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ABSTRACT

We present a method using statistical measures of the orientation of texture to characterize and detect archi-
tectural distortion in prior mammograms of interval-cancer cases. Based on the orientation field, obtained by
the application of a bank of Gabor filters to mammographic images, two types of co-occurrence matrices were
derived to estimate the joint occurrence of the angles of oriented structures. For each of the matrices, Haralick’s
14 texture features were computed. From a total of 106 prior mammograms of 56 interval-cancer cases and
52 mammograms of 13 normal cases, 4,224 regions of interest (ROIs) were automatically obtained by applying
Gabor filters and phase portrait analysis. For each ROI, statistical features were computed using the angle
co-occurrence matrices. The performance of the features in the detection of architectural distortion was ana-
lyzed and compared with that of Haralick’s features computed using the gray-level co-occurrence matrices of
the ROIs. Using logistic regression for feature selection, an artificial neural network for classification, and the
leave-one-image-out approach for cross-validation, the best result achieved was 0.77 in terms of the area under
the receiver operating characteristic (ROC) curve. Analysis of the free-response ROC curve yielded a sensitivity
of 80% at 5.4 false positives per image.

Keywords: Architectural distortion, angle co-occurrence matrix, breast cancer, computer-aided diagnosis, fea-
ture extraction, Haralick’s texture features, mammography, prior mammograms.

1. INTRODUCTION

Architectural distortion is the third most common finding of nonpalpable breast cancer in mammographic im-
ages.1 This sign of cancer comprises distortion of the normal architecture of the breast with no definite mass
visible; the associated patterns include spiculations radiating from a point or focal retraction at the edge of the
breast parenchyma.2 Due to its subtle nature and variability in appearance, architectural distortion is often
missed in mammographic screening for breast cancer.1 Various computer-aided diagnosis (CAD) systems and
effective techniques are available to detect the commonly observed signs of breast cancer, such as masses and
calcifications,3,4 but efficient techniques for the detection of architectural distortion are not yet available.5,6

Karssemeijer and te Brake7 proposed a multiscale-based method for the detection of stellate patterns related
to masses and architectural distortion, and achieved a sensitivity of about 90% at one false positive (FP) per
image with 50 mammographic images from the MIAS database.8 Ayres and Rangayyan9 proposed a method
based on Gabor filters and phase portraits to detect architectural distortion. Rates of sensitivity of 84% at 4.5
FP/image and 81% at 10 FP/image were obtained with two different datasets. Jasionowska et al.10 applied
Gabor filters and the two-dimensional Fourier transform in polar coordinates to detect architectural distortion.

The techniques mentioned above were applied to mammograms on which cancer was detected by radiologists
(known as diagnostic or detection mammograms). However, for the detection of breast cancer, simultaneous
analysis of the current and prior mammograms is often recommended.11,12 It has been observed that prior
mammograms (images obtained in a screening program before the detection of breast cancer) could often provide
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information that could assist in the detection of subtle signs of abnormalities in cases of screen-detected13 or
interval cancer.14–17 Only a few studies have been reported on the analysis of prior mammograms. Banik et
al.16 proposed methods based on Gabor filters, phase portraits, fractal dimension, and angular spreads of power,
Gabor magnitude response, Gabor filter angle, coherence, and orientation strength.17,18 A sensitivity of 80%
with 5.8 FP/image was achieved with a dataset of 106 prior and 52 normal mammographic images.16

The aim of the present study is to develop a CAD technique for the detection of architectural distortion in
prior mammograms of interval-cancer cases with high sensitivity and low FP rates. A bank of Gabor filters and
phase portrait analysis were used for the detection of suspicious regions with architectural distortion.17,18 The
main contribution of the present work is the derivation of statistical features based on the co-occurrence matrices
of the angle of oriented patterns in the suspicious regions. The features are shown to provide good discrimination
between FP regions and true-positive (TP) regions, and assist in the detection of architectural distortion.

