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ABSTRACT   

Model-based iterative reconstruction (MBIR) methods based on maximum a posteriori (MAP) estimation have been 
recently introduced to multi-slice CT scanners. The model-based approach has shown promising image quality 
improvement with reduced radiation dose compared to conventional FBP methods, but the associated high computation 
cost limits its widespread use in clinical environments. Among the various choices of numerical algorithms to optimize 
the MAP cost function, simultaneous update methods such as the conjugate gradient (CG) method have a relatively high 
level of parallelism to take full advantage of a new generation of many-core computing hardware. With proper 
preconditioning techniques, fast convergence speeds of CG algorithms have been demonstrated in 3D emission and 2D 
transmission reconstruction. However, 3D transmission reconstruction using preconditioned conjugate gradient (PCG) 
has not been reported. Additional challenges in applying PCG in 3D CT reconstruction include the large size of clinical 
CT data, shift-variant and incomplete sampling, and complex regularization schemes to meet the diagnostic standard of 
image quality. In this paper, we present a ramp-filter based PCG algorithm for 3D CT MBIR. Convergence speeds of 
algorithms with and without using the preconditioner are compared. 
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1. INTRODUCTION  
Iterative CT reconstruction algorithms based on the maximum a posteriori (MAP) estimation were developed over a 
decade ago [1–4] but have only very recently been introduced commercially on multi-slice clinical CT scanners [5,6]. 
The model-based approach is based on incorporation of accurate modeling of system optics, noise statistics in the 
transmission data, and a priori knowledge of the object being imaged. However, the associated long computation time is 
a major challenge to their widespread use in clinical environments. 

Many types of algorithms have been explored for minimizing the MAP cost function in CT reconstruction. Sequential 
algorithms such as iterative coordinate descent (ICD) [4,5,7] has fast convergence rate if given a good initial estimate, 
but requires column access to the system matrix and has relatively large computation cost per iteration. Simultaneous 
algorithms, such as gradient-based methods with various surrogate functions [2,3], perform forward- and back-projection 
operations over the whole image volume, and thus have a higher level of parallelism to take full advantage of multi- and 
many-core computing hardware. In between ICD and gradient-based updates are grouped-coordinate descent algorithms 
that use all the data to update a subset of the pixels each (sub)iteration [8–10]. These algorithms offer a compromise that 
combines efficient iterations with faster convergence than gradient-based methods, albeit with somewhat more 
complicated implementation.  

In his paper we focus on simultaneous algorithms based on conjugate gradient (CG). Similar to many standard gradient-
based algorithms, CG converges very slowly for tomographic inversion problems due to their ill-conditioned nature. 
However,  significant enhancement in convergence speeds has been demonstrated when combining CG with a positive 
definite preconditioning matrix tailored to approximate the inverse of the Hessian matrix of the MAP cost function [11–
14]. Various forms of preconditioner have been studied in the context of iterative tomographic reconstruction. Diagonal 
preconditioners [12–15] can be effective but suboptimal because they do not account for the off-diagonal structure of the 
Hessian. Fourier preconditioners [16,17] can address the off-diagonal structure (such as the 1/ݎ correlation between 
voxels) for shift-invariant systems, but they are not effective to address shift-variance caused by statistical noise 
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modeling. More effective preconditioning approaches use a combination of diagonal and circulant matrices [11,18], 
multiple FFTs [11], or operator splitting methods [19,20] to address additional shift-variance.  

Although preconditioned conjugate gradient (PCG) approaches have demonstrated remarkable convergence speeds in 
the context of 3D emission reconstruction [13] and 2D parallel-beam transmission reconstruction [11], their 
effectiveness in 3D cone-beam settings as in modern multi-slice CT scanners remains to be evaluated. In this study, we 
design a PCG algorithm for 3D cone-beam CT reconstruction with statistical noise modeling and edge-preserving 
regularization. A quadratic surrogate function is introduced to avoid the inconveniences of the ‘line search’ procedure to 
determine the step size parameter along the conjugate gradient direction. A combined diagonal/circulant preconditioner 
is designed to speed up reconstruction.  The convergence speeds of algorithms with and without using the preconditioner 
will be compared. 

