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Most medical imaging is inherently three-dimensional (3D) but for validation of pathological 
findings, histopathology is commonly used and typically histopathology images are acquired as two-
dimensional slices with quantitative analysis performed in a single dimension. Histopathology is 
invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold 
standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. 
A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to 
better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is 
the lack of tools to directly compare 3D macroscopic imaging acquired in patients with 
histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). 
To directly address this, we developed methods for 2D histology slice visualization/registration to 
generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to 
volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model 
to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 
2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections 
after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype 
(WT) (47.1 µm ± 9.8 µm) and elastase mouse lung (64.5 µm ± 14.0 µm) was significantly different 
(p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 
3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT 
mouse lung.  The ratio of the airspace-to-lung volume for the entire lung volume was also 
significantly and strongly correlated with Lm. 
 
Description of Purpose: 
Three dimensional imaging tools, such as magnetic resonance imaging (MRI) and x-ray computed 
Tomography (CT) provide a way to quantitatively evaluate emphysema and measurements made 
using these tools can be directly compared to tissue pathology samples – the gold standard method 
for evaluating emphysema.  The goal of this work was to develop image processing tools for the 
generation and manipulation of three-dimensional mouse lung histology volumes providing high 
resolution three-dimensional images of lung parenchyma tissue and airways.  In this proof of 
concept study, the well-established elastase mouse model was used for comparison to WT mice. 
 
Methods: 
Lung Tissue Processing 
Male C57BL/6 mice (20-25 gram body weight, Charles River Canada) were anesthetized (3% 
isoflurane) and received either 3U of porcine pancreatic elastase (PPE, Elastin Product Company 
#EC134) in 30 μl of 0.9% saline or 30 μl of saline by intratracheal instillation. Briefly, a mid-line 
incision was made on the neck, the trachea exposed, and a 22 gauge Cathlon catheter was inserted (1 
cm) into the trachea between two tracheal rings.  PPE or saline was slowly injected into trachea.  
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generated and applied to the stack of approximately 250 slices or images. Following registration, the 
images were segmented to remove the background using a multi-threshold (2) with 3 clusters.   
 
 
 

 
 
Figure 1. Schematic description of Murine lung 3D Histology Generation.   
Steps 1-2:  Mouse lungs were harvested inflated and tissue slices were prepared.  Digital images 
were acquired with 2x2 um resolution using the Tissue-Scope scanner.  Steps 3-5: The resultant 
digital images were padded, registered and the final 3D volume generated. 
 
2D and 3D Lung Measurements 
LM measurements were generated using the stratified uniform random sampling (stURS) approach as 
outlined by the American Thoracic Society.  Two regions in each of the five lobes across 5 sections 
of the lung were sampled for a total of 100 probe interactions for each set of lungs.   We also 
developed a semi-automated method in MATLAB to generate LM. A dynamic grid was 
superimposed on each section selected for sampling.  Markers were placed automatically on edges 
defined as pixels with +1 intensity (black) that were adjacent to at least one non-black pixel.  3D 
measurements of total lung volume, total tissue volume, total airspace volume, and the airspace to 
volume ratio were evaluated for each lobe and total lung.  To generate tissue volume measurements, 
the total number of voxels reporting tissue for each slice was multiplied by the slice thickness. Total 
lung volume was generated by applying a closing algorithm with a structural element of size 15, and 
then applying a filling algorithm to include areas within the closed region, creating a lung mask for 
each slice and multiplying each slice by its thickness. 
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Results: 
Figure 2 shows a representative 3D histology volume composed of approximately 250 images slices 
generated using the method we developed.  Although the method incorporates volume averaging 
over an apparent 15 μm slice, registration of the slices was sufficient to generate volumes that could 
be manipulated in the axial, coronal and sagittal planes.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Final 3D histology volume generated from digitized slides of H&E stained, segmented, 
elastase mouse lungs shown in the axial, coronal and sagittal planes. 
 
Table 1 shows the mean and standard deviation for LM and volume measurements for elastase and 
wild-type lungs by lobe. LM was significantly different between elastase and WT lungs (p<0.001). 
LM was not significantly different between lobes of the wild-type lungs. ANOVA also indicated that 
LM of right lobe 2 of the elastase-induced lungs was significantly different than the left lobe 
(p<0.001) and right lobe 1 (p<0.05).   
 