2. MATERIALS AND METHODS

2.1 Detection of potential sites of architectural distortion

The procedure for the detection of potential or suspicious sites of architectural distortion includes the following
steps:16 segmentation of the breast region using Otsu’s thresholding method, extraction of the orientation
field using Gabor filters, selection of curvilinear structures, filtering and down-sampling of the orientation field,
modeling of phase portraits, and detection of potential sites of architectural distortion. The node map obtained
from phase portrait analysis is used to detect peaks related to potential sites of architectural distortion. The
results of these steps are illustrated in Figures 1 and 2. However, the procedure results in a number of FP sites
that need to be eliminated by further processing.

(a) (b) (c)

Figure 1. (a) The prior mammogram of an interval-cancer case. The rectangular box (40.1 mm×25.7 mm) represents the
area of architectural distortion drawn by the radiologist. (b) Magnitude response obtained by using 180 real Gabor filters.
(c) Orientation field angle superimposed on the mammogram; needles are drawn for every 20th pixel.

2.2 Experimental setup

Experiments were conducted on 158 mammographic images obtained from Screen Test: Alberta Program for
the Early Detection of Breast Cancer.19,20 The dataset contains 106 prior mammographic images of 56 interval-
cancer cases and 52 images of 13 normal cases. The images were digitized at 50 μm/pixel and 12 bits/pixel, but
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Figure 2. (a) The node map for the mammogram shown in Figure 1. Asterisk marks (*) represent the peak positions
detected automatically in the node map. The numbers next to the asterisks correspond to the peaks in descending order
of magnitude. (b) The 30 ROIs, each of size 128×128-pixel (except at the edges), obtained by using the peaks detected in
the node map. (c) ROIs after FP reduction by using the ANN classifier and selected features with the leave-one-image-out
method. Only the top six ROIs are shown in the image at the associated sensitivity of 80% obtained with 5.5 FP/image.
The numbers outside the parentheses correspond to the ranking based on the discriminant values obtained by the ANN
classifier and the numbers within the parentheses represent the earlier ranking based on the node value obtained by the
method described in Section 2.1.

filtered and down-sampled to 200 μm/pixel and 8 bits/pixel for processing with Gabor filters. The interval-cancer
cases used in the present study were acquired in the last scheduled visit to the screening program prior to the
detection of cancer. The detection mammograms were not available for this study. A radiologist specialized in
screening mammography (J.E.L.D.) evaluated independently the 106 prior mammograms of interval-cancer cases
and marked the suspicious regions with architectural distortion using rectangular boxes based on the reports
available on subsequent imaging or biopsy, or by detailed inspection of the mammograms.

A total of 4,224 ROIs, including 2,821 ROIs from the interval-cancer cases with 301 ROIs related to the sites
of architectural distortion and 1,403 ROIs from the normal cases, of size 128×128 pixels at 200 μm/pixel (except
at the edges of the images), were automatically obtained by the method described in Section 2.1. Based on the
decreasing order of the peak values in the node maps, up to 30 ROIs were selected per mammogram with their
centers at the locations indicated by the peaks. The ROIs having their centers within the areas of architectural
distortion marked by the radiologist were labeled as TP ROIs and the others were labeled as FP ROIs. Phase
portrait analysis (at 800 μm/pixel) could not detect any TP ROI in one prior mammogram.

2.3 Feature extraction

Normal tissues in the breast parenchyma typically converge toward the nipple; however, the direction of con-
vergence could be changed locally in the presence of architectural distortion. Therefore, analysis of orientated
patterns, obtained by the application of a bank of Gabor filters on the mammographic images, could assist in the
characterization of the sites of architectural distortion. Figures 3 and 4 show a TP ROI and an FP ROI with
their corresponding Gabor magnitude and orientation field responses. It is evident that the TP ROI includes
more intersecting tissue structures spread over a wider angular range than the FP ROI.
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In the present study, the oriented patterns in the automatically detected suspicious regions were statistically
analyzed by using Haralick’s 14 texture features.21,22 In most works on the analysis of texture, Haralick’s
features are computed based upon the moments of probability density functions (PDFs) estimated using gray-
level co-occurrence matrices (GCMs). On the contrary, in the present study, two types of co-occurrence matrices
were developed to characterize the nature of oriented patterns based on the co-occurrence of the angles in the
orientation fields obtained using Gabor filters, which are referred to as angle co-occurrence matrices (ACMs). The
matrix ACM(l,θ)(i, j) represents the probability of occurrence of the pair of angles (i, j) at two pixels separated by
a distance of l and an angle of θ. The first ACM was computed using only the orientation field angle information
and normalized as

