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ABSTRACT

Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we
develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls)
of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis
diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the
left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo),
who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the
use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed
method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For
the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of
93.6%± 2.6%, 91.8%± 3.5%, mean absolute distances (MAD) of 0.28± 0.17mm and 0.34± 0.19mm, maximum
absolute distances (MAXD) of 0.87 ± 0.37mm and 0.74 ± 0.49mm. The proposed algorithm took 4.4 ± 0.6min
to segment a single 3D US images, compared to 11.7± 1.2min for manual segmentation. Therefore, the method
would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring
of the atherosclerotic disease progression and regression during therapy.

Keywords: Active Shape Model (ASM), common carotid artery (CCA), atherosclerosis, three-dimensional
ultrasound (3D US), carotid segmentation

1. INTRODUCTION

Based on World Health Association (WHO) statistical data, cardiovascular disease (CVDs) cause over 29% of
death worldwide, a total of about 17.1 million people.1 In the United States alone, CVD results in both direct
and indirect health care costs and productivity loss amounting to $274 billion annually.2 The therapy evaluation
and clinical data analysis are important to the cerebrovascular and cardiovascular pathologies diagnosis; and
have attracted significant attention amongst the health and science community.3, 4

Ultrasound (US) has been employed as a routine examination for inexpensive non-invasive clinical diagnosis
of atherosclerosis (the hardening of the arteries).5, 6 Furthermore, three-dimensional ultrasound (3D US) imaging
provides reproducible volumetric data, yielding added sensitivity to changes in plaque.7, 8 Patients with disease
of the common carotid artery (CCA) need an evaluation of the risk factors for circulation problems that can
lead to blockages in the heart and brain, which can lead to morbidity and mortality.9 CCA inner and outer
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contours segmentation in 3D US B-mode images is an important step in evaluating arterial disease severity and
drug therapy evaluation.

Segmentation the contours of these images will also assist finding vulnerable atherosclerotic plaques suscep-
tible to rupture causing stroke or myocardial infarction.10 Although control of the final result is given to the
user during interactive segmentations, they also have errors and inconsistencies due to the variable interactions
among inter-observers and intra-observers. The objective of this study is to develop and validate a segmentation
method delineating the inner and outer CCA boundaries of patients with carotid stenosis and atherosclerosis.
And the possible application includes: patient management, genetic research, and therapy evaluation.11

Vessel contour identification in US images is still a challenge and a reoccurring problem. Currently, most
physicians segment the CCA and related tissues in US images by manually tracing the boundaries to best fit the
data based on their experience. Several studies were conducted to improve the quality and detection of CCA
segmentations within US images.12–17

Currently, intima-media thickness (IMT) measurement of arterial thickness is the most widely used phenotype
for measuring carotid atherosclerosis.12 However, its role in clinical practice is not clear yet18 and it is difficult to
repeatedly locate anatomically homologous imaging planes for longitudinal monitoring.19 A scheme for detecting
the normal regions in carotid artery US images was proposed by K. B. Jayanthi et. al.,13 however, no process was
taken to remove the noise in the images. CCA boundary identification pipeline, a simple and effective method,
was proposed using mathematical morphology,14 but it only tested for limited lumen boundaries segmentation. L.
Lou et. al.15 used particle motion mechanics to segment object boundaries, but it was sensitive to noise within the
US images. Fast Marching Method (FMM)16 was also developed for vascular US image segmentation, extending
from its original application to intravascular ultrasound (IVUS) images. A semiautomated segmentation from 3D
US of carotid atherosclerosis using a level set-based method was proposed by E. Ukwatta et. al.,17 however, this
method was a local optimum search, thus the global optimum of the parameter values can not be guaranteed.

Our purpose is therefore to develop and validate a new segmentation approach to delineate the lumen-intima
boundary (LIB) and the media-adventitia boundary (MAB) of the carotid artery (CCA) from 3D US images.
The key innovation of this work is based on the Active Shape Models (ASMs) segmentation for two separate time
points, which used baseline data for training, and follow-up data for segmentation. And the technology enables
the accurate, inexpensive, and non-invasive method for progression and regression monitoring of atherosclerosis
and drug therapy evaluation.

