8 and ideally as
many as possible. However, care should be taken not to put them in any degenerate configuration, e.g. placing
them all on a single line.7

2.3 Bead Center Extraction

After acquiring a series of images with the device, we first need to extract the bead centers from the projection
images. This is done using the watershed segmentation algorithm8 which gives a first estimate of the blob
positions and sizes. These initial blob regions are then dilated in order to obtain a larger blob which also
contains some background. Next, the dilated regions are deleted from the input images and inpainted using an
intensity profile approximated from the surrounding background. The result of the inpainting step is a projection
image which only contains the cylinder, but not the beads anymore (see figure 1 (b)). Subtracting this image
from the original input images removes the cylinder and only leaves the beads which are now much easier to
extract precisely (see figure 1 (c)). The background subtraction step is also important to remove intensity
gradients in the bead profile which are caused by the cylinder in which they are embedded. This correction for
the background intensities significantly improves the extraction accuracy as we will show in the experimental
section. Finally, the beads are extracted from the subtracted images using a sub-pixel precise contour tracing
algorithm and a circle is fitted to each extracted contour. Figure 1 summarizes the steps during point extraction.

After extracting the bead centers in all images false positives are removed by grouping the centers into tracks
based on their spatial movement and removing tracks which do not cover the whole sequence.
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(a) Original image (b) Background image (c) Subtracted image (d) Fitted circles

Figure 1. Steps during point extraction.

2.4 Calibration

The actual calibration comprises two steps: First an initial projection geometry is computed for every image,
then the individual projection geometries are optimized with a set of common intrinsic parameters to obtain the
final solution.

2.4.1 Initialization

For every projection image Ij an initial projection matrix P̃j relating the 3D bead positions Xi and the extracted
bead centers xji is estimated using the direct linear transform (DLT).7 It is assumed that the point correspon-
dences are known. This information can for instance be obtained by ordering the extracted bead center positions
in the images from top to bottom and assigning them the corresponding beads in the phantom.

The recovered P̃j is then decomposed into K̃j , R̃j and t̃j as P̃j = K̃j

[
R̃j t̃j

]
. Although ideally all K̃j

should be the same, they differ in practice due to noise in the measurements. In addition, in general K̃ does not
have the desired form given in equation 1. To bring K̃ to the desired form we compute the mean of all K̃j and use

it as the initial estimate K = 1
M

∑M
j=1 K̃j where M is the number of projection images. However, by changing K

the previously recoveredRj and tj are not correct anymore since P̃j �= K
[
R̃j t̃j

]
. We therefore have to perform

a second DLT with K fixed. This is achieved by first normalizing the bead centers according to x′
ji = K−1xji

thereby implicitly integrating the fixed intrinsic parameters K into the measurements. Applying the DLT to
the correspondences x′ ↔ X we would ideally expect the recovered projection matrix Pj to be of the form
Pj =

[
Rj tj

]
with Rj a rotation matrix. This is not true in general since K was only an approximation. We

therefore replace Rj by the closest orthogonal matrix as given by the Frobenius norm and modify tj accordingly.
As the DLT is only a linear estimation method, we can further refine the recovered rotation and translation Rj

and tj using least-squares minimization over the reprojection error while holding K fixed according to the cost
function

argmin
Rj ,tj

1

2

N∑

i=1

‖h(K [
Rj tj

]
Xi)− xji‖2 (2)

where N is the number of steel beads in the calibration phantom, M is the number of projection images and h(Y)
transforms the homogeneous point Y to inhomogeneous coordinates. The optimized rotation and translation
matrices Rj and tj for each frame together with the global intrinsic parameters K are the input to the bundle
adjustment step.

2.4.2 Bundle Adjustment

The initial estimates of K, Rj , tj and Xi are refined using bundle adjustment.9 The cost function we are
minimizing is given by

argmin
K,Rj ,tj ,Xi

1

2

M∑

j=1

N∑

i=1

‖h(K [
Rj tj

]
Xi)− xji‖2 (3)
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We minimize this cost function using the Levenberg-Marquardt algorithm. In order to solve this optimization
problem efficiently the problem structure has to be taken into account. It is clear that the Jacobian of our cost
function will have a sparse structure, since for instance the derivative of Rj with respect to any image other than
Ij will be zero. This can be exploited by partitioning the optimization parameters into global intrinsic, extrinsic
and point parameters which creates a block structure in the Jacobian.7 Using the structure of the Jacobian J
we can derive the structure of A = J�J which is used in solving the normal equations. The normal equations
can then be solved efficiently using a sparse LDL decomposition.10 In addition, the columns of A should be
reordered to have a minimum degree ordering.11 This significantly increases the speed of the sparse LDL solver.

After the bundle adjustment step we obtain the optimized global intrinsic parameters K, as well as the
rotation Rj and translation tj for every projection image Ij together with the optimized 3D positions Xi of the
steel beads in the phantom.

3. EVALUATION

We conducted experiments both for evaluating the accuracy of the point extraction and for evaluating the
accuracy of the calibration procedure. These tests were conducted on synthetic data in order to have ground
truth data. For a final assessment of the calibration quality we performed an experiment on real data.

