
Elastic Registration based on Matrix-Valued Spline Functions
and Direct Integration of Landmarks and Intensities

Stefan Wörz, Andreas Biesdorf, and Karl Rohr

University of Heidelberg, BIOQUANT, IPMB, and DKFZ Heidelberg, Germany
Dept. Bioinformatics and Functional Genomics, Biomedical Computer Vision Group,

Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
E-mail: s.woerz@dkfz.de

ABSTRACT

We introduce a new approach for spline-based elastic registration using both point landmarks and intensity
information. With this approach, both types of information and a regularization based on the Navier equation
are directly integrated in a single energy minimizing functional. For this functional, we have derived an analytic
solution, which is based on matrix-valued non-radial basis functions. Our approach can cope with monomodal
and multimodal images. For the latter case, we have integrated a computationally efficient analytic similarity
measure. We have successfully applied our approach to synthetic images, phantom images, and MR images of
the human brain.
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1. INTRODUCTION

Monomodal and multimodal registration of 2D and 3D images is an important task in medical image analysis,
where generally nonrigid or elastic schemes are required. Often, spline-based approaches have been used for
elastic registration, which can be subdivided into schemes based on a uniform grid of control points (e.g., using
B-splines,1–3), and schemes based on a nonuniform grid of control points (e.g.,4–9). The latter type of approaches
generally requires a smaller number of control points (landmarks). Examples of such approaches are based on
thin-plate splines (TPS, e.g.,5–7), elastic body splines (EBS, e.g.,4), and Gaussian elastic body splines (GEBS,
e.g.,8, 9). TPS are based on the bending energy of a thin plate and thus represent a relatively coarse deformation
model for biological tissues. In contrast, EBS and GEBS are derived from the Navier equation, which describes
the deformation of elastic tissues (bodies). GEBS in comparison to EBS have the advantage that more realistic
forces are used. Registration approaches are typically based on either landmarks or intensity information. Main
advantages of landmark-based approaches are computational efficiency and the ability to cope with large geometric
differences as well as the relatively easy and intuitive incorporation of user-interaction. In comparison, main
advantages of intensity-based approaches are that all image information is exploited and that no segmentation is
necessary. For the latter type of approaches, it is important to distinguish between monomodal and multimodal
registration problems. For monomodal registration, often the sum-of-squared intensity differences (SSD) is
used. Registration of images of different modalities, however, requires multimodal similarity measures such as
mutual information (MI). In general, measures for MI are computationally expensive because they require the
estimation of probability density functions based on joint histograms (e.g.,1). In recent years, hybrid approaches
that combine landmark- and intensity-based methods have gained increased attention (e.g.,2, 3, 6, 10, 11). However,
so far only few spline-based hybrid registration approaches exist. Typically, the intensity information is only used
to determine optimal landmark positions or to establish landmark correspondences (e.g.,3), i.e., the landmark
and intensity information is not directly combined. In addition, often a physical deformation model is not used
(e.g.,2, 3).

In this contribution, we introduce a new approach for spline-based elastic registration using both point
landmarks and intensity information. Compared to previous spline-based hybrid registration approaches, we
directly integrate the landmark and intensity information in a single energy functional as well as include a
regularization using matrix-valued physically-based basis functions. Note that in contrast to,12, 13 we directly
incorporate the landmark correspondences without requiring an additional deformation field for the landmarks.
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An advantage is that the intensity and landmark information can be weighted w.r.t. each other more directly
and thus the weighting is easier to control. The approach is formulated as an energy functional, for which we
show that an analytic solution can be derived via the convolution theorem. In addition to using the SSD for the
monomodal case, we incorporate a multimodal intensity similarity measure. This similarity measure is based on
a local analytic formulation for MI, which is computationally efficient since it does not require the estimation of
probability density functions and joint histograms.

2. INTERPOLATING AND APPROXIMATING GEBS

In our approach, we use Gaussian elastic body splines (GEBS) as underlying deformation model. Below, we
briefly review the interpolating and approximating landmark-based approaches.