2. METHODS 
2.1 Cost function 

One approach to statistical image reconstruction in x-ray CT uses a regularized weighted least-squares cost function of 
the form  ࢞ෝ ൌ arg min࢞ Φሺ࢞ሻ , Φሺ࢞ሻ  ൜12 ሺ࢟ െ ࢟ሺࢃሻ்࢞ۯ െ ሻ࢞ۯ   ,ሻൠ࢞ሺܷߚ
where ࢞ ൌ ሼݔଵ, … , ேሽݔ  denotes the vector of unknown 3D image space, ࢟ ൌ ሼݕଵ, … , ெሽݕ  is the vector of sinogram 
measurements, ࢃ ൌ diagሼݓଵ, … , ெሽݓ  denotes the statistical weighting,   is a ܯ ൈ ܰ  system matrix, ܷሺ࢞ሻ  is a 
regularizer, and ߚ is a scalar that controls the regularization strength [4].  

2.2 Non-quadratic edge-preserving prior 

We employ a convex q-generalized Gaussian Markov random field (q-GGMRF) [5] to model the prior distribution of the 
image. The prior energy function takes the form 

ܷሺ࢞ሻ ൌ  ߱ߩሺݔ െ ሻவݔ , 
where the ߱ are directional weighting coefficients, which we choose as the inverse of the distance between voxels ݆ 
and ݇, and ߩሺڄሻ is a potential function given by ߩሺΔሻ ൌ |Δ|1  ቚΔܿቚି, 
where 1  ݍ    2  to ensure convexity. This prior features edge-preserving properties with a threshold ܿ  that 
determines the transition from low to high contrast regions so that the edge-preserving behavior can be tuned to specific 
use cases.  

2.3 Preconditioner 

We use a preconditioner which we call a “ramp-based” one because an analytical ramp filter is used to approximate the 
inverse of the geometric response of ۯ்ۯ. Ideally, a preconditioner should invert of the Hessian of the MAP objective 
function, which takes the form ଶΦሺ࢞ሻ ൌ ۯ܅்ۯ   .ሻ࢞ଶܷሺߚ
Since we cannot directly compute this matrix inverse, simplifications have to be introduced. With approximations, 
statistical weighting in sinogram-domain may be translated into image-domain [11] 

ۯ܅்ۯ ൎ diagሺࣄሻ ۯ்ۯ diagሺࣄሻ, where ߢ ൌ ඨ∑ ೕమ ௐ∑ ೕమ  . 

In CT scanners with relatively small cone angle, ۯ்ۯ  is well modeled by a shift-invariant filter  
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ۯܶۯ ൎ  ,ሿۿ்ࡽሾ۪ݖ۷ܰ
where ࡽ is the orthonormal version of the 2-D DFT operator,  is diagonal matrix corresponding to the 1/ݎ filter in 2D, 
“۪” denotes the Kronecker product operator that replicates the 2D filter by the number of slices in the Z direction.  

As an initial evaluation, we assume that the regularization parameter ߚ  is relatively small so that the Hessian is 
dominated by the data fit term. Ignoring the regularization term, we obtain the following proposed preconditioner for 3D 
reconstruction ۻ ൌ diagሺࣄሻିଵൣ۷ே۪ሺ்ۿିଵۿሻ൧diagሺࣄሻିଵ. 
The above preconditioner takes a similar form as the combined diagonal/circulant matrix proposed by Fessler and Booth 
[11], who constructed the circulant kernel by taking a column of ۯ்ۯ   being the Hessian of a quadratic ࡾ with ,ࡾߚ
prior term, and making it symmetric and block-circulant by averaging flipped and shifted versions of itself. In this work 
the circulant kernel is constructed directly as an analytical ramp filter in the Fourier space. The analytical design is more 
convenient and automatically guarantees positive-definiteness. To balance between accuracy and computational 
overhead of the preconditioner, we ignore the shift-variance caused by edge-preserving regularization and the cone-beam 
effects. These approximations will only affect convergence speeds but will not change the final solution defined by cost 
function. More advanced methods based on multiple FFTs [11] or operator splitting methods [19,20] may be used to 
address more challenging shift-variant factors.  

