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ABSTRACT 
Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can 
produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or 
other side effects.  Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic 
performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded 
promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially 
uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM 
filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we 
have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM 
algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise 
distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm 
provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation 
dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration 
with the clinical workflow. 
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1. INTRODUCTION 
Radiation dose from CT scanning is an increasing health concern worldwide1. Thus, the current guiding principle in CT 
clinical practice is to use radiation dose levels as low as reasonably achievable while maintaining acceptable diagnostic 
accuracy. However, lowering radiation dose alone generally produces a noisier image and may seriously degrade 
diagnostic performance. There is increasing evidence that state-of-the-art denoising algorithms may allow dose to be 
reduced by up to 50% in many clinical scans without compromising diagnostic performance2-3. Denoising algorithms can 
therefore play an important role in an overall strategy for reducing radiation dose. 

Many denoising algorithms have been proposed for controlling noise in CT, and these can be broadly categorized into 3 
major types: projection space, image space, and iterative reconstruction. Projection space techniques, which work on 
either the raw projection data or the log-transformed sinogram, attempt to reduce noise in the projection data domain 
prior to image reconstruction4-10. In general, these techniques have the advantage that noise properties in projection space 
are fairly well understood. However, they require access to the raw data and specialized knowledge, requiring either 
collaboration with or purchase from a manufacturer. Image-space denoising involves applying linear or non-linear filters 
directly to the reconstructed images. Most such techniques (e.g. bilateral filtering11, total variation denoising12, non-local 
means denoising13, and k-SVD denoising14 take advantage of the strong structural and statistical properties of objects in 
image space (e.g. sharp edges, similarities between neighboring pixels). In CT, they can be implemented directly and 
without access to the raw data. However, CT noise in image space is difficult to model accurately and has strong spatial 
variations and correlations. It can therefore be more difficult for such techniques to achieve an optimal tradeoff between 
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Figure 1: Closeup of an original CT slice of the abdomen and the 
image after NLM denoising.  Note improvement in conspicuity 
of hepatic metastases and appearance of liver parenchyma.

denoising and blurring or artifacts, or to get consistent performance across an entire scan volume. Iterative 
reconstruction (IR) techniques are more accurately considered reconstruction rather than denoising techniques, but are 
included here since they implicitly perform denoising. These techniques are mathematically sophisticated and take 
advantage of statistical assumptions about both noise properties in projection space and structure in image space15,-17. IR 
techniques require access to the raw data and accurate knowledge of the details of the scanner physics and processing, 
thus requiring either collaboration with or purchase from a manufacturer. True IR is very computationally intensive (e.g., 
several hours per data set), which has prevented clinical application to date, although software methods18-19 and hardware 
methods20-23 have been investigated to accelerate the iterative procedure. Due to the extremely high computational load 
of true IR, hybrid techniques have recently been developed that attempt to gain many of the benefits of true IR with 
much lower computational load (e.g. ASIR from GE, IRIS and SAFIRE from Siemens). Some of these are now available 
commercially, but integrated with the scanner. 

Our interest is in a denoising strategy that can be broadly used in our own practice and across the CT community, over a 
heterogeneous scanner fleet that encompasses different manufacturers as well as different models of varying age and 
software revision. Also, most institutions do not have access to raw CT data. These requirements lead us to consider 
image space denoising techniques, which are relatively simple to implement, work on the image data alone, and can be 
applied retrospectively. As mentioned above, it is difficult for image space techniques to model CT noise or scanner 
details accurately, and thus they may appear to necessarily be at a disadvantage with respect to projection space or IR 
methods. However, the spatial structure models in some modern image denoising algorithms are significantly more 
advanced than the spatial regularization terms that are currently incorporated in IR. It is thus not at all clear that image 
space results will necessarily be inferior. Separately, we note that we also require a technique that can ultimately denoise 
an entire CT volume and return the results to the reader’s workstation within 5 minutes, so as not to impact the clinical 
workflow. 

Non-local means (NLM) denoising13 is an effective 
image denoising strategy that exploits the inherent 
spatial redundancy present in most images. NLM 
generalizes the notion of finite spatial differences and 
utilizes a measure of difference between nearby image 
patches to estimate underlying image structure. This 
allows NLM to preserve a high degree of image texture 
and fine detail. We previously incorporated NLM 
denoising into the clinical CT workflow using both 
algorithmic and hardware speedups, such that images 
are returned to viewing workstations in under the 5 
minute deadline24. However, traditional NLM uses a 
uniform filtering strength to denoise the image, while 
in CT images the noise level varies significantly within 

and across slices. Therefore, applying NLM filtering to CT images using a global filtering strength cannot achieve 
optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise 
level for CT images, and have modified the NLM algorithm to adapt to local variations in noise levels. 

