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ABSTRACT   
The aim of the present work was to develop a method for simulating breast lesions in digital mammographic images. 
Based on the visual appearance of real masses, three dimensional masses were created using a 3D random walk 
method where the choice of parameters (number of walks and number of steps) enables one to control the 
appearance of the simulated structure. This work is the first occasion that the random walk results have been 
combined with a model of digital mammographic imaging systems. This model takes into account appropriate 
physical image acquisition processes representing a particular digital X-ray mammography system. The X-ray 
spectrum, local glandularity above the insertion site and scatter were all taken account during the insertion 
procedure. A preliminary observer study was used to validate the realism of the masses. Seven expert readers each 
viewed 60 full field mammograms and rated the realism of the masses they contained. Half of the images contained 
real, histologically-confirmed masses, and half contained simulated lesions. The ROC analysis of the study (average 
AUC of 0.58±0.06) suggests that, on the average, there is evidence that the radiologists could distinguish, somewhat, 
between real and simulated masses.   
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1. INTRODUCTION 
X-ray mammography is currently the imaging modality of choice in screening to detect breast cancer in the early 
stages [1]. However, the effectiveness of the detection task depends critically on the quality of the mammographic 
image and the radiologist’s level of experience and skill. In recent years, film-screen systems have been replaced by 
various digital mammography technologies as these can deliver better performance than conventional film-screen 
technology [2]. However it remains unclear how the physical performance of such systems and the choice of their 
operating parameters is correlated with ability to detect early breast cancer.  Clinical trials are an obvious response 
to this issue, but these are costly and take many years to conclude. They also rely on the availability of a large 
number of images with pathologically-proven lesions. Alternatively, a simulation framework whereby suitably-
realistic synthetic breast cancer pathology is inserted into normal clinical mammograms to form a large database can 
enable a more efficient comparison of multiple systems and study of technical parameters which influence the 
detection task.  

This paper describes the use of random walks to simulate the radiographic appearance of masses in digital 
mammography. In distinction to previous work in this area [4,5], there is no ad-hoc morphological processing of the 
simulated masses. Instead, the random walks are undertaken at a pseudo-mesoscopic scale, and then processed 
taking account of beam-dependent attenuation factors, the image receptor modulation transfer function (MTF), pixel 
sampling and scatter. Account is also taken of the local breast glandularity to ensure that the contrast of the 
simulated mass is realistic when inserted into a mammogram. 
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2. METHODOLOGY  
The simulation framework as shown in Figure 1 is divided into several steps: (1) simulation of a 3D mass based on 
nearest-neighbor random walk, (2) calculation of the primary transmission through the breast before and after mass 
insertion using local glandularity information [8], (3) degradation of the  projected mass with the appropriate MTF 
and resampling to the pixel size of the particular digital mammography image acquisition system, (4) insertion of the 
mass into the raw clinical mammogram also considering scatter, and finally processing the image with 
manufacturer-specific image processing package. The following subsections describe these steps in more detail. 

 

 

 

 

 

 

 

 

Figure 1. Overall image simulation framework of simulation disease in digital mammograms 
 

2.1 Mass simulation 

To generate a malignant mass, a nearest neighbour random walk algorithm for simulating 3D masses was developed 
based on the work by Ruschin et al [4] and Histsala et al[5]. Initially the random walk starts by incrementing the 
value of the centre voxel of a binary 3D array indicating the mass centre.  In each iteration, one of the connected 
voxels in the 26 way local neighbourhood is chosen randomly from a uniform distribution and incremented by 
assigning unit value. If a voxel was revisited more than once during the walk the unit value is not incremented. The 
walk proceeds in a random direction until it reaches a preset number of steps (n) or it intersects a bounding box 
boundary defined by the user. The procedure then repeats from the same starting point for a given number of 
recursions (R).  The R and n parameters enable the user to control the size and relative density or “texture” of the 
generated mass. The bounding box limits the random walk to a user-defined shape. The voxel size was 17.5µm and 
a range of 5 to 15 mm masses were simulated. 