2.4 Conjugate gradient 

We use Polka-Ribiere form of PCG algorithm to compute an image update  ࢞ሺାଵሻ ൌ ሺሻ࢞  ሺሻࢊ ሺሻࢊሺሻߙ ൌ ሺሻ  ሺሻߛ ሺିଵሻࢊሺሻߛ ൌ ሺషభሻࢍሺషభሻሺషభሻ൯ࢍሺሻିࢍሺሻ൫ ሺሻ  ൌ    ሺሻࢍۻ
where ࢍሺሻ is the gradient vector of the objective function evaluated at ࢞ ൌ  ሺሻ is a descent direction at eachࢊ ሺሻ is a step size parameter. For non-quadratic functions, it is necessary to check ifߙ is the preconditioning matrix, and ۻ ,ሺሻ࢞
iteration, i.e.,  ࢊሺሻ்ࢍሺሻ  0. If the condition is not satisfied, we reset ߛሺ୬ሻ to zero and ࢊሺሻ ൌ  ሺሻ will used as the step
direction.  

For non-quadratic cost functions, standard CG algorithms usually employs a “line search” procedure to determine the 
step size ߙሺ୬ሻ along the current conjugate gradient direction [11–13]. While the “line search” procedure generally does 
not require extra forward/back projection operations, it does require evaluations of the first and second gradients of the 
prior term, which can be of high computation cost in 3D due to the large number of neighborhood pairs. To ease 
computation, we employ a quadratic surrogate functional substitution that Yu et al. proposed for the q-GGMRF prior [7] 
which allows us obtain a closed form solution for ߙሺሻ  without using “line search”. A quadratic function ߩ௦ሺڄ;ڄሻ is 
constructed at an expansion point Δ to majorize the original potential function ߩሺڄሻ ߩୱሺΔ; Δሻ  ᇱሺΔሻ2Δߩ Δଶ     ;ሺΔሻߩ
Then a surrogate prior function ୱܷ൫࢞;   ሻڄ;ڄୱሺߩ ሻ by࢞ሻ in ܷሺڄሺߩ ሺሻ൯ is formed by replacing each࢞

ୱܷ൫࢞; ሺሻ൯࢞   ߱ߩ௦൫ݔ െ ;ݔ ሺሻݔ െ ሺሻ൯வݔ  ܷሺ࢞ሻ, 
ୱܷ൫࢞ሺሻ; ሺሻ൯ܠ ൌ ܷ൫࢞ሺሻ൯, 

which further gives us the following quadratic surrogate substitution of the overall MAP cost function  Φୱ ൫࢞; ሺሻ൯࢞  12 ԡ࢟ െ ଶࢃԡ࢞ۯ  ߚ ௦ܷ൫࢞;  .ሺሻ൯࢞
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Then ߙሺ୬ሻ can be computed in closed form by minimizing the following 1D quadratic problem. Monotonic decrease of 
original MAP cost function is still guaranteed.  ߙሺሻ ൌ arg minఈ Φୱ ൫࢞ሺሻ  ;ሺሻࢊߙ ሺሻ൯ ൌ࢞ െ ࢃ்ሺሻ்ൣࢊሺሻࢍሺሻ்ࢊ  ଶߚ ୱܷሺ࢞; ሺሻ ൌࢊሺሻ൧࢞ୀ࢞|ሺሻሻ࢞ െ ሺሻࢊࢃ்ሺሻ்ࢊሺሻࢍሺሻ்ࢊ  ߚ ∑ ∑ ߱ఘೞᇲᇲቀ௫ೕሺሻି௫ೖሺሻቁቀௗೕሺሻିௗೖሺሻቁమ୩வேୀଵ   . 

3. COMPUTER SIMULATION 
We performed a numerical phantom simulation using CatSim [21].  The simulation includes a 64 row axial scan of an 
XCAT phantom [22] with 1000 views evenly distributed over one full rotation for a 1.0 second gantry period. We used 
cone-beam geometry with a source-to-iso distance of 540 mm, a source-to-detector distance of 960 mm and 64 x 888 
detector elements of size 1.1mm x 1.0mm. The source model included a mono-energetic spectrum at 60keV and 100mA 
tube current; we did not include focal spot deflection or electronic noise. Iterative reconstruction was performed over a 
512x512x64 voxel grid with a 50cm field of view and 0.625mm slice thickness. We compared the convergence rates of 
the reconstruction algorithms with and without the ramp-based preconditioner described above. We implemented both 
steepest descent (SD) and conjugate-gradient (CG) methods. All algorithms are initialized with standard FBP 
reconstructions.  