2. METHODS 
2.1 Adapting NLM to local noise level 

NLM assumes that images contain a substantial amount of redundant local structure, and this property can be exploited 
to reduce noise by performing weighted averages of pixel intensities. The weights are based on calculations of the form 

w(i, j)= exp −
Gσ (δ)[v(i+δ)− v( j +δ)]2
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where  Gσ is a Gaussian kernel of variance 2σ , P denotes the patch centered at positions i,j, and the weight between two 
pixels is calculated by computing the summed squared intensity difference of all pixels in the two patches. h is a 
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smoothing parameter used to control the amount of denoising and is usually taken to be proportional to the assumed or 
known noise level. In this work, 0.8 is used as the proportionality factor.   

The original NLM, although non-iterative, usually has a high computational cost due to the computation of similarities 
between neighborhoods in a large search window region. In our case, we extend the NLM concept to 3D blocks in the 
data volume, further increasing the computational load. We have implemented and improved the pre-calculation of sum 
squared differences between patches using integral images25-26, increasing the computational speed 20-fold. We have 
also have reduced computation time by an additional 35% by taking advantage of symmetry between weighting factors, 
and 30% by precalculating the exponential function in a lookup table. Finally, porting the algorithm to GPUs24 gave an 
additional 35X speed gain. 

In CT the noise level varies within and across slices, often by 2× within a slice and as much as 3× across slices.  This 
implies that NLM denoising based on a single noise level may be too weak in some places (accomplishing little), too 
strong in others (blurring fine detail), or both. It is therefore desirable to modify the NLM algorithm to adapt to the local 
noise level. Adaptively denoising can overcome the problem of the non-uniform noise distribution in CT images. Here 
we have adjusted the strength of h locally based on an estimate of the noise level of the pixel to be denoised.  This can be 
easily integrated with the speedup technique described above and involves little additional computational effort. 
However, this requires a map of the local noise level, which in turn requires developing a way to efficiently estimate 
such a map. 

2.2 Noise map estimation 

The CT image noise distribution can be estimated or calculated using many different approaches. One could repeat scans 
multiple times for the same object and then calculate the statistical information from reconstructed images, which is 
ideal but essentially impossible to implement in practice. Another approach is through Monte Carlo simulation, adding 
simulated noise to raw data and reconstructing multiple realizations of CT images. We have developed a highly-accurate 
“noise-insertion” tool, which we use with “full-dose” scans to simulate “reduced-dose” scans, based on knowledge of the 
physical characteristics of the scanners. The noise model used in this tool incorporates the effects of the bowtie filter, 
automatic exposure control, and electronic noise10. This tool has been validated and been used extensively in exam 
optimization studies27-28, and allows us to simulate reduced-dose scans without having to re-expose patients or address 
interscan variations. It can also allow the calculation of accurate noise distributions in image space and yield a noise map 
that shows the noise level at each pixel at very high resolution. However, this method requires access to the raw data and 
a large number of repeated noise simulations and reconstructions, which is time consuming and makes it difficult to meet 
the clinical workflow requirement. 

A more elegant approach is to derive the noise distribution analytically by propagating a noise model through the 
reconstruction equations. This has been implemented in simple fan-beam CT 29-30, where variance and covariance at each 
location of image space can be analytically derived, assuming a simple CT noise model. However, to analytically derive 
the noise formula in multi-slice helical CT, accurate knowledge of the image reconstruction process implemented in the 
scanner is required, which is currently not available. In addition, an accurate noise model is required for an analytical 
solution of the noise image. However, for the purpose of denoising using the NLM filter, an approximation of the noise 
map is sufficient, as noise in CT images varies smoothly in image space (Figure 2). Any noise map estimation must also 
be very fast (no more than a minute for an entire CT data volume) if it is to be implemented in the clinical workflow, and 
must be based on the CT image data alone. In this paper, we propose a simple technique, based on estimating noise in 
each 2D slice separately with a fan beam approximation, that does not require access to the raw data, is computationally 
efficient, and is easily parallelizable for speed. The basic process is described below: 

i. Calculate the linear attenuation coefficient from the CT image; 
ii. Generate CT sinogram data using a virtual CT geometry; 
iii. Estimate the noise distribution of the sinogram data, incorporating the effect of bowtie filter and automatic tube 

current modulation; 
iv. Apply the analytical formula to reconstruct the noise map in the final reconstructed images. 