The following of this paper is organized as follows. In Section 2, the proposed method is explained in details.
The results of the scheme are shown in Section 3. Section 4 and Section 5 will contain the discussion and
conclusion.

2. METHODS

In order to present the work, we firstly use ASM to segment LIB and MAB, then compare the proposed algorithm
segmentation results with the manual ones. Finally, the overall performance had its validation. Figure 1 showed a
sagittal cross section of a CCA with manually annotated boundaries superimposed. Figure 2 showed the manual
segmentations of inner and outer walls marked on a 3D US image.

2.1 Image Acquisition

The mechanical 3D US system used in this study has been described previously in Ref.20 The images were
acquired by moving a linear ultrasound transducer (L12-5, Philips, Bothell, WA, USA) with an 8.5 MHz central
frequency using a motorized linear device along the neck of the subject at a uniform speed of 3mm/s for about
4cm without cardiac gating.21

During the scanning, the video frames from the US machine were digitized, converted into a 3D US image
and displayed using 3D Quantify (a multi-planar visualization software).22 3D images were constructed from the
2D frames received from the US machine (ATL HDI 5000, Philips, Bothell, WA, USA). The voxel size in the 3D
data was approximately 0.1 × 0.1 × 0.15 mm3.
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Figure 1. Sagittal cross-section of a common carotid artery (CCA) in a 3D US image. The contours on the image show
the manual delineations done by the physician. The inner boundary is lumen-intima boundary (LIB) and the outer
boundary is the media-adventitia boundary (MAB). The segmentations were performed on parallel inter slice distance
(ISD) separated by 1mm.

Figure 2. Long axis view of a 3D US image of carotid artery. The baseline and follow up 3D images, constructed from
the set of 2D frames, were examined simultaneously to visually match the bifurcation (BF) points in both images by
an operator blinded to time point and treatment. Then each 3D US image was manually segmented starting from the
bifurcation point extending to 15mm into common carotid artery (CCA) and 10mm into internal carotid artery (ICA) at
1mm intervals perpendicular to the artery axis, as shown in Fig. 1. This study was only carried out on the CCA since
the focus was on stroke risk.

The 3D Quantify ge generates 2D images of the artery by slicing through the 3D image orthogonally to the
medial axis, in the inferior direction from the bifurcation (BF), with an inter slice distance (ISD) of 1mm (refer
to Fig. 1). The expert then performed contouring of the LIB and MAB on each of these images (refer to Fig. 2).

2.2 Study Subjects

Seventeen patients with carotid stenosis over 60% were enrolled in this study (8 subjects on atorvastatin and 9
on placebo).21 The presence of stenosis was confirmed using carotid Doppler US flow velocities. Baseline and
follow-up (3 months later) 3D US images were acquired for each subject, for both left and right carotid arteries.
8 of them, 4 males and 4 females, mean age ± SD (65± 6.6years), were randomly assigned to 80mg atorvastatin
daily for 3 months. The remaining 9 subjects, 4 males and 5 females, mean age ± SD (68 ± 8.4years), were
assigned to the placebo. All subjects, in this study, were recruited from The Premature Atherosclerosis Clinic
and The Stroke Prevention Clinic at University Hospital (London Health Sciences Center, London, Canada) and
the Stroke Prevention and Atherosclerosis Research Center (Robarts Research Institute, London, Canada). A
written informed consent to the study protocol was provided by all of the subjects, which was approved by The
University of Western Ontario Standing Board of Human Research Ethics.