Figure 1 compares reconstructions of center slices. Clearly, after 30 iterations, the ramp-CG reconstruction is already 
much closer to the reference solution after 200 CG iterations than the CG reconstruction is. Figure 2 compares 
reconstructions of end slices in the field of view. Again, the ramp-PCG reconstruction is much closer to the reference 
solution than the CG reconstruction. Some loss of resolution is observed in the edge slice due to the change of geometric 
response and statistical weighting. Modified regularization design has been proposed to achieve nearly uniform 
resolution [23] and is straightforward to be incorporated into the PCG framework described here. The modified 
regularization will also make the Hessian matrix less shift-variant and more amenable to preconditioning. 

Figure 3 shows the image-domain l2 distance to the converged solution as a function of iteration number. The l2 distance 
for each reconstruction slice is computed separately to study the effect of cone-angle dependence of convergence speeds. 
The curves show that in all slices, the ramp-based preconditioner brings drastic improvement in convergence rate for 
both SD and CG algorithms. Comparing the curves of different slices, the acceleration caused by the preconditioner is 
the most significant near the center slices, which is expected due to the more shift-invariant system response in this 
regions. More advanced methods such as multiple FFTs [11] or operator splitting methods [19,20] may further improve 
the effectiveness of the preconditioner by addressing more shift-variant factors in the edge slices. 
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Figure 1. Center slice images computed by different algorithms: FBP reconstruction (top left), CG reconstruction 
at 30 iterations (top right), Ramp-PCG reconstruction at 30 iterations (bottom left), and CG reconstruction at 200 
iterations (bottom right).  Display window width = 400 HU.  

 

 
Figure 2. Edge slice images computed by different algorithms: FBP reconstruction (top left), CG reconstruction at 
30 iterations (top right), Ramp-PCG reconstruction at 30 iterations (bottom left), and CG reconstruction at 200 
iterations (bottom right).  Display window width = 400 HU.  
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Figure 3. Normalized ݈2distance to the image computed by CG after 200 iterations versus iteration number. 
“-Ramp” denotes algorithms with preconditioning. All algorithms optimize the same cost function and start from 
the same FBP estimate.  In all slices, the ramp-based methods bring significant improvements in convergence rate 
for both the SD and CG algorithms. 

4. PHYSICAL PHANTOM DATA 
We also tested different MBIR algorithms using a GE performance phantom. The phantom was scanned axially on a 64-
slice GE HD750 scanner at 120 kV and 70mAs. All axial reconstructed images are of size 512 x 512 with each slice 
having thickness of 0.625 mm. The reconstruction field of view is 350 mm in diameter. Standard FBP images were used 
as initial estimation. Figure 4 shows that with only 10 iterations, the PCG reconstruction already produces images very 
similar to the reference image produced by 200 standard CG iterations, with much better noise reduction compared to the 
standard CG reconstruction at 10 iterations. 

 

 

Slice 32 (center slice) Slice 22 

Slice 11 Slice 1 (edge slice) 
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Figure 4. GE performance phantom images computed by different algorithms: FBP reconstruction (top left), CG 
reconstruction at 10 iterations (top right), PCG reconstruction at 10 iterations (bottom left), and CG reconstruction 
at 200 iterations (bottom right).  Display window width = 200 HU. 

5. CONCLUSION 
We performed an initial evaluation of a ramp-based PCG algorithm for cone-beam CT MBIR. Modeling of non-uniform 
noise statistics and edge-preserving image prior were included in the cost function. Computer simulation and real 
phantom data consistently showed that the preconditioning approach achieves significant acceleration in convergence 
rate of SD or CG algorithms. The acceleration was the most dramatic in center slices where the cone-beam effect is 
relatively small. However, even at the edge slices, the preconditioner still brought significant speed up to both SD and 
CG algorithms. The computational cost of applying the ramp-based preconditioner is similar to that of a Fourier-domain 
filtering operation, which is much less compared to forward and back projection operations. As an initial evaluation, the 
preconditioner used in this study did not account for the shift-variance caused by object-dependent and edge-preserving 
regularization. The incorporation of statistical weighting is also based on empirical approximations. The performance of 
the preconditioner may be further improved by incorporation of more sophisticated space-variant design [11] or 
combining with operator splitting methods [19,20]. 
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