2.2 Calculation of primary transmission 

The process used for insertion of a mass into a mammogram requires knowledge of the relative signals from primary 
photons in the region of interest (ROI) where the mass is to be inserted. The ROI on the normal mammogram was 
selected manually based on local morphology and visual appearance. Both Primary photons before (p1) and after (p2) 
insertion of the mass were calculated for a parallel beam geometry and X-ray spectrum N(E) using:  ∑ ∑    ∆                                                  (1)  ∑ ∑   ∆         (2) 

In these equations,   is the detector energy absorption efficiency as a function of photon energy (E), the X-ray 
number spectra  were calculated from the spectral model of Boone et al. [10], and corresponded to the specific 
target/filter combination, tube voltage, filter thickness used during image acquisition of the associated mammogram.  ∆  is the bin size of the X-ray spectrum and the summation within each exponential term is over the different 
materials of attenuation coefficient µi and thickness ti traversed by the beam along its trajectory including 
compression paddle. µbr is the breast tissue attenuation coefficient and tbr is the thickness of breast along the beam. 
The linear attenuation coefficients were calculated using data from NIST [11]. The breast tissue along the path of 
each primary photon was assumed to comprise a mixture of adipose and glandular tissues, and the composition of 
these tissues was taken from the work of Hammerstein et al [14]. The linear attenuation coefficient of glandular 
tissue was also used for the 3D simulated mass, which was assumed to be homogeneous.  In order to estimate the 
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glandularity of the breast region above each image pixel for calculation of µbr, Volpara was employed [8,9]. Volpara 
is a breast composition measurement tool which uses relative physics modelling by finding an area of the breast that 
corresponds to entirely fatty tissue as a reference level to find the thickness of dense tissue at each pixel of the 
mammogram. The use of Volpara facilitated more accurate tissue replacement when inserting a mass compared to 
global or other approximations of glandularity which would otherwise be required. The third term in Eq.3 accounts 
for the mass inserted and the last term accounts for the replaced tissue. It is assumed that the mass voxels within the 
3D array are enclosed in a breast tissue with same attenuation coefficient as µbr. 

2.3 Image degradation chain  

Prior work on mass simulation using random walk methods [4,5] has empirically used morphological image 
processing to achieve a visually satisfactory appearance when inserting the simulated masses into digitized film-
screen masses [4] or a simulated breast model [5] However in the present work, the resulting 2D arrays calculated 
above (p1 and p2) were blurred and sampled using the approach of Yip et al [3] representing the image degradation 
process associated with commercially available digital mammography systems. Thus the primary projections were 
blurred according to the particular system MTF and the resultant image resampled at the system’s detector pixel size 
to produce the arrays p1modified and p2 modified . The ratio of these two quantities, which we call the relative transmission 
factor, was also calculated. 

2.4 Mass insertion, Scatter and Processing 

The scatter to primary ratio (SPR) was estimated and used in the insertion model with the following steps: remove 
the scatter, adjust the primary transmission due to insertion of a mass, and then re-instate the scatter, assuming the 
effect of mass insertion has negligible effect on the slowly varying scatter field. The mass insertion can now be 
performed by calculating the value of each pixel in the ROI using Eq.3:  21 1 12                                                          (3) 

where I1 is the raw input image in the ROI before insertion, and I2 is the output image after insertion of the simulated 
mass. The SPR is a single value estimated for the whole mammogram for the specific breast thickness and 
glandularity of the associated mammogram prior to mass insertion.  

In order to calculate the SPR for equation (3), Monte Carlo simulation was used for a range of breast thicknesses and 
glandularities, and then these data were interpolated to estimate SPR values for any image used in the study. As all 
the images in this study were acquired by Hologic Selenia systems, accordingly this system geometry was used 
during the simulation, including compression paddle, breast support and anti-scatter grid. Breast phantoms have 
been modelled as uniform semicircles of different heights and diameters. 109 photons emerging from a point source 
at 66cm from the detector have been used for each simulation, irradiating the entire receptor's dimension. Primary 
and scattered photons were recorded in a region of interest of area 1cm2 at 6cm from the chest wall and SPR 
calculated specifically for this study using the methodology described in [12].   

