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ABSTRACT 
 

The early detection of bone metastases is important for determining the prognosis and treatment 
of a patient. We developed a CAD system which detects sclerotic bone metastases in the spine on 
CT images. After the spine is segmented from the image, a watershed algorithm detects lesion 
candidates. The over-segmentation problem of the watershed algorithm is addressed by the novel 
incorporation of a graph-cuts driven merger. 30 quantitative features for each detection are 
computed to train a support vector machine (SVM) classifier. The classifier was trained on 12 
clinical cases and tested on 10 independent clinical cases. Ground truth lesions were manually 
segmented by an expert. The system prior to classification detected 87% (72/83) of the manually 
segmented lesions with volume greater than 300 mm3. On the independent test set, the sensitivity 
was 71.2% (95% confidence interval (63.1%, 77.3%)) with 8.8 false positives per case.  
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1. INTRODUCTION 
 
Bone metastases are significantly associated with cancer, with occurrence in up to 70% of people 
afflicted with advanced prostate and breast cancer. Approximately 350,000 people in the United 
States die with bone metastases each year [1]. The tumor burden at the time of death in patients 
with advanced breast or prostate cancer is likely to be mostly in bone for reasons including the 
high blood flow in red marrow regions, the angiogenic and bone-resorbing factors produced by 
tumor cells when they bind to stromal cells in the marrow and to the bone matrix, and 
immobilized growth factors in the bone that help the tumor cells grow [1]. The morbidity is often 
debilitating: bone metastases can result in severe bone pain, pathological fractures often in load-
bearing bones, and spinal cord and other nerve compression [1]. Moreover, no more than 20% of 
breast cancer patients survive more than five years after the initial discovery of the metastasis [1]. 
Thus the early detection of bone metastases has significant clinical importance. For example in 
the case of prostate cancer, the prognosis and treatment regime for the patient changes from 
curative to palliative when prostate tumor cells are discovered in the skeleton [1]. The spine is an 
essential support structure for the upper body and plays an indispensable part in protecting the 
spinal cord. Therefore we begin our study of bone metastases with the spine. 
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The broadest classification of bone metastases based on the radiographic and tomographic 
appearance consists of osteolytic (also known as lytic) and osteoblastic (also known as sclerotic) 
metastases [2]. Osteolytic metastases are characterized by decreased bone density due to the 
destruction of bone tissue, whereas sclerotic metastases consist of hyperdense bone regions [1]. 
Generally, a cancer patient with osseous metastatic disease may present with either type of lesion, 
and the metastases can be predominantly lytic or predominantly sclerotic depending on the type 
of cancer. For example, metastases caused by breast cancer are usually lytic, whereas metastases 
caused by prostate cancer are usually sclerotic [1]. Sclerotic lesions are believed to be caused by 
the production of growth factors that encourage osteoblast proliferation, differentiation, and bone 
formation [1].  A similar study to this one, which presents a CAD system for detecting lytic bone 
lesions in the spine, has been previously conducted [2]. Our purpose is to expand upon this study 
by developing CAD software for the detection of sclerotic osseous metastases in the spine, as an 
initial foray into a broader study of computational analysis of neoplastic and traumatic bone 
lesions. This investigation is focusing on sclerotic metastases in spine. Examples of sclerotic 
metastases are shown in Figure 1. 

 
The paper is organized as follows. Section 2 describes the method. Section 3 presents the data and 
results. Section 4 concludes the paper with some discussions. 

 
2 METHODS 

 
2.1 Method overview 
 
The flow chart of our system is shown in Figure 2. Our approach consists of three stages: 1) 
preprocessing; 2) lesion detection; and 3) classification. The processing stage segments and 
partitions the spine and limits the search region for further detection. The detection stage detects 
and segments potential lesions. At the end, quantitative features are computed for detections and 
sent to a classifier to determine whether they are true or false lesions. The classifier is generated 
using manually labeled data as ground truth. 
 