Table 1.LM and volumetric measurements for Wild-type and Elastase Lungs *p<.001       ** p<.0001 

 Left Lobe Right Lobe 1 Right Lobe 2 Right Lobe 3 Right Lobe 4 Total
LM (µm) 
Wildtype 45.7 ± 8.5 45.0 ± 6.3  47.0 ± 9.7 49.3 ± 13.1  48.6 ± 11.4 47.1 ± 9.8* 
Elastase 52.0 ± 7.9 61.3 ± 13.6 79.2 ± 9.6 63.9 ± 10.6 65.8 ± 13.8 64.5 ± 14.0* 
Total Lung Volume (mm3) 
Wildtype 51.8 42.4 28.4 14.9 1.5 139.0** 
Elastase 53.7 36.0 80.6 19.1 13.3 202.7** 
Tissue Lung Volume (mm3) 
Wildtype 13.7 10.9 8.4 4.6 3.9 41.5** 
Elastase 15.8 9.6 18.0 3.9 2.7 49.8** 
Airspace Volume (mm3) 
Wildtype 38.1 29.8 20.9 10.4 1.1 101.2** 
Elastase 38.0 26.3 62.8 14.9 10.6 153.8** 
Airspace:Lung Volume % 
Wildtype 73.5 ± 5.8 70.2 ± 6.3  73.7 ± 5.3 69.5 ± 6.1 73.7 ± 5.7  72.8 ± 5.2** 
Elastase 70.7 ± 5.8 73.0 ± 5.8 77.9 ± 4.5 77.9 ± 7.0 79.8 ± 5.2 75.9 ± 5.6** 
Tissue:Airspace Volume % 
Wildtype 37.1 ± 15.5 36.5 ± 11.3 44.1 ± 19.7 45.2 ± 16.8 36.6 ± 12.9 38.3 ± 13.2**
Elastase 42.4 ± 13.8 37.6 ± 10.4 28.7 ± 7.8 29.5 ± 12.6 25.9 ± 9.2 32.6 ± 11.9**
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Figure 3 shows the relationships between 3D estimated measurements and LM, the 1D gold standard 
measurement of tissue destruction that is the hallmark of emphysema.  We observed that the ratio of 
airspace volume to total lung volume significantly correlated with LM when evaluating both wildtype 
and elastase lung measurements.  In addition, we also observed a modest but significant correlation 
between the ratio of tissue volume to airspace volume and LM.   
 

 
 
Figure 3.  The significant relationship between (a) LM and Airspace volume/Total lung volume and (b) LM and 
Tissue volume/Airspace volume is shown for 5 mouse lobes, in a single wild-type and elastase mouse each. 

 
New or Breakthrough work to be presented:  
We developed a way to generate 3D histology volumes/images after registration of digital histology 
slide images with 2x2x15 μm resolution.    The resultant image volumes allow for ex vivo 3D 
measurements that can be directly compared to stereology and to 3D macroscopic imaging of the 
same tissue in vivo. 
 
Discussion: 
Although there are limitations inherent in our approach related to spatial resolution in the z plane, 
and the limited number of samples we employed in the proof of concept demonstration, our 
approach provides a way to estimate 3D measurements of lung tissue on a regional basis.  This is 
critically important because of the regional heterogeneity of lung tissue destruction in emphysema 
and all respiratory disease.  This has made the development of structure-function models of the lung 
very difficult to develop, validate and test.  We expect to continue to refine and develop the current 
approach to incorporate a number of different staining methods to enhance and increase the 
information content of the 3D volumes generated. We also showed modest but significant 
relationships between 3D measurements and 1D measurements that provides a foundation for 
improved regional analyses.  
 
Conclusions: 
Recent developments by Hogg and co-workers (3) have showed that destruction of the lung terminal 
bronchioles may precede emphysematous destruction of the lung parenchyma in smokers.  These 
findings were made possible because micro-CT provided a way to generate 3D measurements, 
whereas stereology measurements of the same tissues showed no significant difference between 
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emphysematous and healthy lung.  The techniques we developed for 3D histology visualization and 
quantification presented here will aid in advancing our ability to co-register macroscopic and 
microscopic imaging which in the case of COPD will help provide an understanding of pathogenesis 
and disease progression. 
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