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ABSTRACT   

Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor 
cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is 
crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy 
to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living 
cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this 
advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast 
interference ring, among others.  
Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution 
information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region 
surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, 
we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal 
axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered 
single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign 
groups. We validated segmentation accuracy by comparing our findings with manually obtained results. 
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1. INTRODUCTION  
Living cell observation has been widely used by biologists. Computers assist with automatic analysis of microscope 
images. This automation can improve the screening speed of cancer cell cultures in large data experiments 1.  
 
Previous studies on cell detection have used fluorescence-labeled microscopy, which allows for clearer visualization of 
object outlines than phase-contrast microscopy does 2,3. Using confocal or multi-photon microscopy, researchers have 
attempted to extract 3-dimensional (D) images of cell regions and track changes in these regions. However, phase-
contrast microscopy is not often used for this purpose 3 because of the lower image quality obtained. Some studies have 
proposed that quantitation of cell behavior should be conducted in a 2D environment on cells plated on the bottom of a 
culture dish and observed using phase-contrast microscopic images 4-7. 
 
We used 3D time-lapse phase-contrast microscopic imaging, which enables long-term observation of live cells. Phase-
contrast microscopy is an optical illumination technique in which small phase shifts in the light passing through a 
specimen are converted into amplitude or contrast changes in the image. The image acquisition process is considerably 
simpler than that for fluorescent-labeled microscopy, where the object of interest is enhanced using a staining agent. 
Furthermore, phase-contrast microscopy does not require photobleaching and has no associated phototoxicity, unlike 
fluorescence microscopy. Thus, it permits cell examination over a long period 2.  
 
The morphology of cells is closely related to their invasiveness and migratory behavior. Invasive tumor cells have a 
highly irregular shape, whereas non-metastatic cells are spherical. Therefore, quantitative analysis of this feature is 
crucial to determine tumor invasion and the efficacy of anticancer treatment. This is the most important aspect of 
analyzing cell morphology and individually migrating cells 8. 
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In our preliminary study, we used a threshold method to segment cells by halo pattern analysis 9. This method requires 
images that are more detailed. Thus, we used the advanced active contour method to segment cells. We also propose a 
3D cell classification method that is free of image artifacts such as non-uniform illumination and halo patterns. In phase-
contrast microscopic images, cells normally appear as dark regions surrounded by a bright halo artifact pattern in the z-
depth direction; we identified the cross-sectional plane that intersects each cell through its center and is orthogonal to the 
first principal axis. We used a histogram-based method to correct for illumination artifacts, extracted the initial cell 
region by analyzing the intensity, and then segmented the cell region using a level set through the minimization of an 
energy criterion involving both the region and boundary functions. Finally, we examined the cells’ morphology to 
classify tumor cells as malignant and benign. Fig. 1 is a flowchart of the proposed system.  
 

 
Figure 1. Flowchart of the proposed system. 

 

2. METHODS 
In the present study, we used U87, a representative cell line of the rather recalcitrant brain tumor glioblastoma. The 
images were captured from the same field but at different time points (0, 11, and 25 hours after cell implantation). The 
magnification was 10×, and we used the Matrigel 3D cell matrix. We developed a Windows-based C++ application 
program for detection and segmentation. We also trained a support vector machine (SVM) to classify cell morphology.  
 
2.1 Non-uniform illumination correction  

Phase-contrast microscopy can be used for living cell analysis and for monitoring cell migration. Phase-contrast 
microscopy does not require fluorescent labeling. However, because of differences in the light absorption rate, light path, 
and material properties of cell-culturing gels, the brightness over the image is not uniform. Numerous algorithms have 
been suggested for brightness correction in image processing and pattern recognition 10. Gray-scale transformation in the 
spatial domain, the retinex algorithm, and homomorphic filtering are all commonly used 11-13. However, it is difficult to 
select optimal parameter values while considering the characteristics of each image modality. Moreover, this process 
requires many iterations and a long computation time.  
 
Illumination characteristics can be changed using histogram equalization (HE) by applying the transformation matrix T 
to the image histogram via global or local approaches. However, image details can be lost in the former, and over-
enhancing problems can occur. Locally adapted algorithms divide an image into several sub-blocks and improve the 
image contrast for each block. Blocking artifacts may appear on section boundaries with this approach. 
 