ACM1(l,θ)(i, j) =
Pa(i,j)

∑Nθ
i=1

∑Nθ
j=1 Pa(i,j)

,

where Pa(i, j) represents the number of co-occurrences of a pixel with the orientation field angle i and another
pixel with the angle j with the separation between the pixels specified by (l, θ), and Nθ is the quantized number
of angles (in the present work, Nθ = 64). The second ACM was computed in a similar manner but the associated
Gabor magnitude responses were used to increment the elements of the co-occurrence matrix and normalized as

ACM2(l,θ)(i, j) =
Pm(i,j)

∑Nθ
i=1

∑Nθ
j=1 Pm(i,j)

,

where Pm(i, j) is the sum of the Gabor magnitude responses of all of the pixel pairs having angles i and j, with
separation by distance l and angle θ.

(a) (b) (c)

Figure 3. (a) A 128×128-pixel TP mammographic ROI with architectural distortion. (b) Gabor magnitude response.
(c) Orientation field displayed by converting the angle data to gray levels in the range [0, 255].

For each ROI and each type of ACM, four normalized ACMs were calculated with unit pixel distance (l) and
angles θ = 0 ◦, 45 ◦, 90 ◦, and 135 ◦. The four ACMs were then averaged to form a single matrix for each ROI for
the computation of Haralick’s features.

2.4 Feature selection and pattern classification

From the two co-occurrence matrices, two sets of Haralick’s 14 features (referred to as H1 and H2) were computed
to characterize each ROI. For comparative analysis, Haralick’s features with the GCM (H0) were also computed
for each ROI. Stepwise logistic regression was applied to each set for feature selection. Fisher linear discriminant
analysis (FLDA),23 the Bayesian classifier,23 and an artificial neural network (ANN) classifier24 with one hidden
layer containing one neuron and a logistic activation function were used for classification of the ROIs. The leave-
one-image-out method was included in the procedures for feature selection and pattern classification. Analysis
using the leave-one-patient-out method for feature selection and pattern classification was also performed.
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(a) (b) (c)

Figure 4. (a) A 128×128-pixel FP mammographic ROI. (b) Gabor magnitude response. (c) Orientation field displayed
by converting the angle data to gray levels in the range [0, 255].

3. RESULTS AND DISCUSSION

The classification performance of the three feature sets derived in the present work with the leave-one-image-
out and the leave-one-patient-out methods are listed in Tables 1 and 2, respectively, in terms of the area (Az)
under the receiver operating characteristic curve (ROC) as well as the sensitivity and FP rates obtained by
free-response ROC (FROC) analysis. With the leave-one-image-out method, the best performance with Az =
0.77 was achieved using the ANN and the H1 feature set. FROC analysis indicated a sensitivity of 80% at 5.5
FP/image with the ANN classifier for H1, and a sensitivity of 80% at 5.4 FP/image with FLDA for H2. In most
of the cases, H1 provided better results than H2 with the leave-one-image-out method. The reduction of FPs by
applying the H1 feature set and the ANN classifier is demonstrated in Figure 2(c) for the mammogram shown
in Figures 1 and 2. Based on the discriminant values, only the top six ROIs are shown, with the associated
sensitivity of 80% at 5.5 FP/image.

Table 1. Results of ROC and FROC analysis by using selected features based on stepwise logistic regression and several
classifiers with the leave-one-image-out method.