2.2 Preprocessing 
 
In the preprocessing stage, the spine is segmented via thresholding and region growing. The 
spinal canal is extracted using a directed graph search. The vertebral borders are further refined 

Figure 1. Examples of sclerotic metastases in spine from three different patients 
Red dots indicate the center of a lesion. The first two are on thoracic spine, and third one is 
on lumbar spine. 
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using a vertebra template. Based on the segmentation result, the spine is then divided into 
different regions: vertebral body, transverse process, spinous process, spinal canal and 
intervertebral disk. The detail of the spine segmentation algorithm can be found in [3]. Figure 3 
shows the results of spine segmentation.  
 

 

 

Spine segmentation and partitioning 

Initial lesion detection 

Detection merging 

Detection segmentation 

Feature extraction 

Classification 

Preprocessing 

Lesion detection 

Classification 

Figure 2. Flow chart 

Figure 3. Spine segmentation 
Red: spine region, blue: spinal canal.  
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2.3 Lesion Detection 
 
After the pre-processing stage, we locate potential sclerotic bone metastases in three steps. First a 
watershed algorithm is applied to extract candidates, followed by a merging routine based on 
graph cut to avoid oversegmentation. The resulting 2-D candidates are then merged into 3-D 
candidate detections. For each 3-D candidate, a set of features is computed, and resulting size 
measurements are passed through a detection filter. The candidates which successfully pass 
through the detection filter are then sent to the next stage. 
 
The watershed algorithm [4] views the gradient of the image intensity as a topographic surface in 
order to extract relatively homogeneous regions of the image called catchment basins, some of 
which will be candidates for sclerotic lesions. Example results of the watershed algorithm are 
shown in Figure 4.  
 

 
 
We then address the over-segmentation problem in watershed with a post-watershed merging 
routine using a graph-cuts strategy [5]. We first initialize each watershed region with a 
foreground (F) or background (B) label. There are two types of foreground regions: those in the 
cortical bone region and those in the medullary regions. Any region that has intensity 100 HU 
higher than its surrounding regions (cortical or medullary) will be initialized as F. The rest of the 
regions are initialized as B.  The regions and their neighbors are fed into a graph-cuts merging 
routine. 
 
An adjacency graph for watershed regions is constructed by representing adjacent regions as 
nodes connected by edges [6]. The technique partitions the set of nodes into two disjoint sets F 
and B in a manner that minimizes an energy function,   
                    ∑ ∑

∈ ∈

+=
Nqp Pp

LpLqLp pDqpVLE
},{

, )(),()(                                            (1) 

where P is the set of watershed regions, N is the set of pairs of adjacent regions, L is a labeling of 
all the regions where a given region p can have the label Lp=F or Lp=B, V is a smoothness term 
that penalizes regions with similar densities having different labels, and D is a data term that 
penalizes a region with low density marked as foreground, or a region with high density marked 

Figure 4. Watershed and graph cut algorithm. Left: Sclerotic lesion. Top arrow: The 
watershed regions are too differentiated, so the entire lesion is not found. Left: watershed 
segmentation with no merging; Right: detections with no merging. Bottom arrow: The entire 
lesion is found after graph cut merging. Left: watershed segmentation after merging; Right: 
detections after merging. There are two lesions in the vertebra, both are detected. 

Proc. of SPIE Vol. 8315  831512-4



 

 