2.3 Manual Segmentation

Manual segmentation of CCA boundaries is labor intensive and time-consuming.23 There are several studies
that report on semi-automated segmentation methods for delineating carotid walls on 2D US images.24

Proc. of SPIE Vol. 8315  83152H-3



The manual segmentation method used in our work was proposed by Egger et al.19 Prior to contouring,
the expert first located the BF and defined an approximate medial axis of the carotid artery by choosing two
end points of the axis. The multi-planar 3D viewing software then presented 2D images of the artery by slicing
through the 3D image orthogonally to the medial axis, in the inferior direction from the BF, with an ISD of
1mm. The expert then performed contouring of arteries on each of these images. Figure 1 showed a sagittal
cross-section of a common carotid artery with manually annotated boundaries overlaid. An expert outlined the
vessel boundaries five times repeatedly with a single day between repetitions on transverse 2D slices extracted
from 3D US images. The image sequence were randomized and the operator was blinded to the image order
during each repetition to reduce memory bias.17 However, this method also still introduced the potential errors
and variabilities because of the variable interactions among inter-observers and intra-observers.

2.4 Pre-processing
Several pre-processing steps were applied prior to LIB and MAB segmentation. Firstly, contrast limited adaptive
histogram equalization (CLAHE)25 was applied to enhance the local contrast of the US image. CLAHE partitions
the image into contextual regions and applies histogram equalization by fitting a Rayleigh distribution to each
region.8 Next, Speck Reducing Anisotropic Diffusion Method (SRAD) was used for US speckle noise reduction.26

The SRAD was used to enhance the edges by inhibiting diffusion across edges and allowing diffusion on either
side of the edges.

2.5 Active Shape Models (ASMs)
Active Shape Models (ASMs) are statistical models of the shape of objects, developed by Tim Cootes and Chris
Taylor in 1995,27 which iteratively deform to fit to an example of the object in a new image. The shapes are
constrained by the point distribution model (PDM) Statistical Shape Model (SSM) to vary only in ways seen
in a training set of labeled examples. The shape of an object is represented by a set of points (controlled by
the shape model). The ASM algorithm aims to match the model to a new image. It works by alternating the
following steps: (1) Look in the image around each point for a better position for that point; (2) Update the
model parameters to best match to these new found positions. To locate a better position for each point one
can look for strong edges, or a expected match to a statistical model at the point. The original methodology
suggests using the Mahalanobis distance to detect a better position for each landmark point.27 The technique
has been widely used to analyze images of faces, mechanical assemblies and medical images (in 2D and 3D).

Following model initialization (Xo), an ASM search27 is performed to segment the CCA from a new image.
An ASM is defined by the equation

X = X + P · b, (1)

where X represents the mean shape, P is a matrix of the first few principal components of the shape, created
by using Principal Component Analysis (PCA), and b is a vector defining the shape, whose standard deviations
from the mean shape ranges between −3 and +3 . Therefore, X is defined by the variable b. Given a set of
landmark points X i for iteration i, the goal is to find landmark points Ẋ i closest to the object border. The
shape is then updated using Eq. (1) where

b = PT · (Ẋ i − X i), (2)

where each element of b can only be within ±3 standard deviations of the mean shape. The final ASM segmen-
tation is denoted as XFinal. The training of the ASM to determine X and P is performed by manual delineation
of the artery boundaries followed by manual alignment of 10 non-equally spaced landmark points (red points)
along the contour (green points) as shown in Fig. 3.

It should be noted that this only needs to be performed once in an off-line setting, and once the ASM is
trained it can be used for the segmentations without significant manual intervention.

Six-hundred and eighty 2D CCA images in total, extracted from the 3D US data (10 two-dimensional images
per each of 17 patients of two sides at 2 time points), previously had their arterial walls manually segmented
as the golden standard. Three-hundred and forty (10 × 17 × 2) 2D CCA baseline images data and manual
boundaries results were used for ASM learning and training as shown in Fig. 4; while another three-hundred and
forty treatment images data were used for ASM segmentation and evaluation.
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Figure 3. Ten non-equally spaced landmark points (red points) along the manual contour (green points) were randomly
picked for ASM training. 340 images were labeled by senior physicians. Some of the points may located on the weak
edges.

Figure 4. LIB (top) and MAB (bottom) training results of the three-hundred and forty 2D CCA baseline images data.
The average shape contour would be superposed on the treatment images data as the initialization contour for ASM
segmentation.

2.6 Evaluation Metrics

The Dice Similarity Coefficient (DSC) was used as a region-based measure to compare two segmentations for
accuracy on slice-by-slice basis. The DSC quantifies the area overlap of two segmentations and is given by the
following equation

DSC = 2
|RM ∩ RP |
|RM | + |RP | , (3)

where RM and RP denote the region enclosed by of the manual and proposed method boundaries, respectively.