In the present study, we implemented the localized version of the modification framework histogram-smoothing (MF-
HS) algorithm. The MF-HS method enhances the low-dynamic input image without producing over-enhanced artifacts in 
the resulting image 14,15. 

 
                                                                            (a)                                                        (b) 

Figure 2. Contrast-enhancement result sample. (a) Original image, (b) Image after MF-HS–based HE. 
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2.2 Using the halo pattern to find the cross-sectional plane 

A previous study 5 used the intensity profiles obtained during cell image segmentation, such as with 3D object models, 
for 2D image observation. Oblique cells are oriented in various directions, and the halo pattern around cell borders is 
difficult to visualize in 2D. Therefore, the current study proposes the cell segmentation method, wherein the orientation 
and morphology of cells are determined based on 3D information.  
 
In phase-contrast image stacks, cells appear as small bright disks in the focal slice, and they demonstrate growing off-
focus phase-contrast interference rings as they move away in the z-stack 2 (Fig. 3). Comparison of the intensity at the 
center of the cells to that at the cell borders enabled cell body detection 20.  
 

 
(a)                                    (b) 

 
Figure 3. 3D cell appearance correlation. (a) Horizontal slice, (b) Vertical slice 

 
We selected cell image samples for cell detection, calculating the intensity profile and intensity gradient of these samples. 
We obtained 2 intensity peak values from the center of the cell image (Fig. 4). These peaks refer to the location of the 
halo artifact around the cell. Thus, we determined a threshold value that was the average threshold range of the samples. 
The initial region was the threshold of the image obtained after MF-HS–based HE for the detection of cells in an image 
16.  

 
Figure 4. Relationship between the intensity profile of a cell image and Intensity gradient.  

(a) Cell image sample (b) Threshold range in the intensity profile at cross-section (c) Intensity gradient at cross-section 
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We identified the cross-sectional plane that passes through the initial region’s center of mass and is orthogonal to the first 
principal axis (Fig. 5). For this, we used the statistical method of principal component analysis (PCA) 17 to be able to 
visualize the cells clearly and to ensure less light diffusion and halo artifacts around each cell body 21-22, to estimate the 
cell objects’ rotation, and to understand how each cell lies. 
 
PCA is a widely used mainstay of modern data analysis. It is a simple, non-parametric method of extracting relevant 
information from complex data sets and has been termed one of the most valuable results of applied linear algebra. It is 
often used in all forms of analysis, from neuroscience to computer graphics 18. The rationale behind this approach is that 
the directions of greatest variability yield the most information about the configuration of the data in multidimensional 
space. The first principal component will have the greatest variance and yield the largest amount of information from the 
data 19. 
 

              
(a)                                                         (b)                                                            (c) 

 

Figure 5. Initial region sample (a) Initial region of one cell,  
(b) The cross-section is orthogonal to the first principle axis, which passes through the center of mass.  

(c) Cross-sectional image of sample 
 
2.3 Segmentation 

We used the advanced active contour algorithm that was level set to identify the approximate boundary of cells. Level set 
methods are an important category of modern image-segmentation techniques based on partial differential equations 
(PDE) 23.  

There are 2 types of level set algorithms: fast marching and active contour. The difference among neighboring pixels is 
evaluated to identify the boundaries of objects. The algorithm is set such that it will converge at the boundary of the 
object where the differences are high 23.  

The fast marching and advanced active contour algorithm is a 2-PDE–based method. Fast marching is akin to a standard 
flood fill and is sensitive in boundary detection; it calculates the difference of a current selection set of pixel values to 
that of newly added pixels continuously as the region grows, and stops when it exceeds a preselected gray value 
difference. This algorithm expands from a seed point to the object boundary until it encounters a pre-set difference in the 
pixels’ intensities. We selected seed points that were the center of mass on individual cells’ cross-sectional planes as 
these points were the center of an initial cell region. Thus, these points were inside the cell region. Fast marching is very 
similar to flood fill, but with more sophisticated boundary detection. 