The resultant image was then processed by the relevant manufacturer’s post acquisition image processing package 
routinely used for image enhancement.  

2.5 Validation of the simulation 

2.5.1 Subjective pilot study 

A pilot study was used to improve the simulation model and to guide realistic parameter selection for the more 
detailed ROC validation study.  Sixteen normal mammograms each containing a simulated mass were reviewed by 
three expert radiologists who were asked to evaluate the realism of the simulated masses in terms of their shape, 
margin, density and type of malignancy. The pilot study results suggested that random walk masses for a given 
range of parameters are capable of producing realistic results. 

2.5.2  Preliminary Observer Study  

An observer study was performed to evaluate whether radiologists could distinguish real masses from inserted 
simulated masses.  Sixty single view full-field images were used in the study (MLO or CC views). Half contained 
real pathology-proven masses and half were normal mammograms into which a simulated mass had been inserted. 
All the images used in the study were routine breast screening images acquired on Hologic Selenia systems at the 
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Figure 3. ROC curves of the simulated masses study per observer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Global histogram of all the observers for the real and the simulated masses ranking (top). Global histogram of 
level of suspicion scores for all the observers (bottom). 
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Table1. Area under the ROC curve (AUC) and associated 95% CI per observer; the last row gives the average AUC 
over all readers and corresponding 95% CI. 

 

Observer Area Under Curve 95% CI 

Observer1 0.59 (0.45  ,  0.74) 

Observer2 0.62 (0.48  ,  0.77) 

Observer3 0.57 (0.42  ,  0.71) 

Observer4 0.51 (0.36  ,  0.65) 

Observer5 0.65 (0.51  ,  0.79) 

Observer6 0.49 (0.34  ,  0.63) 

Observer7 0.63 (0.49  ,  0.77) 

Average 0.58 (0.52,  0.64)

 

Figure 3 presents the ROC curves from the observer study for each radiologist. The 50-50 chance line is shown in 
black. Table 1 gives the areas under the ROC Curves (AUCs) computed using the trapezoidal rule along with the 
95% confidence interval (CI) for each reader [13]. The average AUC over all readers and corresponding 95% CIs 
are also shown. The results from table 1 demonstrate that except for one reader all the CIs include the value 0.5, and 
thus the remaining radiologists could not tell the difference between real and simulated masses. The CI for the 
average AUC, calculated using standard error for seven AUCs, resulted in (0.52, 0.64). As the overall CI does not 
include the value 0.5, this suggests that, on the average, there is evidence that the radiologists could distinguish, 
somewhat, between real and simulated masses. However the low number of samples within this study affects the CI 
results, requiring larger statistics to determine the validity of this conclusion. 

Figure 4(top) shows that despite the results from AUC and CI, the random walk method is capable of producing 
realistic results in some cases. Figure 4(bottom) shows the overall histogram of all observers for the level of 
suspicion ranking. In the UK, clinical assessment of screening images requires a recall if the level of suspicion of the 
detected mass is rated as 3 or more. Comparing the results on the global histogram, the number of recalls 
(summation of last 3 bars) for real cases is 172(82% of all the real masses) and 166 for simulated cases (79% of all 
the simulated masses) which are comparable. This result shows that for the limitations imposed by the limited 
statistics of this study, the simulation method was successful in creating masses with a realistic malignant 
appearance.  

 

4. CONCLUSION  
A method has been described using random walks to simulate the appearance of lesions in digital X-ray 
mammography images. In contrast to prior work, no ad-hoc morphological processing is needed, as this is replaced 
with a physics-based image simulation chain to degrade the pseudo-mesoscopic random walk with the appropriate 
major physical sources of image degradation during image acquisition. We have presented a preliminary assessment 
of the appearance of these masses; ROC analysis was performed on 30 real cancer images and 30 images with 
simulated cancers. The result from the observer study shows that the average AUC did not included 0.5 and thus, 
this limited study suggests that observers could distinguish between real and simulated images in a number of cases. 
However half of the simulated masses were rated as real by the radiologist suggesting that it may be possible to 
create realistic lesions using this approach with further development and validation.  
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