Input Az value obtained FP/image at the specified sensitivity by FROC analysis
features by ROC analysis FLDA Bayesian ANN

FLDA Bayesian ANN 80% 90% 80% 90% 80% 90%

H1 0.76 0.76 0.77 6.9 9.9 6.2 8.7 5.5 10.0

H2 0.75 0.74 0.75 5.4 11.4 6.4 11.8 6.7 10.7

H0 0.72 0.73 0.73 7.7 11.3 6.9 11.4 8.2 11.1

As illustrated in Table 2, with the leave-one-patient-out method, H2 shows results comparable to those
obtained with H1. For both the feature sets, the highest Az of 0.76 was obtained with FLDA. A sensitivity of
80% at 5.3 FP/image with the Bayesian classifier for H1, and a sensitivity of 80% at 4.2 FP/image with FLDA
for H2 were obtained by FROC analysis and the leave-one-patient-out method.

The features based on H1 and H2, as proposed in the present work, have demonstrated improved performance
as compared to H0.

16 The results of FROC analysis are presented in Figures 5(a) and (b) for the leave-one-
image-out and the leave-one-patient-out methods, respectively, using the FLDA classifier. Because the features
used in the present study were computed from segmented breast images, the results obtained with H0 are slightly
different from those in a previous related paper.16
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Table 2. Results of ROC and FROC analysis by using selected features based on stepwise logistic regression and several
classifiers with the leave-one-patient-out method.

Input Az value obtained FP/image at the specified sensitivity by FROC analysis
features by ROC analysis FLDA Bayesian ANN

FLDA Bayesian ANN 80% 90% 80% 90% 80% 90%

H1 0.76 0.76 0.76 5.4 8.2 5.3 7.4 6.3 9.5

H2 0.76 0.74 0.75 4.2 9.2 5.7 8.8 6.9 11.8

H0 0.71 0.70 0.71 8.7 11.2 8.5 10.9 12.0 13.6
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Figure 5. FROC curves obtained with (a) the FLDA classifier and the leave-one-image-out method, and (b) the FLDA
classifier and the leave-one-patient-out method.

The feature sets were also compared in terms of the statistical significance of the differences between the ROC
curves. Tables 3 and 4 illustrate the associated p-values obtained using ROCKIT25 with the leave-one-image-out
and the leave-one-patient-out methods, respectively. The results illustrate that the feature set H1 provides ROC
results that are better than those given by H0 with high statistical significance (using the Bayesian or ANN
classifier). The feature set H2 has provided better results than H0 with statistical significance in a few cases.
Although H1 has provided higher Az values than H2 in several cases, the difference is not statistically significant.

Table 3. Statistical significance, indicated by the p-value of the differences between the ROC curves, obtained for the three
feature sets using three classifiers and the leave-one-image-out method. The p-values were estimated using ROCKIT (up
to four decimal places).

FLDA Bayesian ANN

Feature set H2 H0 H2 H0 H2 H0

H1 0.3532 0.0174 0.0983 0.0009 0.1320 0.004

H2 0.0327 0.0609 0.0980

Proc. of SPIE Vol. 8315  831521-6



Table 4. Statistical significance, indicated by the p-value of the differences between the ROC curves, obtained for the three
feature sets using three classifiers and the leave-one-patient-out method. The p-values were estimated using ROCKIT (up
to four decimal places).

FLDA Bayesian ANN

Feature set H2 H0 H2 H0 H2 H0

H1 1.0000 0.0137 0.1429 0.0005 0.3025 0.0042

H2 0.0188 0.0350 0.0712

4. CONCLUSION

Statistical features derived from angle co-occurrence matrices, as proposed in the present work for the character-
ization of oriented patterns, have demonstrated improved performance as compared to similar features derived
using GCMs for the purpose of detection of architectural distortion. Using fewer features, the sensitivity of 80%
at 5.4 FP/image with the leave-one-image-out method, obtained in the present work, represents better results
than those provided by previously developed methods.16 Further work is in progress to combine the features pro-
posed in the present work with previously developed features for improved and efficient detection of architectural
distortion in prior mammograms of interval-cancer cases.
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