Below we explain each step in more detail. 
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2.3 Calculation of linear attenuation coefficient 

Pixel intensities in CT images are designated in Hounsfield units (HU) which can be converted into the linear attenuation 
coefficient of corresponding tissues by the following equation: 
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CT Image Real noise map from100 CT scans  

 
Noise map from analytical estimation method Line profile comparison between noise maps  

 
Figure 2: CT image of a phantom (upper left image) and the image noise map determined from 100 repetitive scans of the same 
phantom from a CT scanner (upper right image) and noise map estimated by analytical noise propagation through the 
reconstruction algorithm (lower left image). The line profiles across the two noise maps show reasonable agreement (lower right 
plot, jagged line: real (from 100 actual CT scans); smooth curve: simulated (image data based)).  
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Here, μ refers to the linear attenuation of material with units of cm-1. 

2.4 Generation of CT sinogram 

In principle, this requires an accurate knowledge of the CT acquisition geometry. For simplicity, in our current 
implementation, we used a 2D fan-beam geometry, with fan-angle and focal length consistent with the clinical scanner. 
A standard ray-driven or distance-driven forward projection method can be employed to generate the CT sinogram. 

2.5 Noise modeling in sinogram data 

Although modern CT detectors are not photon-counting elements, but rather energy integrators that generate a signal 
proportional to the total energy deposited in the detector, a photon-counting model is still a good approximation of 
quantum noise and is widely used for characterizing noise properties of CT data. As explained by31, the bowtie filter may 
have a greater effect on the noise characteristics of CT data than the noise model itself. Therefore, for simplicity, we 
used a photon-counting model, and considered the effect of bowtie filter and tube current modulation.  

 

The effect of the bowtie filter can be characterized by measuring a map of noise-equivalent number of photons along the 
detector row from a set of air scans31 (Figure 3). The tube current modulation can be estimated based on the attenuation 
level along each projection angle and modulation strategy described in32. Therefore, the incident number of photons is a 
function of both detector bin index and projection angle. 

The incident X-ray photon number varies across the detector because of the effect of the bowtie filter. The detection of 
the number of transmitted X-ray photon follows a Poisson probability distribution and the variance of the detected X-ray 
photon is equal to its mean33. Therefore, once the X-ray source is determined and the incident X-ray photon number is 
known, a good estimation of noise variance in the projection space can be obtained by the multiplication of the incident 
X-ray photon number and the overall attenuation along the X-ray.  

In our simulation, the input X-ray photon map can be simulated by rebinning a fan-beam X-ray photon map into the 
corresponding parallel projection equivalent. The attenuation map can be obtained by converting the CT image into a 
linear attenuation coefficient map and taking a Radon transform. Since the Radon transform is the line integration along 
projection lines, normally the noise in the image data does not pose a big influence on the attenuation map. The product 
of the incident photon map and the integral attenuation map yields the transmitted photon map. The measured integral 
attenuation map can be calculated by taking the natural logarithm of the ratio between the incident and the transmitted 
photon numbers. Assuming a Poisson distribution, the variance of the measured integral attenuation map can be 
calculated by33. 

),(
1),(
θξ

θξ
N

Var = (3) 

 
Figure 3: Illustration of a bowtie filter in a CT scanner (left) and the distribution of the incident number of photons along one 
detector row (right). 
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Here, Var(ξ,θ) is the noise variance of the integral attenuation map at the ξth detector when the projection angle is θ. 
),( θξN  is the mean value of the detected photon numbers. 

2.6 Analytical calculation of noise in reconstructed images 

The derivation of an analytical formula of noise (variance and covariance) in reconstructed images requires an accurate 
knowledge of reconstruction algorithms, which typically involve a rebinning process to convert cone-beam data to quasi-
parallel-beam data and a weighted 3D filtered backprojection (FBP) process34. Due to the complicated numerical 
operations in the reconstruction process, an accurate derivation of noise in the final image may be difficult. For the 
purpose of image-based NLM denoising adaptive to local noise level, it may be suffice to assume a simple CT geometry 
and reconstruction process. Therefore, in our current implementation, we calculated the analytical noise map based on a 
simple 2D fan-beam geometry and a rebinning FBP reconstruction. For further simplification and efficiency, the 
correlation introduced in the rebinning step was also neglected. As will be demonstrated below, these simplifications still 
yield a reasonably accurate noise map estimate, yet can be implemented very efficiently, which is important for this 
technique to be clinically viable. 