as background. Thus the technique will merge higher-density regions into the foreground, and 
lower-density regions into the background. In this case, 
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where KF=100, KB=1 in our setting, I(p) is the mean intensity of region p, and mB  and mF  are the 
means of the background and foreground respectively. As for the smoothness term, we chose 
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where  Ks = (δF+ δB)/2 , δF and δB are the standard deviation of the foreground and background 
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The smoothness and data penalty functions provide edge weights w(i,j) for a graph G consisting 
of the adjacency graph of the watershed regions and two additional nodes f and b which both have 
edges connecting them to every region node: 
             w(f, q) = DF(q);   w(p, b)  =  DB(p);   w(p,q) = VLp,Lq(p, q)                        (4) 
A graph cut {F, B} is a partition of the set of nodes such that Ff ∈ and Bb∈ , and the value of 
the cut is  
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A minimal graph cut of G is equivalent to a labeling that minimizes Eq. (1). Such a cut is 
computed according to a max-flow algorithm referenced in which generates a local minimum 
within a known factor of the global minimum. The resulting partition {F, B} yields an optimized 
way of merging watershed regions in which regions corresponding to nodes in F and B are 
labeled as F and B respectively. Fig. 1 demonstrates the effect of this merger. Each merged F 
region is then regarded as one potential detection. 
 
2.4 Feature Extraction and Classification 
 
Next, a set of 30 quantitative features based on shape, intensity, and location is computed. 
Example features include volume, mean intensity, and sphericity. Table 1 lists all the features. 
The features are sent to a support vector machine (SVM) classifier for classification [7]. 
 
Table 1. Quantitative features 

Shape Density Location 
surfaceArea 

volume 
primaryAxisLength 

secondaryAxisLength 
aspectRatio10 
aspectRatio20 
aspectRatio21 

spherecity 
shapeComplexity_f1 
shapeComplexity_f2 

shapeComplexity_f21 

meanIntensity 
stdevIntensity 

skewnessIntensity 
kurtosisIntensity 
interiorIntensity 
borderIntensity 
outsideIntensity 

outsideIntensityDev 
innerOuterContrast 
neighborIntensity 

 

distToBoundary 
relCoordx 
relCoordy 
onPedicle 

bbPart 
outerBorderRatio 
bboxBorderRatio 

corticalBorderRatio 
cordBorderRatio 
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3 RESULTS 

 
A series of CT scans from 22 patients with studies demonstrating sclerotic metastatic disease in 
the spine was gathered. There were 18 patients (82%) with prostate cancer, two patients (9%) 
with lung cancer, and two patients (9%) with breast cancer. The cases were obtained from an 
electronic medical record search of the NIH Clinical Center in the period July 2009-2010. The 
patient age ranged from 50-75 years, with an average of 64.6 years. The slice thickness was 5mm. 
12 cases were used for training and 10 for testing. All but two of the test cases, used for controls, 
demonstrated at least one sclerotic lesion in the spine.  
 
The lesions were identified, marked and manually segmented by an expert radiologist. The 
training set has 216 lesions, 180 of them greater than 300 mm3. The test set has 117 lesions, 83 of 
them greater than 300 mm3. 
 
The pre-classifier program detected 72/83 ground truth lesions with volume greater than 300 mm3 
in the test set. The overall system performance is 71.2% sensitivity with a 95% confidence 
interval of (0.631, 0.773), at an average of 8.8 false positives per patient. The area under the 
curve (AUC) is 0.814, with a 95% confidence interval of (0.787, 0.833).  Figure 5 shows the 
results and typical examples of false positives. Figure 6 shows the FROC curve. 

 

Figure 5. Performance of our CAD system. a) 3D rendering of detection results. Left: pre-
SVM, right: post-SVM. Red: true positives, blue: false positives as determined by SVM. b) 
Detections at three stages of the program: initial, pre-SVM, post-SVM. Gray arrows: false 
positive discarded by SVM, blue arrows: false positive excluded by feature filters. c) Two 
types of false positives. Orange arrows: degenerative change, red arrows: endplate. d) 
Quantitative results for training (right) and testing data (left). The results are shown as 
sensitivity (false positive rate). GT = ground truth.  
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4 CONCLUSIONS 
 
We developed a CAD system which detects sclerotic bone metastases in the spine on CT images. 
The CAD system shows promising results. Our CAD system includes the incorporation of a novel 
graph cuts region merging algorithm and a three-dimensional lesion feature computation function. 
The graph cuts algorithm takes into account the global information of each vertebral body to 
optimize image segment labeling. 
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