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ABSTRACT   

Although 3He MRI permits compelling visualization of the pulmonary air spaces, quantitation of absolute ventilation is 
difficult due to confounds such as field inhomogeneity and relative intensity differences between image acquisition---the 
latter complicating longitudinal investigations of ventilation variation with respiratory alterations.  To address these 
potential difficulties, we present a 4-D segmentation and normalization approach for intra-subject quantitative analysis of 
lung hyperpolarized 3He MRI.  After normalization, which combines bias correction and relative intensity scaling 
between longitudinal data, partitioning of the lung volume time series is performed by iterating between modeling of the 
combined intensity histogram as a Gaussian mixture model and modulating the spatial heterogeneity tissue class 
assignments through Markov random field modeling.  Evaluation of the algorithm was retrospectively applied to a cohort 
of 10 asthmatics between 19-25 years old in which spirometry and 3He MR ventilation images were acquired both 
before and after respiratory exacerbation by a bronchoconstricting agent (methacholine).  Acquisition was repeated under 
the same conditions from 7 to 467 days (mean ± standard deviation: 185 ± 37.2) later.  Several techniques were 
evaluated for matching intensities between the pre and post-methacholine images with the 95th percentile value 
histogram matching demonstrating superior correlations with spirometry measures.  Subsequent analysis evaluated 
segmentation parameters for assessing ventilation change in this cohort.   Current findings also support previous research 
that areas of poor ventilation in response to bronchoconstriction are relatively consistent over time. 
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1. INTRODUCTION  
 

Prior to the last decade, little was known about the temporal and spatial distribution of ventilation defects in the lungs of 
asthmatics.  Spirometry was used and continues to be used to provide valuable insight into the vasoconstriction occurring 
in the bronchi and bronchioles of the lungs of asthmatics.  It is used diagnostically to obtain information on total airflow 
volume and rate in the lungs of patients with pulmonary difficulties including asthma, but it is unable to provide higher 
resolution detail on areas of the lung that remained well ventilated during an asthma exacerbation as compared to those 
that became poorly ventilated (de Lange et al 2006).  This promoted questions such as whether poorly ventilated areas of 
lung tissue were consistent over time, whether they appeared in the same areas of the lung during bronchoconstriction, 
and if constriction occurred in a lobar distribution or in scattered bronchioles. 

In recent years, hyperpolarized helium-3 MR lung ventilation imaging has been used to gain insight into the temporal 
and spatial distribution of poorly ventilated areas of lung parenchymal tissue (de Lange et al 2006).  Use of 3He as an 
inhaled contrast agent allows for visualization of ventilated air spaces and therefore identification of ventilation defects, 
and its use in quantifying regions of poor ventilation seems to be the top performing factor in differentiating between the 
clinical diagnoses of asthma and normal lungs (de Lange et al 2007, Tustison et al 2010b).  Use of this technology offers 
numerous advantages over spirometry.  While spirometry is limited to drawing generalizations about the lungs as a 
whole, 3He MRI images provide more detailed information on the degree and location of ventilation defects throughout 
the lungs.  Information from this imaging modality is of value in that it could give insight into processes in the lungs that 
could not be learned from spirometry alone and provide answers to longstanding questions about ventilation defects in 
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the lungs of asthmatics such as correlation between asthma severity and distribution of defects and consistency in the 
location of defects during bronchoconstriction. 

In past usage, a major drawback of helium-3 MR imaging was that it was a time consuming process for radiologists to 
study the images and score areas that qualify as defects (Tustison et al 2011).  Even when studied carefully, a study has 
shown that the sensitivity of experienced radiologists is somewhat limited (de Lange et al 2006).  This problem is 
mitigated by automated segmentation methods, such as Atropos, for ventilation-based partitioning of lungs in 
hyperpolarized 3He MR images.  Atropos utilizes conventional Gaussian mixture modeling and non-parametric 
approaches for histogram fitting as well as prior-based strategies including template and/or Markov random field priors 
(Tustison et al 2011, Avants et al 2011). The result is an algorithm that can analyze images much faster than traditional 
methods with improved sensitivity and specificity (Tustison et al 2011) in spite of algorithmic confounds such as field 
inhomogeneity and relative intensity differences between image acquisitions---the latter complicating longitudinal 
investigations of ventilation variation with respiratory alterations. In this work, we describe the development and 
evaluation of normalization and segmentation strategies for intra-subject differentiation of ventilated and non-ventilated 
lung parenchyma using Atropos on hyperpolarized 3He MRI data.  We then apply this method retrospectively to data 
from a study of asthmatics who underwent a methacholine challenge at two timepoints to assess the method and evaluate 
if defects appeared in the same area of the lung. 

2. METHODS 
2.1 Image and spirometry acquisition 

Retrospective analysis was applied to the data described in (de Lange et al 2007). 10 subjects between the ages of 19 and 
25 years (mean ± standard deviation: 20.9 ± 1.6) were screened for mild-to-moderate asthma.  Each subject underwent 2 
respiratory (methacholine) challenges between 7 and 467 days (mean ± standard deviation: 185 ± 37.2).  Methacholine is 
a bronchoconstricting agent, so its use in the study was designed to induce the appearance of ventilation defects 
resembling those that would be seen in an acute asthma exacerbation. 3He axial MRI spanning the entire lung (19-28 10 
mm slices) were acquired immediately before and after the administration of methacholine. Spirometry measures were 
also acquired at baseline each day and 2 minutes post-methacholine administration.  Further details regarding the image 
acquisition and spirometry can be gleaned from (de Lange et al 2007).   