In order to evaluate the accuracy of the point extraction we used a background image of our calibration
phantom and simulated a steel bead by adding a 2D Gaussian blob to the image at subpixel precise locations
along a predefined trajectory. We then ran the point extraction and compared the recovered center positions
to the ground-truth. Figure 2(a) shows an evaluation of the background subtraction. It can be seen that the
results with background subtraction are significantly better in areas of high background gradient while they are
comparable in regions with no gradient. This is due to the fact that the background gradient also affects the
intensity profile of the blob and therefore biases the extraction procedure. Figure 2(b) shows the accuracy when
adding uniform noise to the synthetic images. It can be seen that even with significant amounts of noise the
extracted points are very accurate. For real data we therefore expect an accuracy between 0.1 and 0.2 pixels
given 5%-10% noise in the X-ray images.

To evaluate the accuracy of the calibration we first generated a phantom description and then added uniformly
distributed noise to both the initial calibration phantom point coordinates and the measurements in the images.
Our simulated setup had a detector of size 992x672 with 0.1 mm pixel size, a source-object distance of 340 mm,
a source-detector distance of 530 mm and a 5 degree source tilt. We generated 360 projections over a range of
360 degrees. The calibration routine was then run on this input data, once with and once without the point
optimization enabled. From the results we extracted the position of the X-ray source and the direction towards
the detector center and compared them with the ground-truth values. The results we obtained are shown in
table 3. It can be seen that the errors are quite small. With point optimization enabled the error is as expected
almost independent of the noise in the calibration phantom points and only changes with the noise in the image

(a) Background subtraction

Noise 0% 2% 5% 10%
Mean 0.0563 0.0662 0.1284 0.2716

Std. Dev. 0.0326 0.0416 0.0896 0.1819
(b) Added Noise

Figure 2. Point extraction evaluation. (a) Top: phantom intensity profile. Bottom: Accuracy with background subtraction
(blue) and without (red). (b) Error in pixels with noise added to the images. The percentage refers to the intensity range
of the image.
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Without point optimization

0.0 1.0 2.0
0.0 0.00 0.48 0.95
0.5 1.90 1.58 2.25
1.0 3.62 3.62 3.61
2.0 5.92 6.16 10.88

(a) Error in source position
(mm)

0.0 1.0 2.0
0.0 0.00 0.07 0.14
0.5 0.26 0.22 0.31
1.0 0.49 0.49 0.49
2.0 0.87 0.89 0.47

(b) Error in source angle (de-
grees)

0.0 1.0 2.0
0.0 0.00 0.59 1.16
0.5 4.19 4.62 4.70
1.0 8.29 7.96 8.68
2.0 17.34 15.99 16.79
(c) Reprojection error (pixels)

With point optimization

0.0 1.0 2.0
0.0 0.00 0.48 0.95
0.5 4e-4 0.48 0.96
1.0 4e-4 0.48 0.96
2.0 4e-4 0.47 0.96

(d) Error in source position
(mm)

0.0 1.0 2.0
0.0 0.00 0.07 0.14
0.5 0.03 0.10 0.16
1.0 0.16 0.12 0.25
2.0 0.37 0.26 0.22

(e) Error in source angle (de-
grees)

0.0 1.0 2.0
0.0 0.00 0.58 1.16
0.5 3e-4 0.58 1.16
1.0 3e-4 0.58 1.16
2.0 1e-4 0.58 1.16

(f) Reprojection error (pixels)

Precision Phantom Hand-made phantom
(g) Volume rendering of light bulb structures

Figure 3. Left: Results of the accuracy evaluation. The row labels specify the noise added to the phantom point positions
(in mm) and the column labels specify the noise added to the image measurements (in pixels). The first row of tables (a-c)
shows the results without optimizing the phantom point positions, while the second row of tables (d-f) shows the results
when also optimizing the phantom point positions. Right: Comparison of reconstruction results using precision-phantom
(left) and hand-made phantom (right) on a volume rendering of a detail of a light bulb.

measurements. It is therefore advisable to optimize the phantom point positions. The only case in which this is
undesirable is when the accuracy with which the position of the calibration phantom steel beads is known is at
or above the spatial resolution of the imaging system. In this case the measurement noise would dominate the
optimization of the point positions.

Finally, we ran a test on real data using both a precision-manufactured calibration phantom and a hand-
made phantom (see figure 3(g)) which was built by manually placing little steel spheres on a cylinder made of
cardboard. The manufactured phantom we used for our experiments contained 8 steel beads with a diameter of
1 mm placed on an acrylic cylinder with 30 mm diameter in a helical layout with an offset of 5 mm in height
and 45 in angle between successive steel beads. The manufacturing accuracy of the phantom was 30 µm. The
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accuracy of the hand-made phantom was not very high, with the bead positions known only in the millimeter
range. We recorded CBCT sequences of both calibration phantoms and a light bulb. We then reconstructed the
light bulb at a resolution of 256 × 256 × 400 voxels with the parameters obtained from the precision and the
hand made phantom and compared the reconstructions. Figure 3(e) and (f) each show a volume rendering of
the fine wires inside the bulb. There is no visible difference. The calibration time (without point extraction) is
in general around 1 second while the point extraction takes approximately 200 ms per image.

4. CONCLUSION

We presented a calibration method for CBCT devices with arbitrary geometry. Our method does not need
a precision-manufactured phantom in order to calibrate the system since we also optimize the phantom point
positions. Experimental results on ground-truth and real data show the accuracy and validity of our approach.
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