With regard to the fast marching parameters; first, the gray value difference between boundary pixels and seed point 
progressively increases and is used to determine the stopping point in expansion. The value will increase with images 
with stronger contrast. Thus, the value will be decreased for images with no contrast. We set the grey value threshold 
value as 50. Second, fast marching determines the extent of expansion in one iteration as permitted by selection. It 
signifies the speed at which the contour progresses; the value is increased to speed up segmentation. Since we selected 
typical default values, we set the distance threshold value as 0.50.  
 
2.4 Classification 

SVMs have recently been found to be powerful classifiers since they are guaranteed to converge to an optimal solution 
even for a small set of training samples 24. Therefore, we used SVM-based classification. Once feature vectors were 
extracted from the segmented cell object, they could be used to analyze the differences in cell size and roundness 
between benign and malignant cells. We trained a classifier to label new samples into one of these 2 groups.  
SVMs can be used to detect statistical differences between 2 populations. In order to acquire the optimal solution, it is 
important to select a good classifier function. SVMs are known to be robust and free from the problem of over-fitting.  
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3. EXPERIMENTAL RESULTS  
The performance of our segmentation methods is illustrated in Fig. 6. Four images were selected for each cell to test the 
segmentation methods. The results were compared with the threshold algorithm method that was used previously 9. The 
cross-sectional images in Fig. 6 are orthogonal to the first principle axis, which passes through the initial region’s center 
of mass (Figs. 6a, d, g, j), when the threshold method was applied (Figs. 6b, e, h, k), and when we applied our methods 
(Figs. 6c, f, i, l).  
 

                                
(a)                  (b)                 (c)                          (d)                 (e)                  (f) 

 

                                 
         (g)                  (h)                  (i)                          (j)                  (k)                  (l) 
 

Figure 6. Comparison of threshold segmentation results and results from our method. (a, b, c) Sample 1, (d, e, f) Sample 2, (g, h, i) 
Sample 3, (j, k, l) Sample 4, (b, e, h, k) Threshold segmentation results, (c, f, i, l) Level set applied results. 

 
We assumed that the cell region would be segmented more clearly with our method than with the method used 
previously. Threshold algorithm results contain noise that necessitates additional post-processing. We used post-
processing to obtain an object in which the morphological opening operation gradually took place, and the spaces 
representing the cell could be filled in using the morphological closing operation 25. 
 
For experiments with the SVM-based classifier, we collected 2 types of samples (spherical and irregularly shaped) from 
the segmented images of each cell. We also generated 30 different samples using a training SVM. The features of the 
training and testing data sets examined were the segmented object’s size and roundness. We tested 3 types of kernels: 
radial-based, polynomial, and sigmoid functions. We adopted the cross-validation technique to overcome the problem 
associated with the small training sets. We chose the polynomial kernel function, which demonstrated the best 
classification performance for our data. Fig. 7 illustrates the results of the classification.  

 

 
(a) 0 hours 
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(b) 11hours 

 
(c) 25 hours 

Figure 7. SVM-based classification result. Blue circles represent spherical cells; red stars represent irregular-shaped cells. (a) 0 
hours (blue: 18, red: 73), (b) 11 hours (blue: 25, red: 63), (c) 25 hours (blue: 32, red: 99). 

 
We compared the results our method obtained with that obtained manually. Our method provided 84.51% accuracy, 
while that of the method used previously exceeded 60%. The reason was that the level set algorithm has robust 
segmentation on thin areas of cell regions from a cell image. Thus, this approach is able to classify tumor cells more 
clearly than threshold methods are. 

 

4. CONCLUSION 
Time-lapse phase-contrast microscopy is becoming increasingly important for studying the invasiveness of tumor cells. 
We developed a method to detect individual cells in dense cell populations using time-lapse phase-contrast microscopic 
imaging by taking into consideration the characteristics of imaging modalities and the artifacts in these modalities. We 
used the level set algorithm by considering the halo artifact on a 3D cross-sectional image. With this approach, we were 
able to separate cells more clearly than a threshold algorithm could 9. The results of classification found that cells spread 
out randomly and that the number of spherical cells was increased 1,8. We are currently using this method to detect, count, 
and classify circulating cells based on morphology in time-lapse phase-contrast microscopic images. In the near future, 
we intend to separate each attached cell, as the current results are of attached cells that were joined together. Furthermore, 
we intend to develop a system to classify tumor cells as malignant or benign based on morphology, and use our method 
to screen anticancer drugs. 
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