2.2 Image Analysis 

We recently proposed a ventilation-based segmentation pipeline for parcellation of lung volumes into ventilated and non-
ventilated regions which demonstrated superior specificity/sensitivity when compared with human raters (Tustison et al 
2011).  The two major components of the proposed workflow are N4 bias correction (Tustison et al 2010a) for removing 
the low-frequency intensity variation artifact associated with the inhomogeneity field and a 4-D Bayesian segmentation 
strategy (Tustison et al 2011) incorporating many elements common to brain segmentation (Avants et al 2011).   After 
the N4 bias correction was performed but before the segmentation, images were further adjusted to remove the 
vasculature from being recognized by the segmentation algorithm.  The 3He images display areas of ventilation as bright 
and areas without ventilation as dark, so the larger vessels, into which the helium does not diffuse, appear dark and can 
be mistaken for poorly ventilated parenchymal tissue.  This could distort the percentage of tissue determined as poorly 
ventilated both before and after the methacholine, so it is desirable that the vasculature be excluded. 

Separating the vasculature from the parenchymal tissue was a multistep process, and images from different steps are 
shown in Figure 1.  A mask was first created for each 3He image (Figure 1b) via registration of a standardized mask 
represeneting an average lung (Avants et al 2010).  Such a mask is necessary prior to running the segmentation because 
of the difficulties in distinguishing unventilated lung tissue from background on the 3He MR images.  The 3He image 
was then divided from a 3D image of 15-28 slices into 15-28 individual 2D slices (a sample slice is shown in Figure 1a) 
for Hessian-based filtering of the lungs to enhance the airways for subsequent mask removal (Frangi et al 1998).  Note 
that individual 2-D slice handling was necessary due to voxel anisotropy in the through-plane direction.  

To improve the accuracy of the vasculature segmentation, we limit segmentation to the area around the hilum of the 
lung.  As almost all of the vasculature large enough to appear on the 3He MRI is concentrated around the hilum, most of 
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4. CONCLUSIONS 
A 4-D segmentation and normalization approach to quantifying ventilation defects in hyperpolarized 3He MRI was 
described.  We evaluated different permutations of longitudinal segmentations and it was shown, based on correlations 
with spirometry, that 4-D segmentation where the longitudinal data has been histogram-matched based on the 95th 
percentile value provided superior results.  This was also demonstrated using data acquired pre- and post-administration 
of methacholine in 10 asthmatic subjects. 

This work presents possibilities for future work in the processing and evaluation of 3He MR images, both in terms of 
applying the method to other studies and in terms of further refining the method for improved accuracy.  Toward the 
latter goal, we have recently worked with an adjusted pipeline wherein the actual bias corrected images are warped rather 
than warping masks.  In this strategy, the image post-methacholine administration would be warped to fit in the same set 
of coordinates as the image from before methacholine administration, then both images can be segmented using either a 
3D method with histogram matching at the 95th percentile or a 4D method with histogram matching at the 95th percentile.  
The advantage of this method may be to reduce the noise in small poorly ventilated areas that could reduce the overall 
accuracy by falsely elevating the percentage of defects that are at different locations before and after methacholine 
administration.   

We have also identified several other studies that this method could be applied to, both to further test its effectiveness 
and to gain further insight into the response of the lungs to different stimuli.  The first study was a repeatability study 
wherein two 3He MR images of a subject were taken fifteen minutes apart with no intervention between imaging.  
Analysis of the difference in spatial distribution of defects between the two images, specifically the overlap, could 
provide insight into how accurate the current method is in identifying defects (assuming that the location of defects 
would change minimally in the fifteen minutes between images).  Preliminary results from analysis of this study using a 
version of the new method proposed above (warping of the images) indicates a more than 80% overlap in ventilated/non-
ventilated tissue between the first and second images.   

Another study to which this method has been applied involves the analysis of images taken at baseline, immediately after 
administration of a vasodilator, albuterol, and around four hours after the administration of the albuterol.  We analyzed 
the overlap in defects between the baseline and the time point immediately after albuterol administration and between the 
baseline and the time point four hours after albuterol administration.  Early results from analysis of this study would 
seem to indicate both an absolute decrease in the percent of unventilated tissue after administration of the albuterol (as 
would be expected) as well as a decrease in the percent of defects present prior to the albuterol that remained in the same 
location after the albuterol.  This decrease, which continues in the time point 4 hours after albuterol administration, could 
be due to improvements from the albuterol manifesting hours after administration or a shift in the defects with time.  
Given the short time scale on which the all the images were taken and on the decrease in poorly ventilated tissue four 
hours after the albuterol compared to immediately after albuterol administration, the former seems more likely.  
However, variations are certainly well within expected margin of error. 
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