2.1 Interpolating GEBS

Interpolating GEBS are based on the Navier equation of linear elasticity (e.g.,14)

μΔu+ (λ+ μ)∇ (divu) + f = 0 (1)

with the displacement vector field u, body forces f , and the Lamé constants μ, λ > 0 describing material prop-

erties. Given Gaussian forces fσ(x) = c fσ(r) = c (
√
2πσ)−3 exp(− r2

2σ2 ) with x = (x, y, z)
T
, r =

√
x2 + y2 + z2,

and the standard deviation σ, an analytic solution of the Navier equation can be derived, which is based on a
matrix-valued basis function Gσ (a 3×3 matrix).8 Using the interpolation condition qi = u(pi), where pi and qi

(i = 1, . . . , n) denote the n landmark positions of the source and target image, respectively, the transformation
is given by u(x) = x +

∑n
i=1 Gσ(x− pi) ci. The coefficients ci represent the strength and direction of the

Gaussian forces and are computed using a linear system of equations (LSE) such that the interpolation condition
is fulfilled for all landmarks.

2.2 Approximating GEBS

In comparison, approximating GEBS are based on the condition qi≈u(pi) and incorporate covariance matrices
Σi defining anisotropic landmark localization uncertainties. The energy-minimizing functional consists of an
elastic term JElastic representing the elastic energy according to the Navier equation as well as a quadratic
data term JData,L which incorporates the landmark errors. The corresponding Lagrange function LData,L with
JData,L=

∫
LData,L dx is given by

LData,L = (nλA)
−1

∑n

i=1
fσ(x− pi) (qi − u(x))

T
Σ−1

i (qi − u(x)) (2)

where λA > 0 denotes the regularization parameter. The solution to the corresponding PDE can be derived
analytically and is based on the same basis function Gσ as in the case of interpolation.9

3. HYBRID ELASTIC REGISTRATION USING SPLINE FUNCTIONS

In the following, we introduce a hybrid approach for the registration of monomodal and multimodal images, where
both landmark and intensity information is incorporated and GEBS are used as deformation model. To compute
the deformation field u for registering a source image g1 with a target image g2, we propose the functional

JHybrid(u) = λE JElastic(u) + JData,I

(
g1, g2,u

I
)
+ λIJI

(
u,uI

)
+ JData,L((pi,qi) ,u) . (3)

The functional has been formulated in a way such that the minimization w.r.t. the searched deformation field u
can be obtained in analytic form. The functional also comprises a deformation field uI that is computed based
on the intensity information. The first term JElastic represents the regularization of u, and is given by the
elastic energy according to the Navier equation. In addition, the functional comprises terms for the intensity
information and the landmark information, which are described below.
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3.1 Intensity Information

The second term JData,I of (3) represents an intensity similarity measure between the deformed source and target
image with deformation uI . The third term JI couples uI with u using a weighted Euclidean distance. Based
on the considered application, different intensity similarity measures can be used. For monomodal images we
use the sum-of-squared intensity differences (SSD)

JData,I,SSD

(
g1, g2,u

I
)
=

∫ (
g1
(
x+ uI(x)

)− g2(x)
)2

dx. (4)

For multimodal images we use mutual information (MI). The idea is to evaluate the intensity information locally
based on an analytic measure for MI.15 The measure is computationally efficient since it does not require the
estimation of probability density functions and joint histograms. The measure was theoretically derived based
on the Taylor approximation of the intensities and considering them as samples of a random distribution. A
similar measure was previously used in16, 17 while the relation to MI was not known. In contrast to,15–17 where
the measure is optimized globally, in our approach we perform a local optimization. Based on a local image
approximation, the mutual information at a single voxel x can be formulated as

MI(g1(x) , g2(x)) = c− log2(| sin θ|) (5)

where θ denotes the angle between the gradients ∇g1 and ∇g2 of the source and target image, respectively. c is
a constant which is not relevant for minimization. The corresponding functional of the local MI measure can be
formulated as

JData,I,MI

(
g1, g2,u

I
)
=

∫
MI

(
g1
(
x+ uI

)
, g2(x)

)
dx. (6)

3.2 Landmark Information

The fourth term JData,L of (3) describes the landmark information based on n landmark correspondences (pi,qi).
To incorporate anisotropic localization uncertainties we employ approximating GEBS (see Sect. 2.2 above).
The idea is to use the approximating functional JData,L =

∫
LData,L dx defined by the Lagrange function

LData,L in (2). Therefore, we here directly incorporate the landmark correspondences (pi,qi). In contrast, in
the approach in12, 13 a third deformation field uL is required for the landmark information analogously to the
intensity information using uI . An advantage of the previous approach is that the mathematical derivation
and implementation of the minimization scheme is easier. However, a main drawback is that the additional
deformation field uL has a strong global influence since it is computed for the whole image (i.e., also for regions
without landmarks) which results in a compromise between uI and uL. In contrast, with the new approach the
landmark information is directly exploited in the vicinity of the landmarks. Thus, the intensity and landmark
information can be weighted more directly w.r.t. each other and the weighting is easier to control.