Once the noise variance in the projection space is determined, the noise distribution of each pixel in the CT image can be 
obtained by analytically propagating the noise variance through the reconstruction algorithms. The detailed theoretical 
description of the parallel-beam filtered backprojection reconstruction can be found in35 and the object function or the 
reconstructed image, f(x,y), can be expressed as 

∫ +=
π
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where Qθ is called a “filtered projection” and can be written as 
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and h(ξ) represents the spatial version of the ramp or Ram-Lak filter, |v|, and can be expressed as 
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Here, Δξ  is the sampling interval and is equal to the interval between adjacent detectors.  Practically, imaging is 
performed with only a finite set of view angles. Discrete analogs of (2) and (3) can be described as 
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 (8) 
Here, ]1,0[),,( ∈nyx θη defines the linear interpolation weight between adjacent detectors. pN  angles, ],0[ πθ ∈n , are 
projection angles with known projections. 

The above filtered backprojection reconstruction process can be divided into three steps: filtering, interpolation and 
backprojection. All three processes can be treated as linear processes and the noise variance can be expressed as 
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After ramp filtering, the noise levels in the filtered projections can be written as 
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After filtering, the projection data are interpolated and backprojected into image space and the noise variance can be 
expressed as 
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Figure 4.  A section of an original half-dose abdominal CT scan (top left), denoised with the noise map technique (top right), 
and denoised with standard NLM with low strength (bottom left) and high strength (bottom right). The noise map and NLM at 
low strength give effective denoising, but NLM with high strength shows blurring of intestinal features (white arrows). The 
standard deviations within the ROI are 28.3, 10.6, 11.7, and 5.8 HU.

where the covariance between the adjacent detectors can be estimated by 
∑ Δ+=Δ+
ξ
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Finally, the noise covariance in the CT image can be obtained after a Hounsfield-scaling by the following equation 
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and the noise standard deviation in the CT image can be calculated by 

)),(()),(( yxfVaryxf =σ  (14) 
 

3. RESULTS 
The estimated noise map based on the 2D Radon transform of the CT image data is shown and compared with the results 
obtained from the real noise map from 100 repetitive scan on the same object in Fig. 2. As demonstrated, simply 
performing a 2D Radon transform on individual slices of the image (ignoring the true 3D cone-beam nature of the 
acquisition), determining the noise variance in the sinogram based on photon statistics that incorporate some of the 
important physical effects (in particular, the bowtie filter and automatic tube current modulation), and finally analytically 
propagating the noise through the reconstruction algorithm, can lead to a sufficiently close approximation to the true 
noise map (the black curves at the edge of the body and streaks outside the body are artifacts of the clipping of values 
below -1024 HU in the scanner reconstruction and are not relevant). Similar agreement is found in comparisons with 
obtained with the intensive noise insertion procedure described above. Currently, for a 40 cm (75 slices) CT abdomen 
and pelvis scan, our single threaded Matlab implementation can estimate a noise map in ~45 minutes on a dual quad-core 
(3.0GHz Intel® Xeon® E5472 Processors) Linux server with 32 GB shared memory.  Noting the highly parallelizable 
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Figure 5.  A different section of the same slice of the original half-dose abdominal CT scan from fig. 4 (top left), denoised with 
the noise map technique (top right), and denoised with standard NLM with low strength (bottom left) and high strength (bottom 
right). The noise map and NLM at high strength give effective denoising, but NLM with low strength gives less effective 
denoising. The standard deviations within the ROI are 48.3, 16.8, 29.4, and 16.2 HU.

nature of the 2D Radon transform, we anticipate that a future parallelized C implementation of this code will be 
substantially more efficient. Additionally, the current settings used in the simulation are 720 projections and 729 detector 
bins. Since the underlying noise map varies smoothly, the number of projections and detector bins can also be 
substantially reduced without compromising precision (data not shown here). Therefore, the ability to calculate an 
approximate noise map and perform noise-adaptive denoising in times that do not impact the clinical workflow appears 
to be feasible.  Figures 4 and 5 show that the modified NLM denoising based on the local noise map is effective in two 
different areas of the same slice which have markedly different noise levels, whereas in fig. 4 denoising based on a fixed 
low strength is effective but denoising at a fixed high strength blurs intestinal features, while in fig. 5 denoising based on 
the fixed low strength is less effective than it could be while denoising based on the fixed high strength is effective. This 
continues to hold true throughout a CT volume and across patients. 

4. CONCLUSIONS 
We have proposed a novel approach to practically and efficiently estimate a local noise map from a CT image and 
shown that it agrees well with the result from multiple scans of the same object on a CT scanner. We have also modified 
the NLM algorithm to adaptively denoise CT images based a local noise level map with only marginal additional 
computational cost. The adaptive NLM filter based on the estimated noise map significantly improves both inter- and 
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intra-slice (and inter-patient) denoising performance. A complete evaluation of the denoising performance after 
incorporating the noise map is currently under way. 
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