The mean absolute distance (MAD) and maximum absolute distance (MAXD) were used as boundary
distance-based metrics. And the computational time is also estimated.

3. RESULTS

Figures 5 and 6 show the segmentation results of three slices obtained using the proposed approach for a subject
with a moderate level of plaque. Table 1 shows the overall evaluation results of the proposed algorithm for 340
transverse US slices extracted from 17 subjects after treatment.

3.1 Validation

The validation of new segmentation algorithm will require comparison with manual segmentation results. The
accuracy, variability and reproducibility of the algorithm were evaluated by comparison to the physician-drawn
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Figure 5. Adventitia results comparison after the therapy at 3 months later: original image with manual segmentation
result as a golden standard (left); proposed method segmentation result (right).

Figure 6. Sample results of the lumen and adventitia segmentations. (red/green contours: manual; blue/yellow contours:
algorithm; outer contours: adventitia; inner contours: lumen.) Subject 1 (left); Subject 2 (middle) and Subject 3 (right).

contours. Three to five experts declined the CCA boundaries on 340 2D slices. The ordering of the images
was randomized to reduce learning effects. The method of Chalana and Kim28 was used to compute the mean
boundary from the repeated manual and algorithm-generated segmentations.

Therefore, DSC, MAD and MAXD were computed from 3D US images to obtain overall estimates of each
metric for the image set. Table 1 shows the overall evaluation results of the algorithm for 340 transverse 2D US
sliced images.

The proposed method yielded a DSC of 93.6%± 2.6% and 91.8%± 3.5% for the LIB and MAB, respectively.
The method gave sub-millimeter error values for the MAD of 0.28± 0.17mm and 0.34± 0.19mm, and MAXD of
0.87 ± 0.37 and 0.74 ± 0.49 for the LIB and MAB, respectively.

Our approach takes 4.4 ± 0.6min compared to 11.7 ± 1.2min of operator time for manual segmentation to
initialize/delineate a single 3D image.8

4. DISCUSSION

In this paper, we presented an ASM segmentation method to delineate the LIB and MAB boundaries of the
CCA from 3D US images. The algorithm yielded a higher DSC for the LIB than for the MAB, although the
algorithm gave similar MAD and MAXD errors for both vascular walls. It was obvious that the lumen value is
better than adventitia, which represents we got relatively better lumen segmentation result. The reasons may be:
1) different components between the two layers caused the different performance. Inside lumen is liquid blood,
while the outside adventitia is complex connective tissue from the view of CCA physiology; 2) weak image edges,
particularly on boundary segments that are parallel to the US beam direction is not hard for ASM learning and
segmentation; 3) the initialized average contours from baseline training data have differences with the test data.

5. CONCLUSION

The main purpose of this work was to develop and evaluate a new segmentation algorithm for outlining both
lumen and adventitia (inner and outer walls) of CCA from 3D US images. From a quantitative evaluation on
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Table 1. Overall performance results of the proposed algorithm. Validation results of segmentation for 340 transverse
slices of both left and right sides from seventeen subjects (eight with 80mg atorvastain and nine with placebo respectively)
after three months treatment.

Metric DSC (%) MAD (mm) MAXD (mm)

lumen-intima boundary (LIB) 93.6 ± 2.6 0.28 ± 0.17 0.87 ± 0.37

media-adventitia boundary (MAB) 91.8 ± 3.5 0.34 ± 0.19 0.74 ± 0.49

the results, we concluded that the propose method could accurately segment the CCA and also the average time
saved using the algorithm was substantial.

Experimental results showed that the segmented areas could accurately define the locations of CCA contours.
This method could save the physicians’ time. Our work provides an easy-handle technique to simplify the job
of labeling the contours in CCA manually. Therefore, the proposed method would be helpful to promote the
translation of 3D carotid US to clinical care for the fast, safety and economical monitoring of the atherosclerotic
disease progression and regression during therapy.
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