3.3 Minimization Strategy

An efficient way of minimizing JHybrid in (3) is to minimize it alternatingly w.r.t. uI and u until convergence
of u is achieved. To initialize u, we use a deformation field computed from the landmark correspondences using
approximating GEBS. For the minimization w.r.t. uI , the following functional is relevant:

JData,I

(
g1, g2,u

I
)
+ λIJI

(
u,uI

) → min. (7)

For the intensity similarity measures JData,I , i.e., sum-of-squared intensity differences (SSD) and mutual infor-
mation (MI), we use Levenberg/Marquardt and gradient descent minimization, respectively.

For the minimization w.r.t. u, the following functional has to be considered

λE JElastic(u) + λIJI
(
u,uI

)
+ JData,L((pi,qi) ,u) → min. (8)

The corresponding PDE can be derived as (using εI = 2λI/λE)

0 = μΔu+ (λ+ μ)∇ (divu) + εI

∫
fσI (x− ξ)

(
uI(ξ)− u(x)

)
dξ + 2λA

∑n

i=1
fσ(x− pi)Σ

−1
i (qi − u(x)) . (9)

Proc. of SPIE Vol. 8314  83141B-3



Unregistered Landmarks Intensities Previous hybrid New hybrid
Figure 1. Multimodal registration of 3D synthetic images of a sphere with a cube.

Interestingly, (9) can be solved analytically by employing the convolution theorem and the Fourier transform.
An explicit solution using matrix-vector convolutions as well as the intensity-based deformation field uI and the
matrix-valued GEBS basis function Gσ is given by

u(x) = x+ΦI(x) ∗
(
uI(x)− x

)
+ΦL(x) ∗

∑n

i=1
Gσ(x− pi) ci (10)

where “∗” denotes the convolution. The matrix-valued functions ΦI and ΦL are defined by matrix-matrix
convolutions (using the Dirac delta function δ and the identity matrix I)

ΦI(x) = GσI (x) ∗ΩI(x) and ΦL(x) = δ(x) I−GσI (x) ∗ΩL(x) (11)

with matrix-valued functions ΩI and ΩL, which are defined in the Fourier domain. Since here we directly
incorporate the landmarks in JHybrid, the analytic solution (10), (11) is very different and more complex compared
to the solution in12, 13 where a third (auxiliary) deformation field for the landmarks is required. Note that a
special case of the new hybrid scheme is obtained by omitting the landmark information JData,L from (3) and
in subsequent equations, which results in a pure intensity-based elastic registration scheme.

4. RESULTS

We have applied our approach to 3D synthetic and 3D phantom images, and 2D MR images of the human brain.

4.1 3D Synthetic Multimodal Images

We have applied the approach to different 3D synthetic images. Fig. 1 (left), for example, shows the case of
a sphere (source image) and a cube (target image) as an overlay image. Note that the images have inverted
contrast to simulate a multimodal registration problem. Thus, a registration scheme using SSD would fail. Eight
landmarks were defined at the corners of the cube, and the registration is computed based on mutual information.
The other images in Fig. 1 show the results for landmark-based and intensity-based registration as well as for
hybrid registration using a previous approach12, 13 and the new approach. It turns out that for landmark-based
registration only the corners of the cube are aligned. Using the intensity-based approach, the faces of the sphere
are aligned, but not the corners. With the previous approach, the result is improved compared to the landmark-
and intensity-based approaches, however, the corners are not well aligned. The best result is obtained using the
new approach, since both the faces and the corners are much better aligned.

To quantify the registration results, we have computed the volume and overlap of the registered sphere with
the cube for all considered approaches. For the landmark-based, the intensity-based, and the previous approach,
the volume of the deformed sphere is improved to about 83% of the volume of the cube with an overlap of about
77%. In comparison, using the new approach the result is significantly better, i.e., the volume is improved to
about 100% and the overlap is 95.7%.
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Figure 2. 3D registration of a PD image with a MRI-T1 image using mutual information: Target image (MRI-T1) with
known deformation (top) as well as an overlay (bottom) of the registered source image with computed edges of the target
image (red) in three orthogonal sections.

4.2 3D MR Phantom Images – Ground Truth Deformation

To further evaluate the registration accuracy, we have used multimodal phantom images (MRI-T1, MRI-T2, and
proton density (PD)) from the BrainWeb database .18 In this experiment, we have generated different ground
truth deformation fields uorig using Wendland splines.19 For example, Fig. 2 (top) shows three orthogonal
sections of a T1 weighted 3D MRI data set with significant deformations (target image). As source images,
we have used the undeformed MRI-T1 image as well as a MRI-T2 image and a PD image. After registration,
we compared the computed deformation u with the original deformation uorig and quantified the registration

accuracy by the mean geometric error egeom = ‖uorig − u‖. For the PD image, Fig. 2 (bottom) shows an overlay
of the registered source image with computed edges of the target image (red) using mutual information. It can be
seen that the image has been well registered. The mean geometric error of the unregistered case is egeom = 3.50
voxels. After registration, the error is reduced to egeom = 1.78, egeom = 2.04, and egeom = 2.05 voxels for the
modalities MRI-T1, MRI-T2, and PD, respectively. Thus, in all three cases, the geometric error was reduced by
more than 40%.

4.3 2D MR Images – Tumor Resection

In this application, the task is to register pre- and postsurgical MR images of the human brain. Fig. 3 shows
2D MR images of a patient before (source image, left) and after (target image, right) the resection of a tumor.
Landmarks have been placed manually along the contours of the tumor and the resection area (indicated by
crosses). Furthermore, in Fig. 4 a region-of-interest of the registration results are shown as (inverse) deformation
grids using a landmark-based (a), an intensity-based (b), a previous hybrid12, 13 (c), and the new hybrid approach
(d). Using only landmarks (a), the vicinity of the tumor and resection area are well registered, whereas regions
without landmarks are not deformed. In contrast, using only intensity information (b) yields deformations in
different parts of the head, however, the tumor has not been well registered. Applying the new hybrid approach
the result is significantly improved compared to both approaches since the tumor and resection area are well
registered, and, in addition, other parts of the head (d). For the previous hybrid approach (c), the vicinity of
the tumor and resection area is not very well aligned, i.e., the information from the landmarks is only partially
used.

Moreover, for the ROI we quantitatively determined how well the results of the intensity-based and hybrid
approaches agree with landmark-based registration. The latter result can be assumed to be very well in this
region since a relatively large number of landmarks (17) from a medical expert were used. We have computed
the mean egeom and maximal geometric error egeom,max w.r.t. the landmark-based registration result. Using only
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Figure 3. Pre- (left) and postsurgical 2D MR brain image (right) with labeled landmarks.

(a) (b) (c) (d)

Figure 4. ROI of (inverse) deformation grids using a landmark-based (a), an intensity-based (b), a previous hybrid12, 13 (c),
and the new hybrid approach (d).

intensity information, we obtained relatively large errors of egeom = 4.52 voxels and egeom,max = 19.65 voxels.
Note that in the ROI, landmark-based registration yields a maximal deformation of 21.00 voxels. Using the
previous hybrid approach, the results improved to egeom = 1.94 voxels and egeom,max = 10.09 voxels. However,
the best result is obtained for the new hybrid approach with egeom = 1.43 voxels and egeom,max = 5.67 voxels.

5. CONCLUSIONS

We have introduced a spline-based registration approach which directly integrates both landmark and intensity
information. The approach is based on a physical deformation model represented by matrix-valued basis functions
and is formulated as an energy minimizing functional. For this functional, we have derived an efficient analytic
solution. Also, we have incorporated a computationally efficient multimodal intensity similarity measure, which
is based on a local analytic measure for mutual information. We have demonstrated the applicability of the
approach based on synthetic images, phantom images, and MR brain images. It turned out that the hybrid
approach improves the registration result compared to pure landmark-based and intensity-based schemes as well
as a previous hybrid scheme.
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